9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR"

Transkript

1 TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme ve yazma. 3. Doğrusal ve düzlemsel noktalar kümesini tanımlama. 6. İki nokta arasındaki uzaklığı tanımlama. 7. Arada olmayı tanımlama. 8. Doğru parçasının tanımlama. 9. Işını tanımlama Amaç-2: Nokta Doğru ve Düzlem ile İlgili Uygulama Yapabilme. 1. Koordinatları verilen iki nokta arasındaki uzaklığı hesaplama. 2. Koordinatları verilen ve doğrusal olan üç noktadan arada olanı bulma ve yazma. 3. Uç noktalarının koordinatları verilen bir doğru parçası üzerinde bulunan ve verilen özellikleri sağlayan noktaların koordinatlarım bulma ve yazma. 4. Uç noktalarının koordinatları verilen bir doğru parçasının orta noktasının koordinatım bulma ve yazma. 5. Uç noktalarının biri ile orta noktasının koordinatı verilen doğru parçasının diğer uç noktasının koordinatım bulma ve yazma. 6. Verilen bir [AB ışını üzerinde AX =k (k=l,2.3,4.5) olacak biçimde X noktalarım bulup işaretleme. Amaç -3: Nokta, Doğru ve Düzlem Arasındaki İlişkileri Kavrayabilme. 1. Doğrusal (doğrudaş ) olmayan farklı noktadan geçen düzlem sayısını söyleme ve yazma. 2. Bir doğrunun bir düzlemin içinde olmasını tanımlama. 3. Paralel doğruları tanımlama. 4. Paralellik aksiyomunu söyleme ve yazma. 5. Doğru ile düzlemin birbirine göre konumlarını söyleme ve yazma. 6. Bir doğru ile dışındaki bir noktayı içeren düzlem sayısını açıklama. 7. Kesişen iki doğruyu içeren düzlem sayısını açıklama. 8. Kesişen iki düzlemin arakesitini söyleme ve yazma. 9. İki düzlemin birbirine göre konumlarını söyleme ve yazma. Amaç-4: Nokta, Doğru ve Düzlem ile İlgili Uygulama Yapabilme. 1. İki noktadan bir doğru geçer aksiyomuna evreden uygun örnekler söyleme 2. Verilen paralel iki doğruyu içeren düzlem sayısını söyleme ve yazma. 3. Doğrusal olmayan farklı noktadan bir düzlem geçer aksiyomuna evreden uygun örnekler söyleme. Amaç-5: Açı ile İlgili Temel Kavramları Kavrayabilme. 1. Açıyı tanımlama. 2. Bir açının yönünü açıklama. 3. Açı ölçü birimlerinden dereceyi çember yayı yardımı ile tanımlama 4. Bir açının ölçüsünü tanımlama. 5. Dik açıyı tanımlama. 6. İki doğrunun dikliğini tanımlama. 7. Dar açıyı tanımlama. 8. Geniş açıyı tanımlama. 9. Bir açının dikler (tümler) açısını tanımlama. 10. Bütünler açıları tanımlama. 11. Tam açıyı tanımlama.

2 12. Eş açıları tanımlama. 13. Paralel iki doğruyu başka bir doğru kestiğinde oluşan açıları söyleme ve yazma 14. Karşılıklı olarak kenarları paralel iki açının ölçüleri arasındaki bağıntıları söyleme ve 15. Karşılıklı olarak kenarları dik iki açının ölçüleri arasındaki bağntıları söyleme ve 16. Bir açının açı ortayını tanımlama, özeliklerini söyleme ve yazma. Amaç-6: Açılar ile İlgili Uygulama Yapabilme. 1. Açı çeşitlerine çevreden uygun örnekler 2. Verilen bir açıya eş bir açıyı pergel ve cetvel kullanarak çizme. 3. Verilen bir dar açının dikler açısını 4. Verilen bir açının bütünler açısını 5. Komşu bütünler iki açının açı ortayları arasındaki ilişkiyi söyleme ve DOGRUNUN ANALİTİK İNCELENMESİ Amaç 1: Analitik Düzlemde Uzaklığı Kavrayabilme. 1. Analitik düzlemin noktaları ile reel sayı ikilileri arasındaki ilişkiyi söyleme ve yazma. 2. Analitik düzlemin iki noktası arasındaki uzaklığı, bu noktaların koordinatları cinsinden veren bağıntıyı 3. Bir doğru parçasının orta noktasının koordinatlarını, uç noktalarının koordinatları cinsinden veren bağıntıyı 4. Bir doğru parçasını verilen bir oranda bölen noktaları Amaç 2. Analitik Düzlemde Uzaklık ile İlgili Uygulama Yapabilme. 1. Koordinatları verilen bir noktayı analitik düzlemde bulup işaretleme. 2. Koordinatları verilen iki nokta arasındaki uzaklığı 4. Verilen bir doğru parçasının orta noktasını bulma Amaç 3: Analitik Düzlemde Doğru Denklemini Kavrayabilme. 1. Dik üçgende bir açının tanjantını tanımlama. 2. Eksen çember yardımıyla, geniş açıların trigonometrik oranlarını, dar açıların trigonometrik oranları cinsinden hesaplama. 3. Ölçüsü 30, 45, 60, 90 derece veya bunlardan birisinin herhangi bir katı olan açının tanjantını söyleme ve yazma. 4. Bir doğrunun eğim açısını ve eğimini tanımlama. 5. Bir noktası bilinen doğrunun eğimini veren bağıntıyı 6. İki doğrunun paralel olma şartını açıklama. 7. İki doğrunun dik olma şartını açıklama. 8. Eğimini ve bir noktası bilinen doğrunun denklemini 9. İki noktası bilinen doğrunun denklemini 10. Koordinat eksenlerine paralel olan doğruların eğimlerini söyleme ve yazma. 11. Koordinat eksenlerine paralel olan doğruların denklemlerini söyleme ve yazma. 12. D={(x,y) y=mx+n, m,n R, (x,y) RxR} kümesini analitik düzlemde gösterme 13. ax+by+c=0 biçimindeki bir denklemin düzlemde bir doğru temsil ettiğini (a,b,c nin alacağı değerlere göre irdeleyerek) 14. Eksenleri kestiği noktalar verildiğinde, doğrunun denklemini bulma,

3 15. İki doğrunun kesişme noktasının koordinatlarını 16. İki bilinmeyenli denklem sisteminin çözüm kümesini analitik düzlemde yorumlama. 17. Kesişen iki doğrunun oluşturduğu açının ölçüsünü veren bağıntıyı 18. Bir noktanın bir doğruya olan uzaklığını veren bağıntıyı Amaç 4: Doğrunun analitik incelenmesi ile ilgili uygulama yapabilme. 1. Bir noktası ve eğimi verilen doğrunun denklemini bulma ile ilgili problem çözme. 2. İki noktası verilen doğrunun denklemini bulma ile ilgili problem çözme. 3. Koordinat eksenlerinin denklemlerini söyleme ve yazma. 4. Eğim açısı 30, 45, 60,90 derece veya bunlardan birisinin belli bir katı olarak verilen doğrunun eğimini söyleme ve yazma. 5. Koordinat eksenlerinin oluşturduğu açıların açıortay doğrularının değerlerini 6. Verilen bir noktadan geçen ve eksenlere paralel olan doğruların değerlerini yazma. 7. Bir doğrunun denklemi verildiğinde eğimini ve istenen noktalarını 8. Denklemleri verilen iki doğrunun birbirine göre durumlarını belirleme ile ilgili problem çözme. 9. Denklemleri verilen iki doğrunun kesişim noktasını 10. Verilen iki bilinmeyenli lineer denklem sisteminin çözüm kümesinin varlığını analitik düzlemde irdeleme ve varsa çözüm kümesini 11. Köşelerinin koordinatları verilen bir üçgenin kenarlarını ve yüksekliklerini taşıyan doğruların denklemlerini 12. Verilen noktalar ve doğrular arasındaki uzaklıkları bulma ile ilgili problem çözme. 13. Kesişen iki doğrunun oluşturduğu açının, açıortaylarının denklemlerini 14. Verilen üç noktanın bir doğru üzerinde olup olmadığını ÜÇGENLER Amaç -1 : Üçgen ile İlgili Temel Kavramları Kavrayabilme. 1. Çokgeni tanımlama. 2. Özel bir çokgen olarak üçgeni tanımlama. 3.Üçgen çeşitlerini söyleme ve yazma. 4. Bir üçgenin yardımcı elemanlarını tanımlama (Kenarortay, açıortay, yükseklik). 9. Bir üçgende, kenarlar ile açılar arasındaki ilişkiyi söyleme ve 10. Bir üçgende kenar uzunlukları arasındaki bağıntıları söyleme ve yazma (üçgen eşitsizliği). Amaç-2: Üçgenlerin Elemanları ile İlgili Uygulama Yapabilme. 1. Verilen bir ikizkenar üçgende tabana ait kenarortayın özelliklerim söyleme ve 3. Kenar uzunlukları verilen bir üçgenin açılarının ölçüleri arasındaki sıralamayı söyleme ve yazma. 4. İki kenar uzunluğu verilen bir üçgenin, üçüncü kenar uzunluğunun alabileceği değerler kümesim söyleme ve yazma. 5. Verilen bir dik üçgende hipotenüse ait kenarortay ile hipotenüs arasındaki ilişkiyi söyleme ve 6. Bir açısının ölçüşü 30 olan bir dik üçgende, kenar uzunlukları arasındaki bağıntıyı söyleme ve yazma. 7. Verilen bir üçgende bir dış açı ile bu dış açıya komşu olmayan iç açılar arasındaki bağıntıyı söyleme ve 8. Bir üçgenin iç açıların ölçüleri toplamım söyleme ve Amaç -3: Dik üçgenlerde Metrik Bağıntıları Kavrayabilme. 1. Bir dik üçgende Pisagor teoremini söyleme ve 2. Bir dik üçgen ile, bu üçgenin hipotenüsüne ait yüksekliğin oluşturduğu üçgenler arasındaki ilişkiyi söyleme ve 3. Bir dik üçgende yükseklik bağıntısını söyleme ve 4. Bir dik üçgende dik kenar bağıntısını söyleme ve

4 Amaç-4: Dik üçgenlerde Metrik Bağıntılar ile Uygulama Yapabilme. 1. Bir dik üçgende hipotenüse ait yüksekliğini hipotenüsten ayırdığı doğru parçalarının uzunlukları verildiğinde, üçgenin diğer elemanlarının uzunluğunu 2. Bir dik üçgende dik kenarlar, yükseklik ve yüksekliğin hipotenüs üzerinde ayırdığı parçalardan herhangi ikisinin uzunluğu verildiğinde diğerlerinin uzunluklarını ÇEMBER Amaç-1: Çember ile İlgili Temel Kavramları Kavrayabilme. 1. Çember, çap. yarıçap, merkez, kesen, kiriş, teğet ve normali tanımlama. 2. Çemberin iç ve dış bölgelerim tanımlama. 3. İki çemberin eşliğini tanımlama. 4. Aynı düzlem içindeki bir doğru ile bir çemberin birbirine göre konumlarım açıklama. 5. Çemberde kirişin özelliklerini 6. Çemberde teğetin özelliklerini 7. Aynı düzlemdeki iki çemberin birbirine göre konumlarım açıklama. Amaç-2: Çembere İlişkin Temel Kavramlarla İlgili Uygulama Yapabilme. 1. Yarıçap uzunluğu verilen bir çemberin merkezinden belli bir uzaklıktaki kirişin uzunluğunu 2. Verilen bir çemberde merkezden aynı uzaklıktaki kirişlerin uzunlukları arasındaki ilişkiyi 3. Dıştan (veya içten) teğet olarak verilen iki çemberin, merkezleri ile değme noktası arasındaki ilişkileri Amaç-3: Çemberde Yay ve Açılar ile İlgili Temel Kavramları Kavrayabilme. 1. Merkez açıyı tanımlama. 2. Çemberde küçük yay ve büyük yay ile ölçülerim tanımlama. 3. Çemberde iki yayın eşliğim tanımlama. 4. Çemberde merkez açının ölçüşü ile gördüğü yayın ölçüşü arasındaki bağıntıyı yazma. 5. Çevre açıyı tanımlama. 6. Çevre açı ile gördüğü yayın ölçüşü arasındaki bağıntıyı 7. Teğet-kiriş açıyı tanımlama. 8. Teğet-kiriş açının ölçüşü ile gördüğü yayın ölçüşü arasındaki bağıntıyı 9. Aynı yayı gören merkez, çevre ve teğet-kiriş açılar arasındaki bağıntıları 10.Tam açıyı tanımlama. 11. İç açıyı tanımlama. 12.Bir açının ölçüşü ile kolları (kenarları) arasında kalan yayların ölçüleri arasındaki bağıntıyı 13.Dış açıyı tanımlama. 14.Bir dış açının ölçüsü ile kolları (kenarları) arasında kalan yayların ölçüleri arasındaki bağıntıyı 15.Çemberin uzunluğunu yazma. 16.Bir merkez açının gördüğü yayın uzunluğunu yazma. Amaç-4: Çemberde Yay ve Açılara İlişkin Temel Kavramlarla İlgili Uygulama Yapabilme. 1. Aynı yayı gören merkez, çevre, teğet-kiriş açılardan biri verildiğinde diğerlerim 2. Merkez (veya çevre) açının gördüğü yayın ölçüşü verildiğinde açının ölçüsünü yazma. 3. Bir iç açının ölçüsü ile kolları arasında kalan yaylardan birinin ölçüşü verildiğinde diğer yayın ölçüsünü 4. Bir dış açının ölçüsü ile kolları arasında kalan yaylardan birinin ölçüşü verildiğinde diğer yayın ölçüsünü 5. Yarıçap uzunluğu ile merkez açının gördüğü yayın uzunluğu verildiğinde. merkez açının ölçünü

5 KATI CİSİMLERİN ALAN VE HACİMLERİ Amaç-1: Prizmayı, Özelliklerini ve Çeşitlerini Kavrayabilme. 1. Prizmayı tanımlama. 2. Prizmanın tabanlarım tanımlama. 3. Prizmanın taban ayrıtlarım tanımlama. 4. Prizmanın yan yüzlerim tanımlama. 5. Prizmanın yan ayrıtlarım tanımlama. 6. Prizmanın yüksekliğim tanımlama. 11. Dik prizmayı tanımlama 13. Düzgün prizmayı tanımlama. 14. Paralelyüzü tanımlama. 15. Dikdörtgenler prizmasına tanımlama. 16. Küpü tanımlama. 17. Tabanlarına göre prizmaları adlandırma. 18. Dikdörtgenler prizmasının cisim köşegeni ile bir köşeden çıkan ayrıtlar arasındaki bağıntıyı söyleme ve Amaç-2: Prizmaların Alan ve Hacimlerini Kavrayabilme. 1. Dik prizmanın yanal alanım veren bağıntıyı söyleme ve 3. Prizmanın toplam alanım veren bağıntıyı söyleme ve 4. Dik prizmanın hacmini veren bağıntıyı söyleme ve Amaç-3: Prizmaların Alan ve Hacimleri ile İlgili Uygulama Yapabilme. 1. Tabanı yamuk olan bir dik prizmanın taban kenarları ile yüksekliği verildiğinde yanal alanım 2. Yüksekliği ile tabanının kenarları verilen bir dik prizmanın yanal alanım bulma 3. Yanal alanı ile tabanının çevresi verilen bir dik prizmanın yüksekliğim 4. Tabanının bir kenarı ile yüksekliği verilen eşkenar üçgen dik prizmanın toplam alanım ve hacmini 5. Cisim köşegeninin uzunluğu verilen bir küpün toplam alanım ve hacmini Amaç-4: Piramitleri, Alan ve Hacimlerim Kavrayabilirle. 1. Piramidi tanımlama. 2. Piramidin tepe noktasını. tabanım: yan ayrıtlarım, yüksekliğim, yanyüz yüksekliğim tanımlama. 3. Düzgün piramidi tanımlama. 4. Düzgün dörtyüzlüyü tanımlama. 7. Bir piramidin hacmini veren bağıntıyı söyleme ve 8.Düzgün piramidin yanal alanım veren bağıntıyı söyleme ve gösterme Amaç-5: Piramitlerin Alan ve Hacimleri ile İlgili Uygulama Yapabilme. 2. Tabanının bir kenarı ile yüksekliği verilen düzgün bir kare piramidin yanal alanım, toplam alanım ve hacmini Amaç-6: Dairesel Silindiri, Alan ve Hacmini Kavrayabilirle. 1. Silindiri tanımlama. 2. Dik dairesel silindiri tanımlama. 4. Dairesel silindirin yüksekliğim tanımlama 6. Dairesel silindirin yanal alanım veren bağıntıyı 7. Dairesel silindirin hacmini veren bağıntıyı söyleme ve yazma. Amaç-7 Dairesel Silindirin Alan ve Hacmi ile İlgili Uygulama Yapabilme.

6 1. îç ve dış çapları ile yüksekliği verilen dik dairesel silindir biçimindeki bir borunun dolgu kısminin hacmini hesaplama. 2. İç ve dış çapları ile yüksekliği verilen dik dairesel silindir biçimindeki bir borunun dolgu kısminin toplam alanım hesaplama. 3. Yanal alanı ile yüksekliği verilen dik dairesel silindirin hacmini ve toplam alanım 4. Bir dikdörtgenin kenarları etrafında döndürülmesi ile oluşan silindirin hacimleri ve alanları arasındaki ilişkiyi Amaç-8: Dairesel Koniyi, Alanım ve Hacmini Kavrayabilme. 1. Koniyi tanımlama. 2. Dik dairesel koniyi tanımlama 4. Dairesel koninin yüksekliğim tanımlama. 5. Dik dairesel koninin ana doğrusunu tanımlama 7. Dairesel koninin hacmini veren bağıntıyı yazma 10. Dik dairesel koninin yanal alanım veren bağıntıyı söyleme ve 11. Dik dairesel koninin toplam alanım veren bağıntıyı söyleme ve Amaç-9: Dik Dairesel Koninin Alanı ve Hacmi ile "ilgili Uygulama Yapabilme. 1. Yanal yüksekliği ile tabanının çapı verilen dik dairesel koninin toplam alanım ve hacmini 2. Verilen bir dik yamuğun dik kenarı etrafında döndürülmesiyle elde edilen cismin hacmini ve toplam alanım 3. Verilen bir yamuğun paralel kenarları etrafında döndürülmesiyle elde edilen cisimlerin hacimlerini ve toplam alanlarım hesaplama. Amaç-10: Küreyi, Alanım ve Hacmini Kavrayabilme. 1.Küreyi tanımlama 4. Kürenin bir büyük çemberim tanımlama 7. Kürenin alanım veren bağıntıyı söyleme ve yazma. 8. Kürenin hacmini veren bağıntıyı söyleme ve yazma. Amaç-11: Kürenin Alanı ve Hacmi ile İlgili Uygulama Yapabilme. 1. Hacmi alanına sayısal olarak eşit olan kürenin çapım 2. Verilen bir dik dairesel silindire içten teğet olan bir küre ile silindirin hacimleri ve alanları arasındaki bağıntıyı 3. Yarıçapları verilen iki kürenin alanlarının ve hacimlerinin oranlarım DÜZLEMDE VEKTÖRLER Amaç 1: Yönlü Doğru Parçasını ve Vektörü Kavrayabilme. 1. Yönlü doğru parçasını tanımlama ve sembolle 2. Yönlü doğru parçasının uzunluğunu tanımlama ve sembolle 3. Yönlü doğru parçasının taşıyıcısını tanımlama. 4. Yönlü doğru parçalarının paralelliğini tanımlama ve sembolle 5. Yönlü iki doğru parçasının eşliğini tanımlama ve sembolle 6. Düzlemdeki yönlü doğru parçaları kümesinde tanımlanan eşlik bağıntısının bir denklik bağıntısı olduğunu 7. Vektörü tanımlama,

7 8. Yönlü doğru parçaları ile vektör arasındaki ilişkiyi yazma. 9. Sıfır vektörünü tanımlama. Amaç 2: Yönlü Doğru Parçaları ile Uygulama Yapabilme. 1. Verilen bir yönlü doğru parçasının başlangıç noktasını, bitim noktasına doğrultusunu, yönünü, uzunluğunu belirtme. 2. Verilen bir yönlü doğru parçasının ters yönlüsünü çizme. 3. Düzlemde verilen yönlü doğru parçasına, dışındaki bir noktadan eş bir yönlü doğru parçası çizme. Amaç 5: Analitik Düzlemde Vektörü Kavrayabilme. 1. Yer (konum) vektörünü tanımlama. 2. Yer vektörleri ile analitik düzlemin noktaları arasındaki ilişkiyi söyleme. 3. Yer vektörünün bileşenlerini tanımlama ve sembolle 4. Vektörü temsil eden yönlü doğru parçasının başlangıç ve bitim noktaları verildiğinde vektörün bileşenlerini bulma ve bu vektöre eş olan yer vektörü ile ilişkisini 5. Yer vektörünün uzunluğunu 6. Bir vektörün uzunluğunu bileşenleri cinsinden yazma. 7. Bir vektörün toplamını ve farkını bileşenleri cinsinden 8. Vektörler kümesinde toplama işleminin özelliklerini bileşenler yardımıyla söyleme ve 9. Bir vektörün bir reel sayı ile çarpımını bileşenleri cinsinden belirleme. 10. Bir vektörün bir reel sayı ile çarpımının özellikleri bileşenleri cinsinden belirleme. 11. Paralel iki vektörün bileşenleri arasındaki ilişkiyi Amaç 6: Analitik Düzlemde Vektörlerle İlgili Uygulama Yapabilme. 1. Verilen bir vektörün bileşenlerinin nasıl bulunacağını açıklama. 2. Bileşenleri ile verilen bir vektörün uzunluğunu 3. Verilen iki noktanın belirttiği vektörün bileşenlerini 4. Bileşenleri ile verilen iki vektörün toplamını 5. Verilen bir vektörün toplama işlemine göre tersini 6. Sıfırdan farklı olarak verilen iki vektörün paralel olup olmadığını belirleme. 7. Verilen bir vektörün, belirtilen bir reel sayı ile çarpımını Amaç 7: Vektörler Kümesinde Vektörlerin Lineer Bileşimini kavra-yabilme. 1. Birim vektörünü tanımlayabilme. 2. Bir vektörle aynı yönlü birim vektörü bulma ve yazma. 3. İki vektörün lineer bileşimini tanımlama. 4. İki vektörün lineer bağımlı olmasını tanımlama. 5. İki vektörün lineer bağımsız olmasını tanımlama. Amaç 8: Vektörler Kümesinde Vektörlerin Lineer Bileşimi ile İlgili Uygulama Yapabilme. 1. Bileşenleri ile verilen bir vektörün, birim vektör olup olmadığını söyleme ve yazma. 2. Bileşenleri ile verilen bir vektörü standart taban vektörler kümesi türünden yazma. 3. Bileşenleri ile verilen iki vektörün lineer bağımlı olup olmadığını belirtme. 5. Verilen iki vektörün bağımsız olup olmadığını belirtme. 6. Sıfır vektörünü kapsayacak şekilde verilen her vektör kümesinin lineer bağımlı olduğunu

UZAY KAVRAMI VE UZAYDA DOĞRULAR

UZAY KAVRAMI VE UZAYDA DOĞRULAR UZAY KAVRAMI VE UZAYDA DOĞRULAR Cisimlerin kapladığı yer ve içinde bulundukları mekan uzaydır. Doğruda sadece uzunluk, düzlemde uzunluk ve genişlik söz konusudur. Uzayda ise uzunluk ve genişliğin yanında

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI

10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI 10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI KONULAR HACİM VE HACİM ÖLÇÜLERİ KAVRAMI HACİM ÖLÇÜLERİ BİRİMLERİ 1. Metreküpün Katları As Katları 2. Birimlerin

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR 7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR KONULAR 1. DOĞRUDA AÇILAR 2. Açı 3. Açının Düzlemde Ayırdığı Bölgeler 4. Açı Ölçü Birimleri 5. Ölçülerine Göre Açılar 6. Açıortay 7. Tümler Açı 8. Bütünler Açı 9. Ters

Detaylı

Geometrik Cisimlerin Hacimleri

Geometrik Cisimlerin Hacimleri 1 Ülkemizin kongre ve fuar merkezlerinden biri, Antalya daki Cam Piramit Kongre ve Fuar Merkezi dir. Renkli ısıcamlı uzay çatı ile örülerek piramit şeklinde inşa edilmiştir. 2 Şekildeki piramidin tabanı

Detaylı

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR 1. Bir üçgende ölçüsü büyük olan açının karşısındaki kenar uzunluğu, ölçüsü küçük olan açının karşısındaki kenar uzunluğundan daha büyüktür. ABC üçgeninde m(a) >

Detaylı

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2.

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2. LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS na) HAZIRLIK İÇİN Konu anlatımlı Örnek çözümlü Test çözümlü Test sorulu Deneme sınavlı GEOMETRİ-2 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

9. SINIF GEOMETRİ KONU ÖZETİ

9. SINIF GEOMETRİ KONU ÖZETİ 2012 9. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ Nokta: Herhangi bir büyüklüğü olmayan ve yer belirten geometrik terimdir.

Detaylı

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03 I 5. SINIF MATEMATİK VE İŞLEMLER 1.1. En çok dokuz basamaklı doğal sayıları okur ve yazar. 1.2. En çok dokuz basamaklı doğal sayıların bölüklerini, basamaklarını ve rakamların basamak değerlerini belirtir.

Detaylı

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI 9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI KONULAR DİK ÜÇGENLERDE METRİK BAĞINTILAR 1. Pythagoras (Pisagor) Bağıntısı. Euclides (öklit) Bağıntısı 3. Pisagor ve öklit Bağıntıları ile İlgili Problemler

Detaylı

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir.

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. ÜÇGENDE AÇILAR Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. Burada; A, B, C noktaları üçgenin köşeleri, [AB], [AC], [BC] doğru parçaları

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

GEOMETRİ SORU BANKASI KİTABI

GEOMETRİ SORU BANKASI KİTABI LİSE ÖĞRENCİLERİNİN ÜNİVERSİTE SINAVLARINA HAZIRLANMALARI İÇİN GEOMETRİ SORU BANKASI KİTABI HAZIRLAYAN Erol GEDİKLİ Matematik Öğretmeni SUNUŞ Sevgili öğrenciler! Bu kitap; hazırlandığınız üniversite sınavlarında,

Detaylı

PİRAMİT, KONİ VE KÜRENİN ALANLARI

PİRAMİT, KONİ VE KÜRENİN ALANLARI PİRAMİT, KNİ VE KÜRENİN ALANLARI KAZANIMLAR Piramit kavramı Piramitin yüzey alanı Kesik piramitin yüzey alanı Düzgün dörtyüzlü kavramı Piramitin dönme simetri açısı Koni kavramı Koninin yüzey alanı Kesik

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

10. SINIF GEOMETRİ KONU ÖZETİ

10. SINIF GEOMETRİ KONU ÖZETİ 2012 10. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: DÜZLEM GEOMETRİDE TEMEL ELEMANLAR VE İSPAT BİÇİMLERI Temel Postulatlar İspatlanamayan ve ispatına gerek duyulmayan ancak doğru

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

ÜNİTELENDİRME ŞEMASI

ÜNİTELENDİRME ŞEMASI LENDİRME ŞEMASI ÜNİTE DOĞRULAR VE AÇILAR. Aynı düzlemde olan üç doğrunun birbirine göre durumlarını belirler ve inşa eder.. Paralel iki doğrunun bir kesenle yaptığı açıların eş olanlarını ve bütünler olanlarını

Detaylı

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN Konu Anlatımlı Örnek Çözümlü Test Çözümlü Test Sorulu Karma Testli GEOMETRİ 1 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 16 HAZİRAN 2013 PAZAR

LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 16 HAZİRAN 2013 PAZAR T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 16 HAZİRAN 2013 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

TEMEL SORU KİTAPÇIĞI ÖSYM

TEMEL SORU KİTAPÇIĞI ÖSYM 1-16062012-1-1161-1-00000000 TEMEL SORU KİTAPÇIĞI AÇIKLAMA 1. Bu kitapçıkta Lisans Yerleştirme Sınavı-1 Geometri Testi bulunmaktadır. 2. Bu test için verilen cevaplama süresi 45 dakikadır. 3. Bu testte

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

DERS BİLGİ FORMU. Zorunlu Ders X. Haftalık Ders Saati Okul Eğitimi Süresi

DERS BİLGİ FORMU. Zorunlu Ders X. Haftalık Ders Saati Okul Eğitimi Süresi DERSİN ADI MATEMATİK 1 BÖLÜM PROGRAM DÖNEMİ DERSİN DİLİ DERS KATEGORİSİ ÖN ŞARTLAR SÜRE VE DAĞILIMI KREDİ DERSİN AMACI ÖĞRENME ÇIKTILARI VE YETERLİKLER DERSİN İÇERİĞİ VE DAĞILIMI (MODÜLLER VE HAFTALARA

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran 2010. Geometri Soruları ve Çözümleri. ABC bir üçgen CA = CD. m(acd) = m(dcb) m(bac) = 80.

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran 2010. Geometri Soruları ve Çözümleri. ABC bir üçgen CA = CD. m(acd) = m(dcb) m(bac) = 80. Lisans Yerleştirme Sınavı (Lys ) / 9 Haziran 00 Geometri Soruları ve Çözümleri. ABC bir üçgen CA = CD m(acd) = m(dcb) m(bac) = 80 m(abc) = x Yukarıdaki verilere göre x kaç derecedir? A) 40 B) 45 C) 50

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

EMİRDAĞ M.Z.SARI ANADOLU LİSESİ 2010-2011 EĞİTİM ÖĞRETİM YILI 9. SINIFLAR GEOMETRİ DERSİ ÜNİTELENDİRİLMİ YILLIK PLANI

EMİRDAĞ M.Z.SARI ANADOLU LİSESİ 2010-2011 EĞİTİM ÖĞRETİM YILI 9. SINIFLAR GEOMETRİ DERSİ ÜNİTELENDİRİLMİ YILLIK PLANI EMİRDAĞ M.Z.SARI ANADOLU LİSESİ 00-0 EĞİTİM ÖĞRETİM YILI 9. SINIFLAR GEOMETRİ DERSİ ÜNİTELENDİRİLMİ YILLIK PLANI ÜNİTE AY HAFTA SAAT KAZANIMLAR KONULAR ÖĞRENME ÖĞRETME YÖNTEM İ KAYNAK ARAÇ VE GEREÇKLER

Detaylı

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25 Yükseköğretime Geçiş Sınavı (Ygs) / Nisan 00 Matematik Soruları ve Çözümleri. 0, 0,0 0, işleminin sonucu kaçtır? A) B) 4 7 C) 0 8 D) E) Çözüm 0, 0,0 0, = 0,00 0,0 0, = 0,7 0, 000 7 7. = = 000 00 0... işleminin

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

MATEMATİK SINAVI GEOMETRİ TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 GEOMETRİ TESTİ SORULARINI İÇERMEKTEDİR.

MATEMATİK SINAVI GEOMETRİ TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 GEOMETRİ TESTİ SORULARINI İÇERMEKTEDİR. Ö S Y M T.. YÜKSKÖĞRTİM KURULU ÖĞRNİ SÇM V YRLŞTİRM MRKZİ LİSNS YRLŞTİRM SINVI MTMTİK SINVI GOMTRİ TSTİ SORU KİTPÇIĞI 9 HZİRN 00 U SORU KİTPÇIĞI 9 HZİRN 00 LYS GOMTRİ TSTİ SORULRINI İÇRMKTİR. u testlerin

Detaylı

DEVREK ANADOLU LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı

DEVREK ANADOLU LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı ELÜL TRİH/SÜRE HFT Eylül 0Eylül Eylül 7 Eylül STİ LNI 0-0 DEVREK NDOLU LİSESİ 9. SINIF MTEMTİK İ ILLIK PLNI lt de Temel Kavramlar de Temel Kavramlar de Temel Kavramlar de Temel Kavramlar de de de de. Küme

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-II ÇERÇEVE PROGRAMI. :Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-II ÇERÇEVE PROGRAMI. :Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-II ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu :Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM Danışmanlık

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar 1. Kazanım : ir üçgenin iç açılarının ölçüleri toplamının 180, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği.

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Eğitimde. Lise ve Ön Lisans Adayları İçin. konu anlatımlı

GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Eğitimde. Lise ve Ön Lisans Adayları İçin. konu anlatımlı KPSS Genel Yetenek Genel Kültür Lise ve Ön Lisans Adayları İçin GEOMETRİ KPSS 206 Pegem Akademi Sınav Komisyonu; 204 KPSS ye Pegem Yayınları ile hazırlanan adayların, 00'ün üzerinde soruyu kolaylıkla çözebildiğini

Detaylı

5. ÜNİTE AÇILAR, ÜÇGENLER VE MESLEKİ UYGULAMALARI

5. ÜNİTE AÇILAR, ÜÇGENLER VE MESLEKİ UYGULAMALARI 5. ÜNİTE ÇILR, ÜÇGENLER VE MESLEKİ UYGULMLRI açılar KONULR 1. çı, çı Türleri ve Mesleki Uygulamaları 2. Tümler ve ütünler çılar ÜÇGENLER 1. Üçgene it Temel ilgiler 2. Üçgen Türleri 3. Üçgenin Yardımcı

Detaylı

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º ğlence başlıyor yor 1 º 0º üçgeninin alanı kaç birim karedir? ) ) 9 LN SI 1 LN SI 1 )1 ) üçgeninin alanı kaç birim karedir? üçgeninin alanı kaç birim karedir? ) ) ) ) ) ) üçgen, = birim, = birim, m() =

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

12. SINIF GEOMETRİ KONU ÖZETİ

12. SINIF GEOMETRİ KONU ÖZETİ 2012 12. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni ÜNİTE 1: UZAYDA VEKTÖRLER Hepsi birden aynı düzlemde olmayan tüm noktaların kümesine uzay denir. Uzayda farklı iki noktadan bir ve yalnız

Detaylı

Katı Cisimlerin Yü zey Alanı Ve Hacmi

Katı Cisimlerin Yü zey Alanı Ve Hacmi Katı Cisimlerin Yü zey Alanı Ve Hacmi Dikdörtgenler Prizması Hacmi ve Yüzey Alanı Paralelkenar Prizmanın Hacmi Kürenin Hacmi ve Kürenin Yüzey Alanı Kürenin temel elemanları; bir merkez noktası, bu merkez

Detaylı

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD LYS 1 / OMTRİ OMTRİ TSTİ 1. u testte 0 soru vardır. 2. u testin cevaplanması için tavsiye olunan süre 60 dakikadır. 1.. bir eşkenar üçgen 1 4 2 5, üçgeninin ağırlık merkezi = x irim karelere bölünmüş düzlemde

Detaylı

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º Geometri Çözmek ir yrıcal calıkt ktır ÇI I ve UZUNLUK 1? m()=, m()=, m()= 7º merkezli çemberde m()= 7º Verilenlere göre açısının ölçüsü kaç derecedir? ) 10 ) 1 ) 10 ) 1 ) 17 Verilenlere göre açısının ölçüsü

Detaylı

ÜÇ BOYUTLU CİSİMLER-1

ÜÇ BOYUTLU CİSİMLER-1 ÜÇ BOYUTLU CİSİMLER-1 PRİZMA 1. Bir dikdörtgenler prizmasının boyutları 3,5,7 ile orantılıdır. Bu prizmanın tüm alanı 568 cm 2 olduğuna göre hacmi kaç cm 3 dür? A) 440 B) 540 C) 840 D) 740 E) 640 6. Bir

Detaylı

GEOMETR 7 ÜN TE IV KON

GEOMETR 7 ÜN TE IV KON ÜN TE IV KON 1. KON K YÜZEY VE TANIMLAR 2. KON a. Tan m b. Dik Dairesel Koni I. Tan mlar II. Dik Dairesel Koninin Özelikleri III. Dönel Koni c. E ik Dairesel Koni 3. D K DA RESEL KON N N ALANI 4. DA RESEL

Detaylı

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI -6.09.0 DÖNÜŞÜM Sİ 5-9.09.0 ÖRÜNTÜ VE SÜSLEMELER SİDRE 000 ORTAOKULU 0 05 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI,. Doğru, çokgen ve çember modellerinden örüntüler

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10 LİSNS YRLŞTİRM SINVI- MTMTİK-GOMTRİ SINVI MTMTİK TSTİ SORU KİTPÇIĞI 0 U SORU KİTPÇIĞI LYS- MTMTİK TSTİ SORULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik

Detaylı

3. Düzlem: Her yönde sonsuza uzandığı kabul edilir. Sayılmaz çoğunlukta doğru ve noktalardan oluşmuştur.

3. Düzlem: Her yönde sonsuza uzandığı kabul edilir. Sayılmaz çoğunlukta doğru ve noktalardan oluşmuştur. DERS : GEOMETRİ KONU : GEOMETRİK KAVRAMLAR Geometrinin temelinde her soruda karşılaşacağımız terimler kavramlar vardır bu derste onları işleyeceğiz. Geometride özel anlamı olan ifadelere geometrik terim

Detaylı

EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI 1.DÖNEM AY HAFTA TARİH KAZANIM AÇIKLAMA

EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI 1.DÖNEM AY HAFTA TARİH KAZANIM AÇIKLAMA 06-07 EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI.DÖNEM EYLÜL EKİM.Hafta 9-.Hafta 6-0 K)Doğal sayılar, kesirler, ondalık sayılar ve yüzdelerle hesaplamaları

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

Geometride Nokta, Doğru, Düzlem gibi kavramlar tanımsız olarak kabul edilir. E düzlemi yandaki gibi gösterilir.

Geometride Nokta, Doğru, Düzlem gibi kavramlar tanımsız olarak kabul edilir. E düzlemi yandaki gibi gösterilir. GEOMETRĐK KAVRAMLAR Geometride Nokta, Doğru, Düzlem gibi kavramlar tanımsız olarak kabul edilir. 1. Nokta:. biçiminde gösterilir. Boyutu yoktur. 2. Doğru: Đki uçtan sınırsız noktalar kümesidir. 3. Düzlem:

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

TMÖZ Türkiye Matematik Öğretmenleri Zümresi

TMÖZ Türkiye Matematik Öğretmenleri Zümresi YGS MATEMATĠK DENEMESĠ-1 Muharrem ġahġn TMÖZ Türkiye Matematik Öğretmenleri Zümresi Eyüp Kamil YEġĠLYURT Gökhan KEÇECĠ Saygın DĠNÇER Mustafa YAĞCI Ġ:K Ve TMÖZ üyesi 14 100 matematik ve geometri sevdalısı

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

ÜÇGENLERİN KENARLARI ARASINDAKİ BAĞINTILAR ÜÇGENLERDE EŞLİK VE BENZERLİK. Şekilde verilen ABC üçgeninde [BC] kenarına

ÜÇGENLERİN KENARLARI ARASINDAKİ BAĞINTILAR ÜÇGENLERDE EŞLİK VE BENZERLİK. Şekilde verilen ABC üçgeninde [BC] kenarına . Verilen şekilde en uzun kenar aşağıdakilerden ÜÇGENLERİN KENARLARI ARASINDAKİ BAĞINTILAR. Şekilde verilen ABC üçgeninde [BC] kenarına ait kenar orta dikme, aşağıdaki noktaların hangilerinden geçer? AB

Detaylı

Sunum ve Sistematik 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ

Sunum ve Sistematik 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ Sunum ve Sistematik 1. ÜNİT: TML GOMTRİK KVRMLR V KOORİNT GOMTRİY GİRİŞ KONU ÖZTİ u başlık altında, ünitenin en can alıcı bilgileri, kazanım sırasına göre en alt başlıklara ayrılarak hap bilgi niteliğinde

Detaylı

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI 4 II MATEMATİK YARIŞMASI I AŞAMA SORULARI 4? 4 4 A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? 5 A) B) C) - D) E) - 8 4 x x

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR

SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR 06-07 7.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR Adı Soyadı İmza Adı Soyadı 8 9 0 6 7 Ömer Askerden İmza 06-07 EĞİTİM VE ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU

Detaylı

1989 ÖYS. olduğuna göre a-b kaçtır? A) 2 B) 2 C) 2 2 D) 2 2 E) 4

1989 ÖYS. olduğuna göre a-b kaçtır? A) 2 B) 2 C) 2 2 D) 2 2 E) 4 989 ÖYS. a a a b 8 olduğuna göre a-b kaçtır? C). a ile b nin aritmetik ortalaması 5 tir. a ile geometrik ortalaması 0, b ile geometrik ortalaması 0 olan sayı nedir? 0 C) 8 ise a+b+d toplamı ne-. a+b+c=d

Detaylı

1. Bir ayrıtının uzunluğu 1 olan küpler üst üste konularak tüm alanı A olan bir kare dik prizma yapılırsa, A sayısı aşağıdakilerden hangisi olabilir?

1. Bir ayrıtının uzunluğu 1 olan küpler üst üste konularak tüm alanı A olan bir kare dik prizma yapılırsa, A sayısı aşağıdakilerden hangisi olabilir? 1. Bir ayrıtının uzunluğu 1 olan küpler üst üste konularak tüm alanı A olan bir kare dik prizma yapılırsa, A sayısı aşağıdakilerden hangisi olabilir? a) 12 b) 16 c) 26 d) 36 e) 44 2. Aşağıdakilerden hangisi

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

YGS MATEMATİK DENEMESİ-1

YGS MATEMATİK DENEMESİ-1 YGS MATEMATİK DENEMESİ- Mustafa SEVİMLİ Fatih KAYGISIZ İbrahim KUŞÇUOĞLU Aydın DANIŞMAN ÇAKABEY ANADOLU LİSESİ Serkan TÜRKER Nejdet KİRPİ Şenay TAĞ GÜRLER Taner KAHYA Çakabey Anadolu Lisesi 0-0 . x olduğuna

Detaylı

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ 2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ YGS sonrası adayları puan getirisinin daha çok olan LYS ler bekliyor. Kalan süre içinde adayların girecekleri testlere kaynaklık eden derslere sabırla çalışmaları

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI - 4

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI - 4 T.. MİLLÎ EĞİTİM AKANLIĞI 015-016 8.SINIF DEĞERLENDİRME SINAVI - 4 015-016 8.SINIF DEĞERLENDİRME SINAVI - 4 MATEMATİK Adı ve Soyadı :... Sınıfı :... Öğrenci Numarası :... SORU SAYISI : 0 SINAV SÜRESİ :

Detaylı

1997 ÖSS Soruları. 5. Rakamları birbirinden farklı olan üç basamaklı en büyük doğal sayı aşağıdakilerden hangisi ile kalansız bölünebilir?

1997 ÖSS Soruları. 5. Rakamları birbirinden farklı olan üç basamaklı en büyük doğal sayı aşağıdakilerden hangisi ile kalansız bölünebilir? 997 ÖSS Soruları. ( ) + ( ).( ) işleminin sonucu kaçtır? ) ) ) ) 8 6 ) 6. Rakamları birbirinden farklı olan üç basamaklı en büük doğal saı aşağıdakilerden hangisi ile kalansız bölünebilir? ) ) 9 ) 6 )

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

DERS BİLGİ FORMU 2. MİMARLIK VE ŞEHİR PLANLAMA HARİTA VE KADASTRO 1. DÖNEM Türkçe DÖNEMİ DERSİN DİLİ. Seçmeli. Ders DERS KATEGORİSİ ÖN ŞARTLAR

DERS BİLGİ FORMU 2. MİMARLIK VE ŞEHİR PLANLAMA HARİTA VE KADASTRO 1. DÖNEM Türkçe DÖNEMİ DERSİN DİLİ. Seçmeli. Ders DERS KATEGORİSİ ÖN ŞARTLAR DERSİN ADI BÖLÜM PROGRAM DÖNEMİ DERSİN DİLİ DERS KATEGORİSİ ÖN ŞARTLAR SÜRE VE DAĞILIMI KREDİ DERSİN AMACI ÖĞRENME ÇIKTILARI VE DERSİN İÇERİĞİ VE DAĞILIMI (MODÜLLER VE HAFTALARA GÖRE DAĞILIMI) DERS BİLGİ

Detaylı

= 8 olduğuna göre, a kaçtır?

= 8 olduğuna göre, a kaçtır? Ö.S.S. 006 MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ. a ve b sıfırdan farklı gerçel sayılar olmak üzere, a.b b a a b olduğunu göre a+b toplamı kaçtır? A) B) C) 0 D) E) Çözüm a.b b a b b b² b b ± b için a a- a

Detaylı

2014 2015 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ

2014 2015 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ 0 0 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ SÜRE Ay Hafta D. Saati ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIMLAR Geometri Örüntü Süslemeler. Doğru, çokgen çember modellerinden örüntüler

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 3. Geometrik Çizimler. Yrd. Doç. Dr. Garip GENÇ

Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 3. Geometrik Çizimler. Yrd. Doç. Dr. Garip GENÇ TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Genel Bilgi Teknik resimde bir şekli çizmek için çizim takımlarından faydalanılır. Çizilecek şekil üzerinde eşit bölüntüler, paralel doğrular, teğet birleşmeler,

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Küpoktahedron. İkosahedron. Çember. Eşkenar üçgen. İkosidodekahedron. Kare. İkizkenar üçgen. Dik üçgen. Simit ve Peynir'le Geometri

Küpoktahedron. İkosahedron. Çember. Eşkenar üçgen. İkosidodekahedron. Kare. İkizkenar üçgen. Dik üçgen. Simit ve Peynir'le Geometri İkosahedron Küpoktahedron Hazırlayan: Banu Binbaşaran Tüysüzoğlu Çizim: Bilgin Ersözlü İkosidodekahedron Çember Eşkenar üçgen İkizkenar üçgen Dik üçgen Kare Küpoktahedron Üçgen şeklinde sekiz, kare şeklinde

Detaylı

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır?

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır? İKİ DOĞRUNUN BİRBİRİNE GÖRE DURUMU DURUM 1 PARALEL DOĞRULAR ve doğruları paralel doğrular ise eğimleri eşittir. Yani / / m 1 =m 2 Ayr ıca : a 1 x+b 1 y+c 1 =0 =0} / / a 1 a 2 = b 1 c 1 c 2 Örnek...1 :

Detaylı

sözel geometri soruları

sözel geometri soruları YAYINLARI sözel geometri soruları LYS Konu Testi: 01 1. Bir üçgenin bir iç aç s n n ölçüsü di er iki iç aç s n n ölçüleri toplam na eflittir. Bu üçgen için afla dakilerden hangisi kesinlikle do rudur?

Detaylı

11. SINIF GEOMETRİ KONU ÖZETİ

11. SINIF GEOMETRİ KONU ÖZETİ 2012 11. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: DÖRTGENLER DÖRTGEN VE TEMEL ELEMANLARI Herhangi üçü doğrusal olmayan A, B, C ve D noktaları verilsin. [AB], [BC], [CD] ve [DA]

Detaylı

YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM

YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM YAYIN KURULU Hazırlayanlar Filiz SOYUÇETİN YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM Kurumsal Yayınlar Birimi Dizgi & Grafik Mustafa Burak SANK & Ezgi Güler & Meltem Temel

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme Türkiye Ulusal Matematik Olimpiyatları Birinci Aşama Zor Deneme Sınavı 11 Haziran 2016 DENEME SINAVI 4. Deneme Soru Sayısı: 32 Sınav Süresi: 210 dakika Başarılar Dileriz... Page 1 of 9 DENEME SINAVI (4.

Detaylı

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır?

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır? 99 ÖYS.,8 + (, + ), işleminin sonucu kaçtır? B) 7 D) 86 987 B) D). a, b, c birer pozitif gerçel sayı ve a=b b=c olduğuna göre, aşağıdakilerden hangisi doğrudur? a

Detaylı

25 Nisan 2010 Pazar,

25 Nisan 2010 Pazar, TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 18. ULUSAL MATEMATİK OLİMPİYATI - 2010 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 25 Nisan 2010 Pazar, 13.00-15.30

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 19 Aralık Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 19 Aralık Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 9 Aralık 00 Matematik Soruları ve Çözümleri. + 4 işleminin sonucu kaçtır? A) B) C) D) 4 E) 6 Çözüm + 4 + 4 4 + 4 4.. işleminin

Detaylı

1995 ÖYS. a+ =3a a= Cevap:D. Çözüm: Çözüm: Çözüm:

1995 ÖYS. a+ =3a a= Cevap:D. Çözüm: Çözüm: Çözüm: 99 ÖYS. a b c d ve a, b, c, d tek sayılar olmak üzere, abcd dört basamaklı en büyük sayıdır? Bu sayı aşağıdakilerden hangisine kalansız bölünebilir? A) B) 6 C) 9 D) E) a, b, c, d rakamları birbirinden

Detaylı

Temel Matematik Testi - 1

Temel Matematik Testi - 1 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: 00. u testte 0 soru vardır.. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi -.

Detaylı

Ö.S.S MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ

Ö.S.S MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ Ö.S.S. 008 MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ 1. ( ).( 4 1 + ) 1 işleminin sonucu kaçtır? A) 7 B) 4 C) 1 D) 4 E) 7 Çözüm 1 ( ).( 4 1 + ) 1 7 ( 1).( ) 1 7 1 7 ( ). -7 1. 4,9 0,49 0,1 + işleminin sonucu kaçtır?

Detaylı

GEOMETRİ. 1.1 Benzer Üçgenler. Gösterimler:

GEOMETRİ. 1.1 Benzer Üçgenler. Gösterimler: GEOMETRİ 1 Üçgenler Gösterimler: Bir ABC üçgeni için aşağıdaki gösterimleri kullanacağız: Kenar uzunlukları: BC = a, CA = b, AB = c Açılar: Â, ˆB, Ĉ (Trigonometrik ifadelerde açı işareti kullanılmayacak.)

Detaylı

- Hangi kitaptan kaç adet olduğu - Kargonu gideceği açık adres ve telefon yazılmalıdır.

- Hangi kitaptan kaç adet olduğu - Kargonu gideceği açık adres ve telefon yazılmalıdır. Kitap Adı : TASARI GEOMETRİ Yazar : Doç.Dr.Zafer Savaş DOĞANTAN Baskı Yılı : 1996 Sayfa Sayısı : 324 Satışı Yapılmamaktadır, üniversitemiz kütüphanesinden erişebilirsiniz. Kitapların satışı Mustafa Kemal

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1 Ortak Akıl YGS MATEMATİK DENEME SINAVI 011-1 Ortak Akıl Adem ÇİL Ayhan YANAĞLIBAŞ Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN Kadir ALTINTAŞ Köksal YİĞİT

Detaylı

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y ARABL Tanım: Düzlemde verilen sabit bir noktası ile bir d doğrusuna uzaklıkları eşit olan noktaların geometrik erine arabol denir. Sabit noktaa arabolün odağı; doğrua ise doğrultmanı denir. Merkezil arabol

Detaylı

ÖSYM M TEMEL MATEMATİK TESTİ YGS / MAT. Diğer sayfaya geçiniz. 1. Bu testte 40 soru vardır.

ÖSYM M TEMEL MATEMATİK TESTİ YGS / MAT. Diğer sayfaya geçiniz. 1. Bu testte 40 soru vardır. TEMEL MATEMATİK TESTİ 2011 - YGS / MAT M9991.01001 1. Bu testte 40 soru vardır. 1. 2. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. işleminin sonucu kaçtır?

Detaylı

Dördüncü sınıf matematik müfredat programının hedefi:

Dördüncü sınıf matematik müfredat programının hedefi: MATEMATİK (haftalık ders sayısı 5, yıllık toplam 185 ders saati) GİRİŞ XXI. yüzyılda matematik eğitimi yalnız doğa olaylarının araştırmasında ve teknikte değil insanoğlunun mantıklı, eleştirel ve estetik

Detaylı