ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Benzer belgeler
ATMALI FİLTRELİ KATODİK VAKUM ARK DEPOLAMA YÖNTEMİYLE ÇİNKO NİTRÜR (Zn 3 N 2 ) ÜRETİMİ VE OPTİKSEL ÖZELLİKLERİ *

Paslanmaz Çelik Gövde. Yalıtım Sargısı. Katalizör Yüzey Tabakası. Egzoz Emisyonları: Su Karbondioksit Azot

MALZEME BİLGİSİ. Katı Eriyikler

KATILARDA KRİSTAL YAPI. Hekzagonal a b c 90 o, 120. Tetragonal a b c 90 o. Rombohedral (Trigonal) Ortorombik a b c 90 o. Monoklinik a b c 90 o

1. Amaç Kristallerin üç boyutlu yapısı incelenecektir. Ön bilgi için İnorganik Kimya, Miessler ve Tarr, Bölüm 7 okunmalıdır.

Kristallerdeki yüzeyler, simetri ve simetri elemanları 2 boyutta nasıl gösterilir?

BÖLÜM 2. Kristal Yapılar ve Kusurlar

MALZEME BİLGİSİ DERS 6 DR. FATİH AY.

FİZ 427 KRİSTAL FİZİĞİ

Bölüm 3 - Kristal Yapılar

Bir kristal malzemede uzun-aralıkta düzen mevcu4ur.

İÇİNDEKİLER 1: KRİSTALLERDE ATOMLAR...

KATIHAL FİZİĞİ DERS 2. Tipik Kristal Yapılar Kuasi-kristaller Doluluk Oranı

KATILARIN ATOMİK DÜZENİ KRİSTAL YAPILAR

FZM 220. Malzeme Bilimine Giriş

KRİSTAL KUSURLARI BÖLÜM 3. Bağlar + Kristal yapısı + Kusurlar. Özellikler. Kusurlar malzeme özelliğini önemli ölçüde etkiler.

Gelin bugün bu yazıda ilkokul sıralarından beri bize öğretilen bilgilerden yeni bir şey keşfedelim, ya da ne demek istediğini daha iyi anlayalım.

BÖLÜM 3. Katı malzemeler yapılarındaki atom ve iyonların birbirlerine göre düzenlerine bağlı olarak sınıflandırılırlar.

Katılar. MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr. Atilla EVCİN. Yrd. Doç. Dr. Atilla EVCİN Afyonkarahisar Kocatepe Üniversitesi 2006

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

MALZEME BİLGİSİ. Kristal Yapılar ve Kristal Geometrisi

Enerji Band Diyagramları

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

ZnO TABANLI YARIİLETKENLERDE METAL KONTAK ÖZELLİKLERİNİN ARAŞTIRILMASI * Investigation of Metal Contact Properties at ZnO Based Semiconductors

1,3-bis-(p-iminobenzoik asit)indan Langmuir-Blodgett filmlerinin karakterizasyonu ve organik buhar duyarlılığı

Malzeme Bilimi I Metalurji ve Malzeme Mühendisliği

KRİSTAL KAFES SİSTEMLERİ

Malzemelerin Deformasyonu

FZM 220. Malzeme Bilimine Giriş

Katılar & Kristal Yapı

KRİSTAL YAPISI VE KRİSTAL SİSTEMLERİ

ATOMLAR ARASI BAĞLAR

Bölüm 4: Kusurlar. Kusurlar

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ 3. HAFTA

GÜNEŞ PİLLERİ (FOTOVOLTAİK PİLLER) I. BÖLÜM

FZM 220. Malzeme Bilimine Giriş

Doç.Dr.Vildan BiLGiN. Çanakkale Onsekiz Mart Üniversitesi Fen Edebiyat Fakültesi - Fizik Bölümü

bir atomun/iyonun bulunduğu kafes içindeki en yakın komşu atomlarının/iyonlarının sayısıdır.

Dislokasyon hareketi sonucu oluşan plastik deformasyon süreci kayma olarak adlandırılır.

FZM 220. Malzeme Bilimine Giriş

1. Giriş 2. Kristal Yapılar 3. Kristal Kafes Noktaları 4. Kristal Kafes Doğrultuları ve Düzlemler MALZEME BILGISI B3

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

MMM291 MALZEME BİLİMİ

Bölüm 4: Kusurlar. Kusurlar. Kusurlar. Kusurlar

Malzeme Bilimi Dersi

İNSTAGRAM:kimyaci_glcn_hoca

Boya eklenmesi Kısmen karışma Homojenleşme

Fotovoltaik Teknoloji

ALETLİ ANALİZ YÖNTEMLERİ

FİZ4001 KATIHAL FİZİĞİ-I

1. Düzensiz yapı : Atom veya moleküllerin rastgele dizilmesi. Argon gibi asal gazlarda görülür.

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOM BİLGİSİ Atom Modelleri

Atomdan e koparmak için az ya da çok enerji uygulamak gereklidir. Bu enerji ısıtma, sürtme, gerilim uygulama ve benzeri şekilde verilebilir.

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ 4. HAFTA

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir.

AMORF SİLİKON P-İ-N GÜNEŞ PİLLERİ VE KALKAJONİD CAMLARDA FOTOTAŞIYICI ÖMÜR SÜRESİ ÖLÇÜMÜ

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Temel Elektrik Elektronik. Seri Paralel Devrelere Örnekler

MBM 304 Kristal Kimyası 4. Hafta Dr. Sedat ALKOY 1

Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır.

BMM 205 Malzeme Biliminin Temelleri

MADDENİN YAPISI VE ÖZELLİKLERİ

ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri Elektronik kutuplaşma

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

FZM 220. Malzeme Bilimine Giriş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Elektronik-I. Yrd. Doç. Dr. Özlem POLAT

MALZEME BİLGİSİ DERS 5 DR. FATİH AY. fatihay@fatihay.net

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

I. FOTOELEKTRON SPEKTROSKOPĠSĠ (PES) PES orbital enerjilerini doğrudan tayin edebilir. (Fotoelektrik etkisine benzer!)

12. SINIF KONU ANLATIMLI

Modern Fiziğin Teknolojideki Uygulamaları

ATOM HAREKETLERİ ve ATOMSAL YAYINIM

12. Ders Yarıiletkenlerin Elektronik Özellikleri

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

ANİZOTROPİ. Schmid s Tek kristle uygulandığında:

ELEMENT VE BİLEŞİKLER

BÖLÜM 3 DİFÜZYON (YAYINIM)

ELEKTRİKSEL POTANSİYEL

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

MALZEME BİLİMİ. Difüzyon

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Mekanizma ve etkileyen faktörler Difüzyon

Elektronların Dizilişi ve Kimyasal Özellikleri

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Kristalleşme ve kusurlar Kristal Yapılar

2. Işık Dalgalarında Kutuplanma:

İstatistiksel Mekanik I

Malzeme muayene metodları

MMT407 Plastik Şekillendirme Yöntemleri

FZM 220. Malzeme Bilimine Giriş

Yarıiletken devre elemanlarında en çok kullanılan maddeler;

Malzeme I Katılarda Kristal Yapılar

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

İNTERMETALİK MALZEMELER (DERS NOTLARI-2) DOÇ. DR. ÖZKAN ÖZDEMİR

Transkript:

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ATMALI FİLTRELİ KATODİK VAKUM ARK DEPOLAMA YÖNTEMİYLE ÇİNKO NİTRÜR (Zn 3 N 2 ) ÜRETİMİ VE OPTİKSEL ÖZELLİKLERİ FİZİK ANABİLİM DALI ADANA, 2008

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ATMALI FİLTRELİ KATODİK VAKUM ARK DEPOLAMA YÖNTEMİYLE ÇİNKO NİTRÜR (Zn 3 N 2 ) ÜRETİMİ VE OPTİKSEL ÖZELLİKLERİ YÜKSEK LİSANS TEZİ FİZİK ANABİLİM DALI Bu Tez 31/07/2008 Tarihinde Aşağıdaki Jüri Üyeleri Tarafından Oybirliği ile Kabul Edilmiştir. İmza İmza İmza.. Prof. Dr. Ramazan ESEN Prof. Dr. Hamide KAVAK Yrd.Doç.Dr.Ebru ŞENADIM TÜZEMEN Danışman Üye Üye Bu tez Enstitümüz Fizik Anabilim Dalında hazırlanmıştır. Kod No : Prof.Dr. Aziz ERTUNÇ Enstitü Müdürü Bu Çalışma Ç.Ü.Bilimsel Araştırma Projeleri Birimi Tarafından Desteklenmektedir. Proje No: FEF2007YL37 Not:Bu tezde kullanılan özgün ve başka kaynaktan yapılan bildirişlerin, çizelge, şekil ve fotoğrafların kaynak gösterilmeden kullanımı, 5846 sayılı Fikir ve Sanat Eserleri Kanunundaki hükümlere tabidir.

ÖZ YÜKSEK LİSANS TEZİ ATMALI FİLTRELİ KATODİK VAKUM ARK DEPOLAMA YÖNTEMİYLE ÇİNKO NİTRÜR (Zn 3 N 2 ) ÜRETİMİ VE OPTİKSEL ÖZELLİKLERİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI Danışman : Prof.Dr. Ramazan ESEN Yıl : 2008, Sayfa 113 Jüri : Prof.Dr. Ramazan ESEN Prof. Dr. Hamide KAVAK Yrd. Doç. Dr. Ebru ŞENADIM TÜZEMEN Bu çalışmada Atmalı Filtreli Katodik Vakum Ark Depolama yöntemi ile Zn 3 N 2 ince filmler oda sıcaklığında cam ve silisyum olmak üzere iki ayrı alt taban üzerine aynı kalınlık farklı basınçlarda ve aynı basınç farklı kalınlıklarda üretildi. Elde edilen filmlerin optik ve yapısal özelliklerinin kalınlık ve basınç değişiminden nasıl etkilendiği araştırıldı. Anahtar Kelimeler: PFCVAD Yöntemi, İnce Film, Zn 3 N 2 I

ABSTRACT MASTER THESİS PRODUCTION AND OPTICAL PROPERTIES OF ZINC NITRIDE (Zn 3 N 2 ) BY PULSED FILTERED CATHODIC VACUUM ARC DEPOSITION SYSTEM DEPARTMENT OF PHYSICS INSTUTE OF NATURAL AND APPLIED SCIENCES UNIVERSITY OF CUKUROVA Supervisor : Prof.Dr. Ramazan ESEN Year : 2008, Pages 113 Jury : Prof.Dr. Ramazan ESEN Prof.Dr. Hamide KAVAK Assist.Prof. Ebru ŞENADIM TÜZEMEN In this work, Zn 3 N 2 thin films were produced on glass and silicon substrates by Pulsed Filtered Cathodic Vacuum Arc Deposition Method at room temperature for the same thickness at different pressure and for different thickness at the same pressure. Furthermore, the influence of thickness and pressure on the optical and structural properties were investigated for the produced Zn 3 N 2 thin films. Key Words: PFCVAD Method, Thin Film, Zn 3 N 2 II

TEŞEKKÜR Tez yazımım sırasında benden her türlü bilgi, beceri ve yardımını esirgemeyen bana rehberlik yapan danışmanım değerli hocam sayın Prof. Dr. Ramazan ESEN e en içten teşekkür ve saygılarımı sunarım. Bu süreç sırasında yardımlarını esirgemeyen sayın hocam Prof. Dr. Hamide KAVAK ve Yrd. Doç. Dr. Ebru ŞENADIM TÜZEMEN e de teşekkürlerimi bir borç bilirim. Araştırmalarımız sürecinde çalıştığım çalışma arkadaşlarıma özellikle de Necdet Hakan ERDOĞAN a teşekkürlerimi sunarım. Tez süresince bana vermiş olduğu her türlü destek özellikle de moral ve motivasyon açısından yardımlarından dolayı Uzman Emrumiye Arlı ya da sonsuz teşekkürlerimi bildiririm. Hayatın her alanında ve bu yolculuk sırasında da manevi desteğini hiçbir zaman esirgemeyen canım aileme de ayrıca sonsuz sevgilerimi ve teşekkürlerimi sunarım. III

İÇİNDEKİLER SAYFA ÖZ......I ABSTRACT. II TEŞEKKÜR....III İÇİNDEKİLER...IV ÇİZELGELER DİZİNİ.... VIII ŞEKİLLER DİZİNİ........IX 1. GİRİŞ.......1 2.ÖNCEKİ ÇALIŞMALAR...4 3. MATERYAL ve METOD 9 3.1. Temel Teorik Kavramlar...9 3.1.1 Kristalografiye Giriş.......9 3.1.2 Atomlardaki Periyodik Düzen......10 3.1.3 Temel Örgü Türleri......10 3.1.4 Kristal Düzlem Geometrisi (Miller İndisleri)......13 3.1.5 Kristallerde Simetri.....15 3.2. Kristal Yapılar......18 3.2.1 Heksagonal Sıkı Paket Yapı...20 3.2.2 Amorf Yapı. 21 3.3. Kristal Yapı Kusurları......24 3.3. 1 Noktasal Hatalar......24 3.3. 2 Çizgisel Hatalar (Dislokasyonlar)......27 3.3. 3 Yüzeysel Hatalar(Tane sınırları, dış yüzeyler, istiflenme hataları)....30 3.4. Kristalde Kırınım. 33 3.4.1 X-Işınları... 33 3.4.2 Bragg Kanunu.....39 3.4.3 Düzlemler Arası Uzaklık.. 41 IV

3.5. Deneysel Kırınım Metodları...43 3.5.1 Toz Kırınım Metodu...44 3.5.2 Laue Metodu...44 3.5.3 Döner Kristal Metodu...44 3.6. Optik Özellikler...46 3.6.1 Temel Soğurma.....46 3.6.2 İzinli Doğrudan Geçişler...47 3.6.3 Yasaklı Doğrudan Geçişler...49 3.6.4 Dolaylı Bantlar Arasında Dolaylı Geçişler...50 3.6.5 Direk Bantlar Arasında Dolaylı Geçişler....56 3.6.6 Bant Kuyrukları Arasındaki Geçişler...56 3.7. İnce Film Depolama Yöntemleri...59 3.7.1 Fiziksel İşlemler.. 59 3.7.2 Kimyasal İşlemler...61 3.7.3 Fiziksel ve Kimyasal İşlemler...62 3.8. Atmalı Filtreli Katodik Vakum Ark Depolama Tekniği..64 3.8.1 Ark Spotu ve Plazma...69 3.8.2 Katodik Ark Kaynakları. 70 3.8.3 PFCVAD Sisteminin Çalışma Prensibi.71 3.8.4 PFCVAD Sisteminin Karakteristikleri...71 3.9. Filmlerin Yapısal Karakterizasyonunun Belirlenebilmesi... 72 3.9.1 Örgü Parametresinin Ölçümü ve Tanecik Büyüklüğü Hesabı....72 3.10. Filmlerin Optik Karakterizasyonunun Belirlenebilmesi....73 3.10.1 Soğurma Katsayısının Hesaplanması.....73 3.10.2 Yasak Enerji Aralığının Bulunması 77 3.10.3 Film Kalınlığının Hesaplanması......79 3.10.4. Sönüm Katsayısının (k) Hesaplanması..80 V

4. ARAŞTIRMA ve BULGULAR...81 4.1. Atmalı Filtreli Katodik Vakum Ark Depolama Yöntemiyle Elde Edilen Çinko Nitrür İnce Filmlerin X-Işınları Çalışmaları....81 4.2. Atmalı Filtreli Katodik Vakum Ark Depolama Yöntemi İle Elde Edilen Çinko Nitrür İnce Filmlerin Optik Özelliklerinin Belirlenmesi.. 82 5. SONUÇLAR VE ÖNERİLER..107 KAYNAKLAR.....108 ÖZGEÇMİŞ.....113 VI

ÇİZELGELER DİZİNİ SAYFA Çizelge 3.1. Kristal sistemleri.( Durlu, 1996).11 Çizelge 3.2. Uzay Örgüleri. (Durlu, 1992)...13 Çizelge 3.3. Hermann-Mauguin gösterimi ile simetri elemanları.. 17 Çizelge 3.4. Kristal sistemlerinde simetri elemanları.....18 Çizelge 3.5 Bazı kristal sistemlerin düzlemler arası uzaklık formülleri.....43 Çizelge 4.1. Farklı azot basınçları ile optik parametrelerin değişimi.....87 Çizelge 4.2. Aynı basınç (1x10-3 Torr ) farklı kalınlıklarda elde edilen çinko nitrür ince filmlerinin optik parametrelerin değişimi..... 92 Çizelge 4.3. Tavlandıktan sonra elde edilen çinko nitrür ince filmlerinin optik parametrelerinindeğişimi... 97 Çizelge 4.4. Tavlandıktan sonra elde edilen çinko nitrür ince filmlerinin optik Parametrelerinin değişimi....102 VII

ŞEKİLLER DİZİNİ SAYFA Şekil 3.1. Ondört uzay örgüsüne ait birim hücreler... 12 Şekil 3.2. Kristaldeki bazı düzlemlerin Miller indisleri...14 Şekil 3.3. Heksagonal birim hücre......15 Şekil 3.4. Sıkı paketlenmiş küreler......20 Şekil 3.5. a) Kristal yapıdaki SiO 2 (Kuartz) (Cam), b) Amorf yapıdaki SiO 2....21 Şekil 3.6. Atom boşluğu hatası.......25 Şekil 3.7. a) Safsızlık hatası b) sarı atom yeralan atom hatası... 25 Şekil 3.8. a) yeralan (interstitial), b) küçük arayer (substitutional), c) büyük arayer Hatalar....26 Şekil 3.9. a) Frenkel, b)schottky hataları...26 Şekil 3.10. Frenkel, Schottky ve boşluk hataları....27 Şekil 3.11. Kenar dislokasyon....28 Şekil 3.12. Karışık Dislokasyon.....29 Şekil 3.13. Dislokasyon hareketi....29 Şekil 3.14. Tane sınırları.....30 Şekil 3.15. a) Tane sınırına yakın bölgede atom dizilişi, b) Küçük açılı tane sınırları.31 Şekil 3.16. İstif hatası.....32 Şekil 3.17. İkiz sınırlar....32 Şekil 3.18. X-ışınlarının Üretimi....34 Şekil 3.19. Hızlandırma gerilimine bağlı olarak elde edilen sürekli x-ışını spektrumu (Kabak, 2004)...36 Şekil 3.20. Molibden bir hedefle oluşturulan X-ışını çizgi spektrumu.. 36 Şekil 3.21. X-ışınlarından oluşan en yaygın geçişleri gösteren enerji seviyesi......38 Şekil 3.22. Bir kristal tarafından oluşturulan X-ışınları kırınımı....40 Şekil 3.23. S arka ve ön yüzün alanıdır. d 100, S ye diktir (Kabak, 2004)..41 Şekil 3.24. Döner kristal yöntemi için deneysel düzenek (Dikici, 1993)......45 Şekil 3.25. Döner kristal metodunda film üzerinde çizgilerin oluşumu VIII

(Kabak, 2004)....46 Şekil 3.26. Parabolik bir bant yapısında doğrudan geçiş (Pankove, 1971)....48 Şekil 3.27. Dolaylı geçişler (Pankove, 1971).... 50 Şekil 3.28. Soğurmanın sıcaklık bağımlılığı (Pankove, 1971)...53 Şekil 3.29. İki fonon yardımlı geçişler. (Pankove, 1971)... 53 Şekil 3.30. Optik soğurmanın iletim bandı durumlarının doldurulmasıyla değişimi (Pankove, 1971)....54 Şekil 3.31. Aşırı katkılamanın bant kenarına etkisi (Pankove, 1971)....55 Şekil 3.32. Taşıyıcı yoğunluğunun soğurmaya etkisi (Pankove, 1971)...55 Şekil 3.33. İletim bandına doğrudan geçişler. (Pankove, 1971).....56 Şekil 3.34. GaAs' ın oda sıcaklığındaki soğurma kenarı. (Pankove, 1971)....57 Şekil 3.35. İletim bant kuyruğunun optik soğurma ile gözlenmesi (Pankove, 1971) 57 Şekil 3.36. Turbomoleküler pompa sistemi....65 Şekil 3.37. Reaksiyon odacığı....66 Şekil 3.38. Atmalı plazma ark kaynağı... 67 Şekil 3.39. PFCVAD sisteminin şematik gösterimi...68 Şekil 3.40. PFCVAD sisteminin temel bileşenleri.....69 Şekil 3.41. İnce bir tabakadaki soğurma. (Meyer, 1972)... 74 Şekil 3.42. İnce bir filmde çok yansımalı ışık geçirimi. (Pankove, 1971)........75 Şekil 3.43. Amorf bir yarıiletkenin soğurma katsayısının enerji ile değişimi (Mott,1979).. 78 Şekil 4.1. Çinko Nitrür ince filmlerin X-ışınları kırınım deseni.....81 Şekil 4.2. Çinko Nitrür yarıiletken ince filmlerin farklı azot basınçlarında geçirgenliğin dalga boyuna göre değişimi....83 Şekil 4.3. Çinko Nitrür yarıiletken ince filmlerin farklı azot basınçlarında soğurma katsayısının enerjiye göre değişimi....84 Şekil 4.4. Çinko Nitrür yarıiletken ince filmlerin farklı azot basınçlarında ( αhν ) 2 nin Enerji ye göre değişimi....85 Şekil 4.5. Çinko Nitrür yarıiletken ince filmlerin aynı kalınlık farklı basınçlarda lnα ya göre enerjinin değişimi..... 86 IX

Şekil 4.6. Aynı basınç ( 1x10-3 Torr ) farklı kalınlıklarda elde edilen çinko nitrür ince filmlerin optik geçirgenlik değerlerinin dalga boyuna karşı grafiği..88 Şekil 4.7. Aynı basınç ( 1x10-3 Torr ) ve farklı kalınlıklar da elde edilen çinko nitrür ince filmlerinin soğurma katsayısının enerjiye göre değişimi.89 Şekil 4.8. Aynı basınç ( 1x10-3 Torr ) farklı kalınlıklarda elde edilen çinko nitrür ince filmlerinin ( αh ν) 2 nin enerjiye göre değişimi.90 Şekil 4.9. Aynı basınç ( 1x10-3 Torr ) farklı kalınlıklarda elde edilen çinko nitrür ince filmlerinin ln α nın enerjiye göre değişimi..91 Şekil 4.10. Tavlandıktan sonra elde edilen (ZE3) çinko nitrür ince filmlerinin optik geçirgenlik değerlerinin dalga boyuna karşı grafiği...93 Şekil 4.11. Tavlandıktan sonra elde edilen (ZE3) çinko nitrür ince filmlerinin soğurma katsayısının enerjiye göre değişimi...94 Şekil 4.12. Tavlandıktan sonra elde edilen (ZE3) çinko nitrür ince filmlerinin ( αh ν) 2 nin enerjiye göre değişimi.. 95 Şekil 4.13. Tavlandıktan sonra elde edilen (ZE3) çinko nitrür ince filmlerinin ln α nın enerjiye göre değişimi...96 Şekil 4.14. Tavlandıktan sonra elde edilen (ZE5) çinko nitrür ince filmlerinin optik Şekil 4.15. geçirgenlik değerlerinin dalga boyuna karşı grafiği....98 Tavlandıktan sonra elde edilen (ZE5) çinko nitrür ince filmlerinin soğurma katsayısının enerjiye göre değişimi..99 Şekil 4.16. Tavlandıktan sonra elde edilen (ZE5) çinko nitrür ince filmlerinin ( αh ν) 2 nin enerjiye göre değişimi...100 Şekil 4.17. Tavlandıktan sonra elde edilen (ZE5) çinko nitrür ince filmlerinin ln α nın enerjiye göre değişimi. 101 Şekil 4.18. Aynı kalınlık (350 nm) farklı basınçlarda çinko nitrür ince filmlerinden elde edilen bağıl yansıtma....103 Şekil 4.19. Aynı basınç (1x10-3 Torr) farklı kalınlıklarda çinko nitrür ince filmlerinden elde edilen bağıl yansıtma 104 Şekil 4.20. Aynı kalınlık (350 nm) farklı basınçlarda çinko nitrür ince filmlerinin soğurma ve geçirgenlik (%T) değerlerinden elde edilen bağıl X

yansıtma...105 Şekil 4.21. Aynı basınç (1x10-3 Torr) farklı kalınlıklarda çinko nitrür ince filmlerinin soğurma ve geçirgenlik (%T) değerlerinde bağıl yansıtma 106 XI

1. GİRİŞ 1.GİRİŞ Yüzyıllar önce soy metallerin ince filmleri cam ve seramik üzerine dekorasyon olarak kullanılmış olması, 1940 lı yıllardan itibaren yarıiletken teknolojisi üzerine olan ilgiyi günümüze kadar devam ettirmiştir. Özellikle son yıllarda teknolojik ve bilimsel araştırmalarda önemli bir yer tutan yarıiletken ince film bilimi bütün dünya çapında temel bir araştırma alanı olarak gelişmiştir. İnce filmler, farklı üretim teknikleri kullanılarak kaplanacak malzemenin atomlarının ya da moleküllerinin, bir taban üzerine ince bir tabaka halinde oluşturulan ve kalınlıkları tipik olarak 1 μm civarında olan yarıiletken malzemelerdir. Kaplamanın önemi ve endüstri için yeni malzemelerin sentezi, ince film işleme teknolojisinde büyük ve önemli bir artışa neden olmuştur. Şu anda bu gelişmeler, mikro elektronik, optik ve nanoteknolojideki bilimsel ve teknolojik patlamalarla büyük bir alanda ilerlemektedir. Kalınlığı 1 ile 10 μm arasında değişen kalınlıklardaki filmler için yapı ve işlem teknolojisi çok sayıdaki üretim alanı için önemlidir. Üretim alanları: Isıya dayanıklı malzeme kaplama işlemleri ve korumalı giyimler Malzemelerin ömür süresinin artırılması, atmosfer basıncına ve ısıya karşı malzemelerin korunması Güneş pilleri, optik ve elektronik devreler, bilgisayarlarda hafıza bölümlerin de kullanılır. Son yıllarda nanometre büyüklüğünde özellikle ince film formatında yarıiletken yapıda malzeme üretimi kayda değer bir ilgi alanına sahiptir. Güneş pilleri, süper kapasitörler, fotovoltaik araçlar ve elektrokronik pencerelerde kullanılan materyalin fiziksel ve kimyasal özelliklerinin kontrolünün sağlanabilirliği, yarıiletken ince film ve nanoteknolojisi içeren çalışmalara olan ilgiyi artıran nedenlerden biridir. İnce film formatında nanokristal yarıiletken materyaller, bu materyallerle yapılan malzeme ve araçların karakteristik özelliklerinin artırılmasına 1

1. GİRİŞ imkân verir. Bu tip malzemelerde, materyali oluşturan parçacık sayısının artmasından dolayı katı yapıdan moleküler yapıya doğru aşamalı bir geçiş gözlenir. Bir yarıiletkenin nanokristal büyüklüğü, yarıiletkenin bant yapısını etkilediği için, yarıiletkeni oluşturan parçacıkların yeterince küçük olması yük taşıyıcılarının kuantum sınırında bulunmasını ve bant yapılarının kesikli enerji seviyelerine ayrışmasına neden olur (Pejova ve ark., 2005). Nanometre büyüklüğündeki yarıiletken malzemelerin özelliklerinden biride, yarıiletkenin sahip olduğu değerlik bandının (Eg) değerinin artarken, yarıiletkenin nanokristal yapı çapının azalmasıdır Yarıiletken ince filmler yapısal mükemmellik derecelerinin azalmasına bağlı olarak üç ana gruba ayrılırlar. Bunlar; Tek katlı (homoepitaksiyel) olarak adlandırılan aynı materyalin tek kristal tabanı üzerine çöktürülen tek kristal filmler Çok katlı (heteroepitaksiyel) olarak adlandırılan farklı materyalin tek kristali üzerine büyütülen tek kristal filmler Cam, kuvars gibi amorf tabanların üzerine çöktürülen polikristal filmlerdir. Polikristal filmler büyük yüzeyli metal, cam, seramik, grafit gibi tabanlar üzerinde büyütülebilen, elektrik ve optik özelliklerinden dolayı güneş pili, yarıiletken fotodedektörler, diyotlar gibi birçok uygulama alanı olan, basit ve değişik yöntemlerle elde edilebilen yarıiletken malzemelerdir (Sze, 1981). Bu çalışma alanları içinde üçüncü gruba giren ve Atmalı Filtreli Katodik Vakum Ark Depolama Yöntemiyle çinko nitrür üretildi ve bu elde edilen örneklerin optiksel özellikleri detaylı bir şekilde incelendi. Çinko nitrür yarıiletken ince filmler reaktif rf magnetron söktürme, metal organik kimyasal buhar depolama, termal buharlaştırma gibi çeşitli yöntemlerle üretilebilir. Bu tezde çinko nitrür ince filmler atmalı filtreli katodik vakum ark depolama yöntemiyle üretilecektir. Katodik plazma ark depolama tekniği fiziksel buhar depolama sistemleri içindeki önemli yöntemlerdendir. Yarıiletken ince filmlerin depolama sistemleri içinde plazma yardımlı atmalı filtreli katodik ark depolama sistemi yeni gelişmekte 2

1. GİRİŞ olup, düşük alt taban sıcaklıklarında iyi tutunmuş yüzey morfolojisi kontrol edilebilen, yüksek yoğunluklu bileşik filmlerin sentezi için uygun bir sistemdir. Katodik ark, katot yüzeyindeki ark deşarj yayınlama sisteminin katodu erozyona uğratarak buharlaştırmasıyla oluşur ve sistemde reaktif gaza ihtiyaç duyulmaz.. Katot, metal, metal alaşım veya yarı iletken olabilir. Ark kaynağından yayınlanan plazma; elektronlar, iyonlar ve makro parçacıklar ve nötral metal buharı içerir. Nötral metal buharı, kütle transferinin küçük bir kısmını oluşturur. Bu nedenle ark kaynağından kaplama materyal akısı, tümüyle iyonlar ve makro parçacıklardan oluşur ve üretilen iyonların ortalama kinetik enerjileri 10 ile 100 ev arasındadır. Ortalama iyon enerjisi katot ile anot arsındaki potansiyel farktan daha büyüktür. Bu fiziksel karakteristikler, kaplanan filmler için film morfolojisinin kontrolü, düşük örnek sıcaklığı, yüksek film yoğunluğu, yüksek film tutunması, bileşik filmlerin verimli sentezi ve düzgünlük gibi avantajlar sunmaktadır. Çinko nitrür ince filmleri üretmek için aşağıda verilen yöntem kullanılacaktır. İlk olarak şematik gösterimi Şekil 1 de gösterilen sistemle üretilecektir. Bu işlem için hedef olarak metalik çinko (1 mm çaplı ve saflığı 99.99%) ve azot (saflığı 99.9999%) kullanılacaktır. Filmler ultrasonik temizleyici ile temizlenen cam alt tabanlar üzerine üretilecektir. Azot gaz girişi gaz akış basınç kontrol sistemi ile kontrol edilecek ve azot basıncı 10 4 Torr civarında tutulacaktır. Çinko nitrür örneklerinin yapısal özellikleri, optiksel özellikleri, kalınlıkların basınç değerlerinin değiştirilmesiyle ve farklı sıcaklıklarda tavlanarak optik parametrelerin nasıl değiştiği incelendi. PFCVAD sisteminin tek dezavantajı mikro parçacık üretimidir. Bunlar ise manyetik indüklenen katot spot hareketiyle, katot akım yoğunluğu ve katot yüzey sıcaklığı azaltılarak ve reaktif gaz eklenmesiyle azaltılabilir. Gelişmeler, katodik arkın uygulamalarının değişik potansiyellerine bakılarak devam etmektedir. 3

2. ÖNCEKİ ÇALIŞMALAR 2. ÖNCEKİ ÇALIŞMALAR Çinko nitrür ince filmleri N 2 (azot) veya Ar (argon) gazları içeren plazma içinde ZnN hedef kullanılarak magnetron püskürtme yöntemi tarafından depolanmıştır. Filmlerin yapısal özellikleri XRD kullanılarak belirlenmiştir. Elektriksel özellikleri (iletkenliği, taşıyıcı konsantrasyonu ve mobilitesi) dört problu Van der Pauw metodu kullanılarak Hall effect ölçümleri yapılarak belirlenmiştir. Filmlerin özellikleri N 2 ve O 2 ortamları içinde 550 C ye kadar ısısal işlemler yapılarak incelenmiştir. Argon (Ar) plazma içinde depolanan filmler opaktır ve n- tipi iletken bir materyal olmakla birlikte yapısı içinde Zn oranı çok fazla olmaktadır. Filmlerin tavlamayla geçirgenlikleri 345-360 nm de bir omuz şeklinde iniş göstermiştir. Filmler Ar plazma içinde depolandığında bunların iletkenlikleri taşıyıcı konsantrasyonları mobiliteleri (ρ ~10-1 de 10-2 Ω cm, N D ~10 18 de 10 20 cm -3 ) Hall effect ölçümleri yapılarak bulunmuştur. N 2 plazma içinde depolanan filmler yüksek dirençli ve yüksek geçirgenlikli olmasına rağmen tavlama ile onların özellikleri değişmemiştir. Ancak filmlerin yüksek tavlama sıcaklıklarında elektriksel özelliklerinin değiştiği ortaya çıkmıştır. Ar ve N 2 plazma içinde hazırlanan her iki tipteki filmlerinde 400 C oksidasyonla depolandıktan sonra p-tipi ZnO:N filmlerine dönüşmüştür. Bu şartlarda elde edilen filmler yüksek dirençliliğe ve düşük taşıyıcı konsantrasyona sahip olduğu bu sonuçlardan çıkarılmıştır (Kambilafka ve ark, 2007). Bu çalışmada Zn 3 N 2 filmleri N 2 /Ar plazma içinde (%99,995 ) Zn hedef kullanılarak rf-magnetron püskürtme yöntemi kullanılarak üretilmiştir. (001) yönelimli GaN ve ZnO yüzeyleri depolamada kullanılmıştır. Çeşitli nitrojen kısmi basınçları altında hazırlanan filmlerin XRD analizleri yapılmıştır. %90 N 2 oranında depolanan Zn 3 N 2 filmleri oksijenle tavlandığında (600 0 C de 15dakika) ~100 cm 2 /Vs mobilitede ve 10 17 cm -3 taşıyıcı konsantrasyonunda p-tipi filmler elde edilmiştir. P- tipi ZnO:N filmlerinin PL spektrası 3,36 ev da keskin bir pik göstermiştir. Filmlerin geçirgenlikleri görünür spektrum aralığında (%80) olduğu belirlenmiştir. Çeşitli alt tabanlar üzerinde (kuvars, safir, GaN/safir, alt tabanlar) amorf Zn 3 N 2 filmlerini oksijenle tavlanmasıyla ZnO elde edilmiştir ve yapıları XRD analizi yapılarak belirlenmiştir (Kaminska ve ark, 2005). 4

2. ÖNCEKİ ÇALIŞMALAR Yüksek nitelikli Zn 3 N 2 tozu 120 dakikada 600 0 C nitridasyon sıcaklığında NH 3 gazıyla birlikte Zn tozunun nitrürle reaksiyonu tarafından sentezlenmiştir. Farklı sıcaklıklarda yapılan XRD ölçümleri Zn 3 N 2 bileşiğinin kübik bir yapıda olduğunu ve örgü sabitinin a=9,788 A 0 olduğunu göstermiştir. X-ışını fotoelektron spektroskopisi (XPS) Zn 3 N 2 ve ZnO arasındaki kimyasal bağlanma durumlarının farklılıklarını göstermiştir ve N-Zn bağlarının oluşumunu doğrulamıştır. Farklı nitrürleme sıcaklıklarında XRD analizi yapılmıştır ve en uygun nitrürleme sıcaklığı 600 0 C olduğu görülmüştür. Zn 3 N 2 tozunun ısıya bağlı olarak ayrışması davranışını araştırmada TGA (Thermal Gravimetric Analysis) ve DTA (Differential Thermal Analysis) kullanılmıştır. Zn 3 N 2 nin 500 0 C nin üzerindeki bir sıcaklıkta karasız bir yapı gösterdiği bulunmuştur (Zong ve ark, 2004). Bu çalışmada yüksek nitelikli Zn 3 N 2 nanotelleri 120 dakikada 600 0 C nitrürleme sıcaklığında 1 dakikada 500 ml içinde NH 3 akışıyla Zn tozlarının nitrürle reaksiyonu tarafından sentezlenmiştir. Yapısal özelliklerini belirlemek için kullanılan XRD analizi yoluyla Zn 3 N 2 nanotellerinin kübik bir yapıya sahip olduğu ve örgü sabitinin de a=9,788 A olduğu belirlenmiştir. Zn 3 N 2 nanotellerinin morfolojisi ve yapısı taramalı elektron mikroskobu (SEM, Scanning Electron Microscopy), geçirgen elektron mikroskobu (TEM, Transmission Electron Microscopy), yüksek kararlı geçirgen elektron mikroskobu (HRTEM, High-Resolution Transmission Electron Microscopy) teknikleri kullanılarak belirlenmiştir. Yapılan optik özelliklerin sonucunda Zn 3 N 2 nin direk band aralığının1,23 ev olduğu ve n-tipi bir yarıiletken olduğu belirlenmiştir (Zong ve ark, 2005). Zn 3 N 2 filmleri Ar-N 2 karışımı olarak çalışılan gazlar ve toz Zn diskleri hedef alınarak kullanılan Reaktif DC magnetron püskürtme yöntemiyle depolanmıştır. Zn 3 N 2 filmlerinin oksidasyonu ile p-tipi ZnO ince filmleri hazırlanmıştır. Bu filmler 350 0 C ile 500 0 C oksidasyon sıcaklığında elde edilmiştir. 500 0 C sıcaklığında elde edilen ZnO filmlerini hole konsantrasyonu oldukça yüksek ve p-tipi iken (5,78x10 17 cm -3 ) 550 0 C oksidasyon sıcaklığında n-tipi ZnO filmleri elde edildiği gözlenmiştir. Zn 3 N 2 filmleri ve farklı sıcaklıklarda tavlanan örneklerin XRD ölçümleri yapılmıştır ve ZnO kırınım pikleri görülmüştür. Farklı sıcaklıklarda elde edilen ZnO filmlerinin soğurma spektrumlarının dalga boyuna göre değişimi 5

2. ÖNCEKİ ÇALIŞMALAR gösterilmiştir. Farklı sıcaklıklarda elde edilen ZnO filmlerinin Hall effect ölçümleri (direnç, mobilite, taşıyıcı konsantrasyonu) yapılmıştır (Wang ve ark, 2003). Bu çalışmada 10 gram saf Zn tozu (%99 saflıkta) bir kuvars bot içine alarak yatay fırında rezistif yöntemle ısıtılmıştır. Zn 3 N 2 boş küreleri 120 dakikada 600 0 C nitrürleme sıcaklığında ve atmosfer basıncı altında dakikada 500 ml amonyak (NH 3 ) gazı içinde Zn tozlarının nitrürleme reaksiyonu tarafından sentezlenmiştir. X-ışın kırınımı (XRD, X-ray diffraction) analizleri sonucunda Zn 3 N 2 nin kübik bir yapıya sahip olduğu belirlenmiştir. Taramalı elektron mikroskobu (SEM, Scanning Electron Microscopy), geçirgen elektron mikroskobu (TEM, Transmission Electron Microscopy), yüksek kararlı geçirgen elektron mikroskobu (HRTEM, High- Resolution Transmission Electron Microscopy) analizleri Zn 3 N 2 nin küresel kabuk yapıda olduğunu göstermiştir. X-ışını fotoelektron spektroskopisi Zn 3 N 2, ZnO ve Zn tozlarının arasındaki kimyasal bağlanma durumlarının farklılıklarını söylemiştir ve N-Zn bağlarının oluşumunu doğrulamaktadır (Ma ve ark, 2005). Bu çalışmada iyi özellikli polikristal Zn 3 N 2 filmleri oda sıcaklığında Radyo Frekans (RF) magnetron püskürtme tarafından azot gazı kullanılarak ve Zn 3 N 2 hedef tarafından kuvars yüzeyler üzerinde sentezlendi. X-ışını kırınımı (XRD) ölçümlerinden polikristal Zn 3 N 2 filmlerinin kübik bir yapıda olduğu ve örgü sabitinin a=0,979nm olduğu belirlenmiştir. XRD sonuçlarından Zn 3 N 2 filmlerinin (321) ve (442) yönelimlerinde olduğu gözlenmiştir. Zn 3 N 2 filmlerinin soğurma katsayıları ile birlikte filmlerin kalınlıkları geçirgenlik spektrumları kullanılarak hesaplanmıştır. Optiksel band aralığı soğurma katsayısının foton enerjisine bağlılığı tarafından belirlenmiştir. Dolaylı geçiş optiksel band aralığı 2,12 ev olarak elde edilmiştir (Xiao ve ark, 2005). Bu çalışmada Zn 3 N 2 tozunun ısısal bozunum davranışını araştırmak için Isı gravimetrik analizi (TGA) ve Diferansiyel ısı analizi DTA) yöntemleri kullanılmıştır. Örneklerin yapısal özellikleri Zn 3 N 2 tozları tarafından ve hava atmosferi içinde tavlanmasıyla X-ışını kırınımı (XRD) ile analiz edilmiştir. Zn 3 N 2 ısısal oksidasyonu oldukça yavaştır. 200 0 C ile 500 0 C sıcaklıkları arasında Zn 3 N 2 tozunun yüzeyi içinde sıkı ZnO veya Zn x O y N z tabakaları oluşmaya başlamaktadır. Sıcaklık 500 0 C den çok yüksek olduğu zaman Zn 3 N 2 tozunun içinde çok hızlı ısısal oksidasyon meydana 6

2. ÖNCEKİ ÇALIŞMALAR gelmiştir. Sıcaklık 750 0 C nin üzerinde, bütün Zn 3 N 2 filmleri ZnO e dönüşmüştür. Farklı tavlama sıcaklıklarında Zn 3 N 2 filmleri X-ışını kırınımı (XRD) ve Fourier dönüşüm kızılötesi spektroskopisi (FTIR) yöntemiyle hesaplanmıştır ve bu iki yöntemde elde edilen sonuçlar birbirleri ile uyumlu olduğu görülmüştür (Liang ve ark, 2004). Bu çalışmada Zn 3 N 2 filmi 673 K erime sıcaklığında LiCI-KCI-Li 3 N içinde 1.6 V Zn elektrodunun potantiyostatik elektrolizi tarafından düzenlenmiştir. Filmlerin yapısal özelliklerini incelemek için X-ışını kırınımı (XRD) analizi yapılmıştır. X-ışını kırınımı pikleri incelendiğinde Zn 3 N 2 nin antibixbyite yapıya karşılık geldiği görülmüştür. X-ışını fotoelektron spektroskopisi (XPS) kullanılarak, ultraviyole (UV), görünür (VIS), yakın kızılötesi (NIR) bölgesi içinde reflektans ölçümleri yoluyla Zn 3 N 2 bileşiğinin band aralığı hesaplamalar sonucunda elde edilmiştir. Zn 3 N 2 nin direk band aralığı 1,01 ev olarak belirlenmiştir ve band aralığının kızılötesi bölgeye yakın olduğu hesaplamalar sonucunda elde edildiğini bulabiliriz (Toyoura ve ark, 2005). Bu çalışmada Zn 3 N 2 nanotelleri 120 dakikada 600 0 C nitridasyon sıcaklığında dakikada 500ml içinde amonyak gazı ile çinko (Zn) tozunun nitridasyon reaksiyonu tarafından sentezlenmiştir. Yapı analizini yapmak için kullanılan X-ışını kırınımı (XRD) yöntemiyle Zn 3 N 2 nanotellerinin kübik bir yapıda olduğu ve örgü sabitinin a=0.9788nm olduğu çıkmıştır. Tipik olarak oda sıcaklığında Zn 3 N 2 nanotellerinin fotolüminesans spektrumu 385 nm de (3.22 ev) morötesi emisyon bölgesinde bir pik sergilemiştir ve mavi emisyon bandı 450 nm (2.76 ev) de merkezlenmiştir. Seçici bölge elektron kırınımı (SAED, Selected Area Electron Diffraction) modelleri ve yüksek çözücü geçirgen elektron mikroskobu (HRTEM) yoluyla Zn 3 N 2 nanotellerinin mikro grafikleri incelenerek nanotellerin içinde bulunan düzeni açıkça ortaya çıkarmıştır. Taramalı elektron mikroskobu (SEM, Scanning Electron Microscopy), geçirgen elektron mikroskobu (TEM, Transmission Electron Microscopy), yüksek kararlı geçirgen elektron mikroskobu (HRTEM, High- Resolution Transmission Electron Microscopy) analizleri yapılarak Zn 3 N 2 nin nanotel yapısı gösterilmiştir (Zhang ve ark, 2005). 7

2. ÖNCEKİ ÇALIŞMALAR Bu çalışmada polikristal ince filmleri Corning 7059 cam alt alt taban üzerine Atmalı Filtreli Katodik Vakum Ark Depolama (PFCVAD) tekniği kullanılarak üretilmiştir. Filmler 4x10-4 Torr azot basıncında oda sıcaklığında oluşturulmuştur. Kristolografik yapı X-ışını kırınımı (XRD) tekniği kullanılarak belirlenmiştir. Yapılan ölçümler tüm filmlerin kübik yapıda kristalleştiğini ve yönelimlerinin (332) ile (631) yönleri boyunca olduğunu göstermiştir. Filmin 500 0 C de 1 saat havada tavlanmasıyla kristalliğinin arttığı gözlenmiştir. Soğurma, enerji band aralığı, Urbach kuyruğu,sönüm katsayısı gibi optiksel parametreleri belirlenmiştir. Urbach kuyruğu enerjisi tavlama ile azalmıştır. Filmlerin optiksel enerji band aralığı tavlama ile direk geçiş için 2.91eV dan 3.24eV a, dolaylı geçiş için 1.91 ev dan 3.206 ev a arttığı gözlenmiştir. Soğurma band kenarı daha keskin olmuştur. Tavlama sıcaklığının artmasıyla sönüm katsayısının azalışı filmlerin geçirgenliğindeki değişim ile ilgili olduğu ortaya konulmuştur. Filmlerin içindeki kusurlar tavlam ile azalmıştır. Band kuyruğu E 0, tavlanmamış Zn 3 N 2 için 0.74 ev iken 500 0 C de tavlanan örnekler için 0.14 ev olarak bulunmuştur. Sonuç olarak Atmalı Filtreli Katodik Vakum Ark Depolama (PFCVAD) tekniği kullanılarak üretilen Zn 3 N 2 filmlerinin tavlama altında daha iyi optiksel özelliklere sahip olduğu gösterilmiştir (Esen ve ark, 2007). 8

3. MATERYAL VE METOD 3.1. Temel Teorik Kavramlar 3.1.1 Kristalografiye Giriş Kristal, belirli bir yerleşim düzeni içerisinde bir araya gelen atomların, ortaya koydukları yerleşim düzeninin üç boyutta tekrarı ile oluşur. 18.ci yüzyıldan itibaren epeyce çalışmalar yapılmış olmakla beraber kristal yapının anlaşılabilmesi, ancak 1912 de Max von Laue nin X-Işınlarının kristal tarafından kırınıma uğradığını bulmasından sonra mümkün olmuştur. Daha sonra Sir Laurence Bragg ilk kez X- Işınlarından yaralanarak kaya tuzu kristalinin yapısını analiz etmiş ve kristalin atomik yapısı ile ilgili önemli bir adım atmıştır. Böylece araştırmacılar kristali oluşturan en küçük birim olan birim hücreyi ve bunun uzayda yayılarak ne şekilde kristali oluşturduğunu anlamak imkanını bulmuşlardır. İlk başlarda X-Işınlar ile başlatılan bu çalışmalar daha sonra nötron ve elektron kırılımı çalışmaları ile devam ettirilmiş ve bu şekilde minerallerin, metallerin, besin maddelerinin, ilaçların, fiber ve plastik türü maddelerin ve burada sayılmakla başa çıkamayacak kadar çok organik ve inorganik materyalin atomatik yapısının ortaya çıkarılması sağlanmıştır. Kristalografi, yani kristallerin yapısını çözme ve anlama bilim dalı bugünde fizikte en çok üzerinde çalışılan konulardan bir tanesidir. Fizik yanında, kimyada, minerolojide, metalürjide ve pek çok mühendislik dalında kristalografinin çok önemli bir yeri vardır. Kristallerin yapısını çözerken ve açıklarken özel bir dil kullanılır, böylece hem işler kısalır hem de anlatımda kolaylık sağlanmış olur. İleride öğreneceğimiz bu dili görmeden önce kristallerin genel özelliklerini ortaya koymak istiyoruz. 9