YEREL KAYIPLAR. Borudaki yerel fiziki şekil değişimleri akımın yapısını mansaba doğru uzunca bir mesafe etkileyebilir.



Benzer belgeler
HİDROLİK MAKİNALAR YENİLENEBİLİR ENERJİ KAYNAKLARI

ATIK SULARIN TERFİSİ VE TERFİ MERKEZİ

SU ÜRÜNLERİNDE MEKANİZASYON

YILDIZ TEKNİK ÜNİVERSİTESİ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 305 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 1

DEN 322. Pompa Sistemleri Hesapları

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI Numara: Adı Soyadı: SORULAR-CEVAPLAR

BORULARDA BASINÇ KAYBI VE SÜRTÜNME DENEYİ

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB-305 KİMYA MÜHENDİSLİĞİ LABORATUVARI I

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

5. SANTRİFÜJ POMPALARDA TEORİK ESASLAR

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr.

SORU 1) ÇÖZÜM 1) UYGULAMALI AKIŞKANLAR MEKANİĞİ 1

ÇÖZÜM 1) konumu mafsallı olup, buraya göre alınacak moment ile küçük pistona etkileyen kuvvet hesaplanır.

GÜZ YARIYILI CEV3301 SU TEMİNİ DERSİ TERFİ MERKEZİ UYGULAMA NOTU

1. Aşağıda verilen fiziksel büyüklüklerin dönüşümünde? işareti yerine gelecek sayıyı bulunuz.

2. SUYUN BORULARDAKİ AKIŞI

AKM 205 BÖLÜM 8 - UYGULAMA SORU VE ÇÖZÜMLERİ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI

Pompa tarafından iletilen akışkanın birim ağırlığı başına verilen enerji (kg.m /kg), birim olarak uzunluk birimi (m) ile belirtilebilir.

VANTİLATÖR DENEYİ. Pitot tüpü ile hız ve debi ölçümü; Vantilatör karakteristiklerinin devir sayısına göre değişimlerinin belirlenmesi

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

Akışkanların Dinamiği

NÖ-A NÖ-B. Adı- Soyadı: Fakülte No:

Akışkanların Dinamiği

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

Su Debisi ve Boru Çapı Hesabı

SANTRİFÜJ POMPA DENEYİ

2. SUYUN BORULARDAKİ AKIŞI

5. BORULARDAKİ VİSKOZ (SÜRTÜNMELİ) AKIM

AÇIK KANAL AKIMI. Hopa Yukarı Sundura Deresi-ARTVİN

Taşınım Olayları II MEMM2009 Akışkanlar Mekaniği ve Isı Transferi bahar yy. borularda sürtünmeli akış. Prof. Dr.

2. SUYUN BORULARDAKİ AKIŞI

VENTURİMETRE DENEYİ 1. GİRİŞ

Hidroliğin Tanımı. Hidrolik, akışkanlar aracılığıyla kuvvet ve hareketlerin iletimi ve kumandası anlamında kullanılmaktadır.

T.C. SELÇUK ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ KĠMYA MÜHENDĠSLĠĞĠ BÖLÜMÜ

Bölüm 8: Borularda sürtünmeli Akış

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI I BASINÇ KAYIPLARI DENEYİ

AKIġKAN BORUSU ve VANTĠLATÖR DENEYĠ

FRANCİS TÜRBİNİ DENEY SİMÜLASYONU

4.Sıkıştırılamayan Akışkanlarda Sürtünme Kayıpları

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

713 SU TEMİNİ VE ÇEVRE ÖDEV #1

Bahar. Derivasyon Tünel (ler) i. Baraj. Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi n aat Mühendisli i Bölümü 3.

GÜZ DÖNEMİ AKIŞKANLAR MEKANİĞİ ÇÖZÜMLÜ SORULARI Bölüm 8 (Borularda Akış) Prof. Dr. Tahsin Engin

HAVALANDIRMA DAĞITICI VE TOPLAYICI KANALLARIN HESAPLANMASI

Pompalar: Temel Kavramlar

Q şeb = 1,5 Q il + Q yangın debisine ve 1 < V < 1,3 m/sn aralığında bir hıza göre

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT

Şekil 4.1. Döner, santrifüj ve alternatif hareketli pompaların basınç ve verdilerinin değişimi (Karassik vd. 1985)

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

P u, şekil kayıpları ise kanal şekline bağlı sürtünme katsayısı (k) ve ilgili dinamik basınç değerinden saptanır:

2.5 Boru Sistemleri Seri Bağlı Borular

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

Ana Boru Çapı ve Pompa Birimi

AKIġKANLAR MEKANĠĞĠ LABORATUARI 1

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ

HİDROLİK LABORATUARI HİDROLİK LABORATUARI DENEY ALETLERİ

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii

İÇMESUYU ŞEBEKELERİNDE HARDY-CROSS VE ÖLÜ NOKTA METODLARININ KARŞILAŞTIRILMASI

ÇÖZÜMLER ( ) ( ) ( ) ( ) ( ) ( ) ( ) İnşaat Mühendisliği Bölümü Uygulama VII

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

VENTURİ, ORİFİS VE ROTAMETRE İLE DEBİ ÖLÇÜMÜ

ŞEKİL P4. Tavanarası boşluğu. Tavanarası boşluğu. 60 o C. Hava 80 o C 0.15 m 3 /s. Hava 85 o C 0.1 m 3 /s. 70 o C

ADIYAMAN ÜNİVERSİTESİ

AKIŞ ÖLÇÜMLERİ. Kütlenin korunumu prensibine göre içerisinde üretim olmayan bir sistem için;

UYGULAMA 5 DAİRESEL ARAKESİTLİ BORULARDA AKIŞ

Hidrostatik Güç İletimi. Vedat Temiz

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

KAYMALI YATAKLAR I: Eksenel Yataklar

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

ÇEV314 Yağmursuyu ve Kanalizasyon. KanalizasyonŞebekelerinde Hidrolik Hesaplar

ZEMİN SUYU Zeminde Su Akımı ve Akım Ağları. Y.Doç.Dr. Saadet A. Berilgen

Alınan Puan NOT: Yalnızca 5 soru çözünüz, çözmediğiniz soruyu X ile işaretleyiniz. Sınav süresi 90 dakikadır. SORULAR ve ÇÖZÜMLER

AKM 205 BÖLÜM 6 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI

ADIYAMAN ÜNİVERSİTESİ

KBM0308 Kimya Mühendisliği Laboratuvarı I HAVA AKIŞ DENEYİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1

Ders Notları 3 Geçirimlilik Permeabilite

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ

OAG 100A HİDROLOJİ EĞİTİM SETİ ANA ÜNİTE

NÖ-A NÖ-B. Şube. Alınan Puan. Adı- Soyadı: Fakülte No: 1. Aşağıda verilen fiziksel büyüklüklerin eşit olduğunu gösteriniz. 1/6

MAK 210 SAYISAL ANALİZ

Hidrolik yarıçap (R): Dolu olarak su geçiren d çap ve r yarıçapındaki daire kesitli bir boruda r/2 veya d/4 alınır.

5. BORU HATLARI VE BORU BOYUTLARI

5. SANTRİFÜJ POMPALARDA TEORİK ESASLAR

Su seviyesi = ha Qin Kum dolu sütun Su seviyesi = h Qout

DEBİ ÖLÇÜM DENEYİ. Bu deneyin amacı dört farklı yöntem ile sıkıştırılamaz bir akışkanın (suyun) debisini ölçmektir. Bu yöntemler

KBM0308 Kimya Mühendisliği Laboratuvarı I BERNOLLİ DENEYİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1

SANTRALLERİ SICAK SULU ISITMA DENGELENMESİ. üçüka Dokuz Eylül Üniversitesi Makina Müh. M

tmmob makina mühendisleri odası uygulamalı eğitim merkezi Pompa Eğitim Ünitesi Yavuz TÜTÜNOĞLU Makina Mühendisi Enerji Yöneticisi EEP Eğitmeni

900*9.81*0.025* Watt 0.70

KAYMALI YATAKLAR. Kaymalı Yataklar. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik ve Mimarlık Fakültesi Makine Mühendisliği Bölümü

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

Transkript:

YEREL KAYIPLAR Bir boru hattı üzerinde akımı rahatsız edebilecek her çeşit yerel değişim bir miktar enerjinin kaybolmasına sebep olur. Örneğin boru birleşimleri, düğüm noktaları, çap değiştiren parçalar, dirsekler ve vanalar birer yerel enerji kayıp kaynağıdır. Yerel enerji kayıplarının oluşmasında sınır tabakası ayrılmasının önemli rolü vardır. Borudaki yerel fiziki şekil değişimleri akımın yapısını mansaba doğru uzunca bir mesafe etkileyebilir.

Yerel enerji kayıpları iki şekilde hesaplara dahil edilebilir. (a) Her bir durum için yerel enerji kaybı aşağıdaki formül ile tanımlanabilir: h y = K g K yerel kayıp katsayısı (b) Daha az hassas fakat daha kullanışlı olabilecek diğer yol, yerel enerji kaybının aynı kaybı oluşturacak boru boyuna dönüştürülerek ifade edilmesidir. Bunun için her bir duruma karşı gelen L/D oranı ayrı ayrı tespit edilmiş olmalıdır.

E.Ç. Ani Genişleme Kaybı P.Ç. h y γ γ K.Y. 1 ve noktaları arasında Bernoulli denklemi: 1 p1 p + + z1 = + + z + hy, z1 = z g γ g γ

buradan 1 ve arasında yerel enerji kayıp yüksekliği: γ p - p + g - = h 1 1 y 1 ve kesitleri arasındaki K.H. için momentum denklemi: ) u - u Q ( = F 1 x ρ ) - ( A = A p - A p 1 1 ρ ) - ( = p - p 1 1 ρ

Son ifade yerel kayıp yüksekliğini veren denklemde yerine konursa: h y = 1 - g + ρ ( γ - ) 1 = ( 1 - g ) = 1-1 1 g h y = 1- A A 1 1 g = K 1 g buradan K nın A 1 /A oranına bağlı olduğu görülmektedir.

Boru kesitinin yavaş şekilde konik bir elemanla genişletilmesi yerel enerji kaybının daha az olmasını sağlar Ancak, genişleme açısının gereğinden küçük olması sürtünme kayıplarını artırır. Optimum koni açısı α=6 civarında olup bu durumda K 0,1 olmaktadır. E.Ç. Yavaş Genişleme Kaybı hy P.Ç. α Enerji kaybı hs hy Genişleme açısı, α

Boru Çıkış Kaybı Şekil de görüldüğü gibi suyun boru ucundan bir hazneye boşalması durumunda A 1 /A 0 olacağından h y = 1 g E.Ç. y

Ani Daralma Kaybı Ani boru daralmasındaki sınır tabakasının ayrılması Şekil de görülmektedir. Buradaki enerji kaybının belirlenebilmesi için daralma kesiti ile kesiti arasında ani genişleme kaybı için verilen denklem kullanılabilir. Ac = 1- c = (1- C ) hy A c g C c g burada c A c = A ve A c /A =C c h y E.Ç. P.Ç. h y 1 = C c -1 g = K g Daralma kesiti

Son denklemdeki K için hesaplanan bazı değerler Tablo da verilmiştir: Tablo K değerleri D /D 1 0.1 0.4 0.7 0.9 1 C c 0.6 0.66 0.76 0.89 1 K 0.38 0.7 0.1 0.015 0

Yavaş Daralma Kaybı Ani daralma kaybı, yavaş daralan konik bir parça ile azaltılabilir Daralma konisinin açısı 0 ile 40 arasında olması durumunda K 0.1 değerini almaktadır. E.Ç. P.Ç. h y

Boru Giriş Kaybı Bir hazneden boruya akım girişinde yerel enerji kaybı boru giriş ağzının şekline bağlıdır. Şekil de boru giriş ağzının farklı formları için K değerleri verilmiştir. K=0.4-0.6 K=0.01-0.05 K=0.8-1.0

Dirsek Kaybı Boru dirseklerindeki yerel enerji kaybı sınır tabakasının ayrılması, çeper sürtünmesi ve sekonder akımdan kaynaklanır. Büyük eğrilik yarıçaplı dirseklerde sürtünme ve sekonder akım etkili olduğu halde, küçük eğrilik yarıçaplı dirseklerde sınır tabakasının ayrılması ve sekonder akım daha etkilidir. Dirseklerde, yerel kayıp denklemindeki K katsayısı θ, R/D ve k/d değerlerine bağlıdır. Şekil de K için bazı değerler verilmiştir. θ θ K (Cilalı boru) R/D=5 R/D=15 45 0 0.15 90 0 0. 0.7 0.47

Büyük çaplı borularda, yer darlığı nedeniyle keskin dirseklerde yapılabilir (R/D=0). Bu tür dirseklerde kılavuz kanatların kullanılması dirsek de spiral akımları önlediğinden K nın değerini büyük oranda düşürür. K=1.1 K=0.

ana ve T-Parçalarında Kayıp Boru hatlarında kullanılan vana, dirsek, T-parçası ve benzeri çeşitli elemanlar için K katsayıları üretici firmalar tarafından verilmelidir. Tablo da bazı örnek değerler verilmiştir. Tablo K değerleri Eleman türü K idalı Flanşlı ana (tam açık) Sürgülü Küresel 0. 10 0.1 5 T-parçası Doğrultu akımı Branş akımı 0.9 0. 1

BORU HATTI PROBLEMLERİ Doğrudan Çözülebilen Problemler Boru boyu L, çap D, pürüzlülük k ve debi Q verilir; Toplam enerji kaybı h k istenir. Bu tür problemler doğrudan çözülebilirler. Deneme Yanılma Yöntemini Gerektiren Problemler (a) Boru boyu L, çap D, pürüzlülük k ve enerji kaybı h k verilir; debi Q istenir. λ, Re ve k/d ye bağlıdır, ancak burada Re bilinmemektedir. Öyleyse sadece k/d yardımıyla λ için Moody diyagramından (veya formüllerle) bir tahmin yapılır. Çözüm sonucu hesaplanan λ ile ilk tahmin değeri karşılaştırılır. Aradaki fark kabul edilemez boyutta ise problemin çözümü yeni λ ile tekrarlanır. (b) Debi Q, boru boyu L, pürüzlülük k ve enerji kaybı h k verilir; boru çapı D istenir. Bu durumda hem Re hem de k/d bilinmediğinden λ nın değeri kabaca tahmin edilir ve (a) daki deneme-yanılma yöntemi uygulanır.

Boru Hatlarında Pompa Kullanımı Pompalar akıma enerji ilavesi amacıyla kullanılır. Pompa istasyonlarının tasarımında inşaat mühendislerinin, pompa seçimi konusunda yeterli bilgiye sahip olmaları beklenir. Rotodinamik pompalar pompa çarkının biçimine göre üç gruba ayrılır: (a) radyal akımlı (santrifüj) pompa, (b) karışık akımlı pompa, ve (c) eksenel akımlı pompa. Aynı güç ve verim altında santrifüj pompa düşük debiyi daha fazla yükseğe, eksenel akımlı pompa ise yüksek debiyi düşük yüksekliğe basacak şekilde tasarlanırlar. Karışık akımlı pompa ise bu ikisinin arasında bir özelliğe sahiptir.

Pompa tipinin belirlenmesinde çark biçimine göre hangi sınıfa girebileceğinin tespiti için özgül hız parametresi bir ölçüt kullanılmaktadır. Bir pompanın özgül hızı, ona geometrik olarak benzeyen ve 1 m 3 /s lik debiyi 1 m yüksekliğe basan pompanın hızı olarak tarif edilir ve aşağıdakişekilde tanımlanır: n Q 1 / n = s 3 / 4 H burada n (d/d) dönme hızı, Q (m 3 /s) debi ve H (m) basma yüksekliğidir. erilen özgül hız formülüne göre pompa tipleri aşağıdaki gibi sınıflandırılır:

Pompa tipi n s Radyal akımlı (santrifüj) 80 Karışık akımlı 80-150 Eksenel akımlı 150 Bir pompanın basma yüksekliği (HP) ve verimi (η) debinin fonksiyonudur. Pompa karakteristik eğrileri olarak adlandırılan bu ilişkiler pompa üreticisi firma tarafından verilir. Basma yüksekliği, HP η-q H P -Q Debi, Q 1 erim, η

Pompalar için HP-Q eğrisi aşağıdaki gibi fonksiyonel olarak ifade edilebilir: H P = a + b Q + c Q Pompa tarafından suya verilen hidrolik güç ve η verimi ile çalışan bir pompanın kullandığı güç aşağıdaki gibidir: P = γ Q H P, P = γ Q H η P buradaγ=n/m 3, Q=m 3 /s, HP=m, ve P=W.

Paralel Pompaİşletimi Pompaların paralel veya seri olarak işletilmesi durumunda HP-Q eğrisişekillerdeki gibi olur. 3 pompa Seri Pompa İşletimi 3 pompa

BORU AĞLARININ HİDROLİK ANALİZİ İçme ve kullanma sularının bir tüketim bölgesine dağıtımı düğüm noktalarında birbirine bağlı boru ağları ile yapılır. Şekil de görüldüğü gibi boru ağı birbirine bağlı çok sayıdaki kapalı devrelerden oluşur. D ü ğ ü m n o k t a s ı K a p a l ı d e v r e

Hardy Cross Yöntemi Bu yöntem kullanılarak bir boru ağında her bir boru için boy, çap ve pürüzlülük katsayısı yanında sisteme giren ve çıkan debilerin bilinmesi durumunda her bir borudan geçecek akımın debisi ve yönü ardışık yaklaşımlar ile hesaplanabilir. Hardy Cross yönteminin dayandığı iki temel prensip vardır, bunlar: (a)bir düğüm noktasına gelen toplam debi giden toplam debiye eşit olmak zorundadır (debinin sürekliliği). (b) Boru ağındaki her bir kapalı devre üzerinde enerji kayıplarının cebirsel toplamı sıfır olmalıdır (enerjinin sürekliliği).

Hardy Cross Yönteminin Uygulanışı 1. Düğüm noktalarında debinin sürekliliği sağlanacak şekilde boru ağındaki her bir boru için bir başlangıç debi dağıtımı yapılır. Debiler, bir kapalı devrede saat akrebi yönünde pozitif aksi yönde negatif olarak işaret alırlar.. Herbir boru için enerji kaybı hesaplanır. Enerji kayıpları, bir. Herbir boru için enerji kaybı hesaplanır. Enerji kayıpları, bir kapalı devrede saat akrebi yönünde pozitif aksi yönde negatiftir.

Enerji kaybının bulunmasında aşağıdaki formüllerden biri kullanılabilir. Bu formüller kullanım kolaylığı bakımından hs=rq m.formunda yazılmışlardır. λ L Darcy-Weisbach formülü : hs = Q 5 1.1D Hazen-Williams formülü : 10.67 L hs = Q 1.85 4.87 C D 1.85 10.31 Manning formülü : n L hs = Q 5.33 D

3. Her bir devre için enerji kayıplarının cebirsel toplamı alınır. h s = r Q m Eğer, enerji kayıplarının toplamı her bir devre için kabul edilebilir ölçüde sıfıra yakınsa başlangıç debi dağıtımı doğru yapılmış demektir. Aksi halde her bir boru için debilerin düzeltilmesi gerekir.

4. Genellikle birinci hesap yaklaşımında h s 0 çıkmaz. Bu durumda her bir devre için ayrı ayrı olmak üzere Q düzeltme debileri hesaplanır. Bir devre üzerindeki Q düzeltme debisini veren formül aşağıdaki gibi çıkarılabilir. Bir borudaki başlangıç debisi Q 0 ise düzeltilmiş debi: Q = Q0 + Q şeklindedir. Yeni debiye göre bir borudaki enerji kaybı binom serisine göre aşağıdaki gibi yazılabilir (ikinci terimden sonrası ihmal edilerek): h s = r Q m = r (Q 0 + Q) m = r (Q 0 + m Q m-1 0 Q +...) Düzeltilmiş debilere göre bir devre üzerindeki enerji kayıplarının cebirsel toplamının sıfır olmasını istiyoruz, yani:

h s = r Q m = r Q m 0 + m Q r Q m-1 0 = 0 Buradan bir devredeki herbir boru için düzeltme debisi: Q = - r Q m r Q m 0 m-1 0 = m - hs (h / Q s 0 ) şeklinde elde edilir. Bu ifadenin payı cebirsel, paydası aritmetik toplamdır.

5. Devre üzerindeki her bir borunun debisi Q nun cebirsel olarak toplanması ile düzeltilir: Q = Q0 + Q İki devre arasındaki ortak bir borunun düzeltme debisi, bu boru için iki devreden bulunan düzeltme debilerinin cebirsel toplamı alınarak elde edilir. 6. Hesap işlemleri ikinci adımdan itibaren düzeltilmiş debilerle tekrarlanır. Hardy Cross yöntemi ile ilgili bir uygulama örnek 7.15 te verilmiştir.