DENEY 5 DÖNME HAREKETİ

Benzer belgeler
DENEY 3 ATWOOD MAKİNASI

DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET

DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUVARI DENEY RAPORU

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fiz Ders 10 Katı Cismin Sabit Bir Eksen Etrafında Dönmesi

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUVARI DENEY RAPORU

Fizik 101-Fizik I Dönme Hareketinin Dinamiği

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 4 ÇARPIŞMALAR VE LİNEER MOMENTUMUN KORUNUMU

2 SABİT HIZLI DOĞRUSAL HAREKET

Fizik 101: Ders 18 Ajanda

elde ederiz. Bu son ifade yeniden düzenlenirse,

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise;

4 ESNEK VE ESNEK OLMAYAN ÇARPIŞMALAR

FIZ Uygulama Vektörler

DENEY 3 ATWOOD MAKİNASI

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır.

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0

Fizik 101: Ders 21 Gündem

Fizik 101: Ders 17 Ajanda

DİNAMİK. Ders_9. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ

KKKKK VERİLER. Yer çekimi ivmesi : g=10 m/s 2. Metrik Ön Takılar sin 45 = cos 45 = 0,7

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUARI DENEY RAPORU. Deneyin yapılış amacının ne olabileceğini kendi cümlelerinizle yazınız.

KUVVET, MOMENT ve DENGE

BÖLÜM 9 ÇÖZÜLMESİ ÖNERİLEN ÖRNEK VE PROBLEMLER

MOMENT. Momentin büyüklüğü, uygulanan kuvvet ile, kuvvetin sabit nokta ya da eksene olan dik uzaklığının çarpımına eşittir.

Bir cisme etki eden kuvvetlerin bileşkesi sıfır ise, cisim ya durur, ya da bir doğru boyunca sabit hızla hareketine devam eder.

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ

HARRAN ÜNİVERSİTESİ 2016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

Fizik 203. Ders 5 İş-Enerji- Momentum Ali Övgün. Ofis: AS242 Fen ve Edebiyat Fakültesi Tel:

Deneyin Amacı. Teorik Bilgi : Yerçekimi ivmesi ve serbest düşme

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

1) Bir sarkacın hareketini deneysel olarak incelemek ve teori ile karşılaştırmak. 2) Basit sarkaç yardımıyla yerçekimi ivmesini belirlemek.

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı

DİNAMİK TEKNOLOJİNİN BİLİMSEL İLKELERİ

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Hareket Kanunları. Newton un Hareket Kanunları. Fiz 1011 Ders 5. Eylemsizlik - Newton un I. Yasası. Temel - Newton un II. Yasası

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU

KATI CİSMİN DÜZLEMSEL KİNETİĞİ

1.Seviye ITAP 17 Aralık_2012 Sınavı Dinamik VIII-Dönme_Sorular

TEKNOLOJİNİN BİLİMSEL İLKELERİ

KKKKK. Adı Soyadı : Numarası : Bölümü : İmzası : FİZİK I

elde ederiz

5.DENEY. d F. ma m m dt. d y. d y. -kx. Araç. Basit. denge (1) (2) (3) denklemi yazılabilir. (4)

Düzgün olmayan dairesel hareket

İÇİNDEKİLER

Noktasal Cismin Dengesi

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji)

DİNAMİK 01 Giriş ve Temel Prensipler

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından

3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Grv. M. ERYÜREK Arş. Grv. H. TAŞKIN

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

TORK VE DENGE. İçindekiler TORK VE DENGE 01 TORK VE DENGE 02 TORK VE DENGE 03 TORK VE DENGE 04. Torkun Tanımı ve Yönü

TORK VE DENGE 01 Torkun Tanımı ve Yönü

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir.

ÖDEV SETİ 4. 1) Aşağıda verilen şekillerde her bir blok 5 kg olduğuna göre yaylı ölçekte ölçülen değerler kaç N dir.

Fiz 1012 Ders 6 Manyetik Alanlar.

Fiz 1011 I. Vize UYGULAMA

Fizik 101-Fizik I Hareket Kanunları. Nurdan Demirci Sankır Ofis: 325, Tel:4331 Enerji Araştırmalrı Laboratuarı (YDB- Bodrum Kat) İçerik

Bölüm 9: Doğrusal momentum ve çarpışmalar

DİNAMİK Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

Fizik 101-Fizik I Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümü Dinamik Dersi (Türkçe Dilinde) 2. Çalişma Soruları / 21 Ekim 2018

: MAXWELL TEKERLEĞİ. Deneyin Adı Deneyin Amacı

4.DENEY . EYLEMSİZLİK MOMENTİ

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı

DİNAMİK MEKANİK. Şekil Değiştiren Cisimler Mekaniği. Mukavemet Elastisite Teorisi Sonlu Elemanlar Analizi PARÇACIĞIN KİNEMATİĞİ

Şekil 6.1 Basit sarkaç

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması.

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

VERİLER. Yer çekimi ivmesi : g=10 m/s 2

Bölüm 2. Bir boyutta hareket

1.Seviye ITAP 24_30_Aralık_2012 Deneme Sınavı Dinamik IX Dönme Dinamiği _Sorular

Doğrusal Momentum ve Çarpışmalar

Fizik 101: Ders 6 Ajanda. Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK

: Bazı Uzunluk Ölçme Araçlarını Tanımlamak ve

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ

MEKATRONİĞİN TEMELLERİ HAREKET

EĞİTİM-ÖĞRETİM YILI 11 SINIF FİZİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

4. İKİ BOYUTLU UZAYDA ÇARPIŞMA

Toplam

Transkript:

DENEY 5 DÖNME HAREKETİ AMAÇ Deneyin amacı merkezinden geçen eksen etrafında dönen bir diskin dinamiğini araştırmak, açısal ivme, açısal hız ve eylemsizlik momentini hesaplamak ve mekanik enerjinin korunumu göstermektir. TEORİ Bugüne kadar doğrusal hareket eden bir cismin kinematiğini ve dinamiğini çalıştık. Bu deneyle katı bir cismin dönme hareketini çalışacağız. Katı cisim, tanımlı ve değişmeyen şekil ve boyuttaki bir cismi ideal olarak ifade eden bir modeldir. Katı bir cismin dönme hareketini çalışabilmek için bu çeşit hareketi tanımlayan yeni fiziksel kavramlara ihtiyacımız vardır. Şekil 5-1. Kütleleri m ve M (M>m) olan iki cisme etki eden aynı net kuvvet. (a)şeklindeki cismin hareketindeki değişiklik (b)cismine göre daha büyüktür. Doğrusal harekette, kütlesi m ve M (M>m) (bakınız Şekil 5-1) olan iki cisme aynı büyüklükte kuvvet uygulanırsa, küçük kütleli cisim daha büyük ivme ile hareket eder. Başka bir deyişle, kuvvet küçük kütleli cismin hareketinde büyük kütleliye göre daha büyük değişikliğe sebep olacaktır. Dolayısıyla, kütle eylemsizliği niteler ve kütle ne kadar artarsa eylemsizlikte o kadar artar. Newton un ikinci yasasında belirtilen kütleye bu sebeple eylemsizlik kütlesi denir. 1

Şekil 5-2. Kalemi (a) ve metal çubuğu (b) aynı kuvvetle döndürülüyor. Kalemi döndürmek çubuğu döndürmekten kolaydır. Şimdi aynı boyutlara sahip bir kalemin ve bir metal çubuğun dönme hareketine bakalım (Şekil 5.2). Bilindiği üzere kalemi döndürmek çubuğu döndürmekten daha kolaydır. Bu durumda, fiziksel olarak çubuğun eylemsizlik momentinin kaleme göre daha büyük oluğunu söyleriz. Eylemsizlik momenti sadece katı cismin kütlesine bağlı değildir. Şekil 5.3 te görüldüğü üzere aynı kütleli çubuk farklı eksenlerde döndürülmek istenmektedir. Şekil 5-3. Eşit kütleli iki metak çubuk farklı eksenlerde döndürülüyor. (a) çubuğunu hareket ettirmek (b) çubuğunu hareket ettirmekten kolaydır. Şekil 5.3b deki çubuğu hareket ettirmek daha zordur. Çünkü iki çubukta eşit kütleye sahip olmasına rağmen (b) deki çubuğun eylemsizlik momenti daha büyüktür. Bundan dolayı eylemsizlik momenti kütleye ek olarak dönme eksenine de bağlı değişir. Şekil 5.4 bazı homojen simetrik katı cisimler için eylemsizlik momentini verir. 2

(a) (b) Disk Katı Küre (c ) (d) Şekil 5-4. Farklı eksenlerde dönen bazı homojen simetrik cisimlerin eylemsizlik momentleri. Newton un ikinci yasasından bildiğimiz üzere, durmakta olan bir cisme net bir kuvvet uygulandığında cisim ivmeli hareket eder. Herhangi bir kuvvet durgun bir katı cismi dönme hareketi haline geçirebilir mi? Bu soruya cevap verebilmek için aşağıdaki şekile (Şekil 5-5) bakınız. (a) (b) ŞEKİL 5-5. (a) Diske teğet kuvvet diski merkezinden geçen eksene göre serbestçe döndürebilir (b) Aynı büyüklükteki kuvvet dönmeye sebep olamaz. Diske teğet uygulanan kuvvet diski merkezinden geçen eksen etrafında döndürebilir. Diğer taraftan Şekil 5-5 (b) de gösterilen kuvvet diskin merkezine uygulandığından diski döndürmez. Bu gözlemlerden, net bir kuvvet katı bir cismi her zaman döndürmeye sebep olmayabilir. Fiziksel olarak kuvvetin yaratacağı tork cismin dönme hareketindeki değişikliğe sebep olacaktır. Bir noktaya ya da bir eksene göre tork aşağıdaki gibi ifade edilir: 3

(5-1) Eşitlikteki dönme ekseni ile kuvvetin uygulandığı nokta arasındaki vektördür. (bakınız Şekil 5-6). Görüldüğü üzere tork vektörel bir büyüklüktür. Şekil 5-6. Eşitlikteki açısı; Eşitlik 5-1 ve vektörel çarpım tanımını kullanarak aşağıdaki eşitliğe ulaşabiliriz: (5-2) Eşitlikteki, ve arasındaki açıdır (bakınız Şekil 5-6). Yukarıdaki eşitlik net kuvvetin Şekil 5-5a daki dönmeye sebep olduğunu göstermektedir. Şekil 5-5b de ise net kuvvet dönmeye sebep olmamıştır, çünkü, açısı sıfır olduğundan dır. Bir cisme uygulana net kuvvet net ivmeye, katı cisim üzerine etkiyen net tork da açısal ivmeye sebep olur. Eşitlikte I katı cismin dönme eksenindeki eylemsizlik momentidir. (5-3) Şimdi açısal hızı ve açısal ivmeyi tanımlayalım. Aynı zamanda orijin olan merkezinden geçen eksen etrafında dönen, katı bir diski düşünelim ve bu diskin kenarında bulunan bir noktayı ele alalım (Şekil 5-7). 4

Şekil 5-7. mesafesi ve açısındaki infinitesimal zamanda değişiklik dt uzunluğundaki bir sürede, seçilen nokta, diskin kenarı üzerinde ds kadarlık bir yol alırken, yarıçap R de d kadar bir açı tarar. Buna göre diskin kenarı üzerinde bulunan bu noktanın çizgisel hızının büyüklüğü; (5-4) Hızın zamana göre değişimi olan çizgisel ivme;. (5-5) Birimi radyan olan açısının, zamana göre değişimi olan dönen diskin açısal hızı; (5-6) ve bu durumda açısal ivme de; (5-7) bağıntılarıyla hesaplanır. Şekil 5-7 de görülen ds yayının uzunluğu, Rd ye eşittir. Yarıçapın sabit olduğu da düşünülerek, 5-4 bağıntısı yeniden düzenlenirse; (5-8) bağıntısı ortaya çıkar. Benzer bir şekilde dir. (5-9) 5

Yukarıda verilen açısal hız ve açısal ivme bağıntıları, birimleri de tanımlar. SI birim sisteminde hızın birimi m/s ve yarıçapınki de m dir. Buna göre 5-8 denkleminden de görüleceği gibi nin birimi 1/s dir. Aynı şekilde, nın birimi de 1/s 2 ye eşittir. Çizgisel ve dönel hareketteki kinematik ve dinamik özellikler arasında, yukarıdaki çıkarımlardan da açıkça görüldüğü gibi yakın bir benzerlik vardır. Bu benzerlik tablo 5-1 de özetlenmiştir. Table 5-1. Çizgisel ve dönel hareketin, kinematik ve dinamik özellikleri arasındaki benzerlikler Çizgisel Hareket Dönel Hareket a m I 6

(a) (b) Şekil 5-8. Deney Düzeneği Bu deneyde şekil 5-8 de gösterilen düzenek kullanılacaktır. Merkezinden geçen eksen etrafında serbestçe dönebilen, M kütleli katı makara, eğimli hava masasının üst kenarına monte edilmiştir. Bu makaranın etrafına da, ucunda m kütleli bir disk bulunan ip sarılmıştır. Sistemin duruştan serbest bırakılmasıyla, askıdaki m kütleli disk eğimli hava masasında aşağı doğru ivmelenecek ve M kütleli makara da dönmeye başlayacaktır. İpteki T büyüklüğündeki gerilme de, makaranın dönmesine yol açan torku yaratan kuvvet olarak etki edecektir. Askıdaki diske etki eden kuvvetler şekil 5-8b de gösterilmiştir. Newton un 2.yasasına göre aşağıdaki bağıntıyı yazabiliriz: (5-10) Denklemde, hava masasının eğimini veren açı ve a da diskin çizgisel ivmesidir. Yarıçapı R olan ve dönen makaranın açısal ivmesi, çizgisel ivmeyle denklem 5-9 da gösterildiği gibi bağıntılıdır. 7

İpteki T gerilmesinin yarattığı tork ise; (5-11) bağıntısıyla hesaplanır. Burada I makaranın eylemsizlik momentini simgelemektedir. Eğer sistem, duruştan serbest bırakılırsa, t kadarlık bir süre sonra, diskin çizgisel hızı; (5-12) Aynı şekilde, dönen makaranın açısal hızı da; (5-13) formülleriyle hesaplanır. Disk, yaptığı çizgisel harekete bağlı olarak, makara da yaptığı çizgisel ve dönel hareketlere bağlı olarak bir kinetik enerjiye sahiptir. Sistemin o andaki toplam kinetik enerjisini veren bağıntı ise aşağıdaki gibidir: (5-14) Diskin düzlem boyunca aşağı doğru inmesiyle, sahip olduğu potansiyel enerji, diskin çizgisel ve makaranın da dönel kinetik enerjilerine dönüşür. Sürtünme ihmal edilirse, enerjinin korunumu;, (5-15) şeklinde ifade edilir. Burada enerjideki değişimi simgelemektedir. Buna göre sistemin enerjisini aşağıdaki bağıntıyla gösterebiliriz: (5-16) Burada,diskin eğimli düzlemde aldığı yoldur. ARAÇLAR: Hava Masası Tahta blok Dönen Makara İp Milimetre Taksimatlı Cetvel Milimetrik grafik kağıdı. 8

DENEYİN YAPILIŞI: Bu deney, eğik durumdaki hava masası kullanılarak yapılacaktır. Onun için hava masası öncelikle yatay konuma, sonra da tahta blok yardımıyla eğimli hale getirilmelidir. Eğim açısının sinüs değeri, tahta bloğun üstünde mevcuttur. 1. İpin bir ucunu, dönen M makarasına bağlayın. Daha sonra ipi birkaç kez makaranın kenarında döndürün ve askıdaki diske de ipin diğer ucunu iliştirin. Deneyde sadece bir tane disk kullanılacağı için, diğer diski altına katlanmış bir kağıt koyarak, hava masasının alt köşesinde tutun. 2. Askıdaki diski, ipin gerilmesini sağlayacak şekilde ayarlayın. Sonra sadece (P) ayak pedalına basarak, diskin eğik düzlemde düşmesini sağlayın. Makaranın yaptığı dönel hareketi gözlemleyin ve bunu uygun bir hareket elde edene kadar tekrarlayın. 3. Şimdi askıdaki diski yine bir önceki gibi ayarladıktan sonra uygun bir sparktimer frekansı seçin (20 veya 10 Hz). S ve P ayak pedallarını birbirinin üstüne koyun ve eş zamanlı olarak pedallara basın ve disk eğik düzlemin altına ulaşana kadar pedalları basılı tutun. 4. Veri kağıdını çekin ve üzerinde oluşan noktaları kontrol edin. Diskin eğrisi düz bir çizgi mi? Noktalar eşit aralıklarla mı ayrılmış? Yoksa noktalar arasındaki uzaklıklar zamanla artmış mı? Ne tür bir eğri ve nasıl bir nokta dağılımı bekleniyordu? Gözlemlediğiniz veri beklediğiniz gibi mi? Bu soruların ve onlara verdiğniz cevapların doğrultusunda, verinizi değerlendirin. Verinizin uygun olmadığını düşünüyorsanız deneyi tekrarlayın. 5. İlk noktadan başlayarak noktaları 0,1,2,... şeklinde numaralandırın ve her noktanın 0 noktasıyla arasındaki zaman farkını ve uzaklığı ölçerek, bu bilgileri olası hata paylarıyla birlikte Tablo 5-2 ye yazın. 6. Tablo 5-2 deki değerleri kullanarak x- t 2 grafiği çizin. Pozitif x-yönünü, hareket yönü olarak alın. En iyi ve en kötü çizgileri çizdikten sonra grafiğin eğimini bulun. Ve daha sonra bunu kullanarak askıdaki diskin çizgisel ivmesini hesaplayın. 9

7. (5-9) bağıntısını kullanarak dönen makaranın açısal ivmesini bulun 8. Askıdaki diskin ağırlığını ölçün ve (5-10) bağıntısını kullanarak ipte oluşan gerilmeyi hesaplayın. Daha sonra (5-11) formülünden yararlanarak bu gerilimin yarattığı torku ve bağıntısıyla da makaranın eylemsizlik momentini bulun. 9. 5.aralığın sonunda askıdaki diskin çizgisel hızını ve dönen makaranın açısal hızını bulun ve bu sonuçları kullanarak sistemin toplam anlık kinetik enerjisini hesaplayın. (5-16) bağıntısını kullanarak enerji korunumunu ispatlayın. 10

Adı Soyadı: No: Bölüm: Şube: Deney 5-RAPOR DÖNME HAREKETİ AMAÇ: 1. Verilerinizi aşağıdaki tabloda (5-2) gösterin. Tablo 5-2: VERİLER Nokta Sayısı 2 2 (s 2 ) 0 1 2 3 4 5 6 2. x-t 2 grafiğini kullanarak, diskin çizgisel ivmesini hesaplayın. 11

3. Makaranın yarıçapını ölçüp, bulduğunuz sonucu anlamlı sayıları gözönünde bulundurarak yazın. =... 4. Makaranın açısal ivmesini ( ) bulun. Hesaplamada yaptığınız işlemleri gösterin ve ivmeyi anlamlı sayıları ve birimleri doğru kullanarak yazın.......... 5. İpteki gerilmeyi (T), torku (Г) ve makaranın eylemsizlik momentini (I) hesaplayın. Hesaplamada yaptığınız işlemleri gösterin ve sonuçları anlamlı sayıları ve birimleri doğru kullanarak yazın. =... =... =......... 6. Çizgisel hızı ( v) ve açısal hızı ( ) bulun. Hesaplamada yaptığınız işlemleri gösterin ve sonuçları anlamlı sayıları ve birimleri doğru kullanarak yazın. v =... =............ 12

7. Makaranın ve diskin, çizgisel ve dönel kinetik enerjilerini hesaplayın. Hesaplamalarınızı gösterin ve doğru birimlerle yazın.......... 8. Mekanik enerjinin korunduğunu ispat edin.......... Deneyin Sonucu ve Tartışmalar: 13