9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR"

Transkript

1 TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme ve yazma. 3. Doğrusal ve düzlemsel noktalar kümesini tanımlama. 6. İki nokta arasındaki uzaklığı tanımlama. 7. Arada olmayı tanımlama. 8. Doğru parçasının tanımlama. 9. Işını tanımlama Amaç-2: Nokta Doğru ve Düzlem ile İlgili Uygulama Yapabilme. 1. Koordinatları verilen iki nokta arasındaki uzaklığı hesaplama. 2. Koordinatları verilen ve doğrusal olan üç noktadan arada olanı bulma ve yazma. 3. Uç noktalarının koordinatları verilen bir doğru parçası üzerinde bulunan ve verilen özellikleri sağlayan noktaların koordinatlarım bulma ve yazma. 4. Uç noktalarının koordinatları verilen bir doğru parçasının orta noktasının koordinatım bulma ve yazma. 5. Uç noktalarının biri ile orta noktasının koordinatı verilen doğru parçasının diğer uç noktasının koordinatım bulma ve yazma. 6. Verilen bir [AB ışını üzerinde AX =k (k=l,2.3,4.5) olacak biçimde X noktalarım bulup işaretleme. Amaç -3: Nokta, Doğru ve Düzlem Arasındaki İlişkileri Kavrayabilme. 1. Doğrusal (doğrudaş ) olmayan farklı noktadan geçen düzlem sayısını söyleme ve yazma. 2. Bir doğrunun bir düzlemin içinde olmasını tanımlama. 3. Paralel doğruları tanımlama. 4. Paralellik aksiyomunu söyleme ve yazma. 5. Doğru ile düzlemin birbirine göre konumlarını söyleme ve yazma. 6. Bir doğru ile dışındaki bir noktayı içeren düzlem sayısını açıklama. 7. Kesişen iki doğruyu içeren düzlem sayısını açıklama. 8. Kesişen iki düzlemin arakesitini söyleme ve yazma. 9. İki düzlemin birbirine göre konumlarını söyleme ve yazma. Amaç-4: Nokta, Doğru ve Düzlem ile İlgili Uygulama Yapabilme. 1. İki noktadan bir doğru geçer aksiyomuna evreden uygun örnekler söyleme 2. Verilen paralel iki doğruyu içeren düzlem sayısını söyleme ve yazma. 3. Doğrusal olmayan farklı noktadan bir düzlem geçer aksiyomuna evreden uygun örnekler söyleme. Amaç-5: Açı ile İlgili Temel Kavramları Kavrayabilme. 1. Açıyı tanımlama. 2. Bir açının yönünü açıklama. 3. Açı ölçü birimlerinden dereceyi çember yayı yardımı ile tanımlama 4. Bir açının ölçüsünü tanımlama. 5. Dik açıyı tanımlama. 6. İki doğrunun dikliğini tanımlama. 7. Dar açıyı tanımlama. 8. Geniş açıyı tanımlama. 9. Bir açının dikler (tümler) açısını tanımlama. 10. Bütünler açıları tanımlama. 11. Tam açıyı tanımlama.

2 12. Eş açıları tanımlama. 13. Paralel iki doğruyu başka bir doğru kestiğinde oluşan açıları söyleme ve yazma 14. Karşılıklı olarak kenarları paralel iki açının ölçüleri arasındaki bağıntıları söyleme ve 15. Karşılıklı olarak kenarları dik iki açının ölçüleri arasındaki bağntıları söyleme ve 16. Bir açının açı ortayını tanımlama, özeliklerini söyleme ve yazma. Amaç-6: Açılar ile İlgili Uygulama Yapabilme. 1. Açı çeşitlerine çevreden uygun örnekler 2. Verilen bir açıya eş bir açıyı pergel ve cetvel kullanarak çizme. 3. Verilen bir dar açının dikler açısını 4. Verilen bir açının bütünler açısını 5. Komşu bütünler iki açının açı ortayları arasındaki ilişkiyi söyleme ve DOGRUNUN ANALİTİK İNCELENMESİ Amaç 1: Analitik Düzlemde Uzaklığı Kavrayabilme. 1. Analitik düzlemin noktaları ile reel sayı ikilileri arasındaki ilişkiyi söyleme ve yazma. 2. Analitik düzlemin iki noktası arasındaki uzaklığı, bu noktaların koordinatları cinsinden veren bağıntıyı 3. Bir doğru parçasının orta noktasının koordinatlarını, uç noktalarının koordinatları cinsinden veren bağıntıyı 4. Bir doğru parçasını verilen bir oranda bölen noktaları Amaç 2. Analitik Düzlemde Uzaklık ile İlgili Uygulama Yapabilme. 1. Koordinatları verilen bir noktayı analitik düzlemde bulup işaretleme. 2. Koordinatları verilen iki nokta arasındaki uzaklığı 4. Verilen bir doğru parçasının orta noktasını bulma Amaç 3: Analitik Düzlemde Doğru Denklemini Kavrayabilme. 1. Dik üçgende bir açının tanjantını tanımlama. 2. Eksen çember yardımıyla, geniş açıların trigonometrik oranlarını, dar açıların trigonometrik oranları cinsinden hesaplama. 3. Ölçüsü 30, 45, 60, 90 derece veya bunlardan birisinin herhangi bir katı olan açının tanjantını söyleme ve yazma. 4. Bir doğrunun eğim açısını ve eğimini tanımlama. 5. Bir noktası bilinen doğrunun eğimini veren bağıntıyı 6. İki doğrunun paralel olma şartını açıklama. 7. İki doğrunun dik olma şartını açıklama. 8. Eğimini ve bir noktası bilinen doğrunun denklemini 9. İki noktası bilinen doğrunun denklemini 10. Koordinat eksenlerine paralel olan doğruların eğimlerini söyleme ve yazma. 11. Koordinat eksenlerine paralel olan doğruların denklemlerini söyleme ve yazma. 12. D={(x,y) y=mx+n, m,n R, (x,y) RxR} kümesini analitik düzlemde gösterme 13. ax+by+c=0 biçimindeki bir denklemin düzlemde bir doğru temsil ettiğini (a,b,c nin alacağı değerlere göre irdeleyerek) 14. Eksenleri kestiği noktalar verildiğinde, doğrunun denklemini bulma,

3 15. İki doğrunun kesişme noktasının koordinatlarını 16. İki bilinmeyenli denklem sisteminin çözüm kümesini analitik düzlemde yorumlama. 17. Kesişen iki doğrunun oluşturduğu açının ölçüsünü veren bağıntıyı 18. Bir noktanın bir doğruya olan uzaklığını veren bağıntıyı Amaç 4: Doğrunun analitik incelenmesi ile ilgili uygulama yapabilme. 1. Bir noktası ve eğimi verilen doğrunun denklemini bulma ile ilgili problem çözme. 2. İki noktası verilen doğrunun denklemini bulma ile ilgili problem çözme. 3. Koordinat eksenlerinin denklemlerini söyleme ve yazma. 4. Eğim açısı 30, 45, 60,90 derece veya bunlardan birisinin belli bir katı olarak verilen doğrunun eğimini söyleme ve yazma. 5. Koordinat eksenlerinin oluşturduğu açıların açıortay doğrularının değerlerini 6. Verilen bir noktadan geçen ve eksenlere paralel olan doğruların değerlerini yazma. 7. Bir doğrunun denklemi verildiğinde eğimini ve istenen noktalarını 8. Denklemleri verilen iki doğrunun birbirine göre durumlarını belirleme ile ilgili problem çözme. 9. Denklemleri verilen iki doğrunun kesişim noktasını 10. Verilen iki bilinmeyenli lineer denklem sisteminin çözüm kümesinin varlığını analitik düzlemde irdeleme ve varsa çözüm kümesini 11. Köşelerinin koordinatları verilen bir üçgenin kenarlarını ve yüksekliklerini taşıyan doğruların denklemlerini 12. Verilen noktalar ve doğrular arasındaki uzaklıkları bulma ile ilgili problem çözme. 13. Kesişen iki doğrunun oluşturduğu açının, açıortaylarının denklemlerini 14. Verilen üç noktanın bir doğru üzerinde olup olmadığını ÜÇGENLER Amaç -1 : Üçgen ile İlgili Temel Kavramları Kavrayabilme. 1. Çokgeni tanımlama. 2. Özel bir çokgen olarak üçgeni tanımlama. 3.Üçgen çeşitlerini söyleme ve yazma. 4. Bir üçgenin yardımcı elemanlarını tanımlama (Kenarortay, açıortay, yükseklik). 9. Bir üçgende, kenarlar ile açılar arasındaki ilişkiyi söyleme ve 10. Bir üçgende kenar uzunlukları arasındaki bağıntıları söyleme ve yazma (üçgen eşitsizliği). Amaç-2: Üçgenlerin Elemanları ile İlgili Uygulama Yapabilme. 1. Verilen bir ikizkenar üçgende tabana ait kenarortayın özelliklerim söyleme ve 3. Kenar uzunlukları verilen bir üçgenin açılarının ölçüleri arasındaki sıralamayı söyleme ve yazma. 4. İki kenar uzunluğu verilen bir üçgenin, üçüncü kenar uzunluğunun alabileceği değerler kümesim söyleme ve yazma. 5. Verilen bir dik üçgende hipotenüse ait kenarortay ile hipotenüs arasındaki ilişkiyi söyleme ve 6. Bir açısının ölçüşü 30 olan bir dik üçgende, kenar uzunlukları arasındaki bağıntıyı söyleme ve yazma. 7. Verilen bir üçgende bir dış açı ile bu dış açıya komşu olmayan iç açılar arasındaki bağıntıyı söyleme ve 8. Bir üçgenin iç açıların ölçüleri toplamım söyleme ve Amaç -3: Dik üçgenlerde Metrik Bağıntıları Kavrayabilme. 1. Bir dik üçgende Pisagor teoremini söyleme ve 2. Bir dik üçgen ile, bu üçgenin hipotenüsüne ait yüksekliğin oluşturduğu üçgenler arasındaki ilişkiyi söyleme ve 3. Bir dik üçgende yükseklik bağıntısını söyleme ve 4. Bir dik üçgende dik kenar bağıntısını söyleme ve

4 Amaç-4: Dik üçgenlerde Metrik Bağıntılar ile Uygulama Yapabilme. 1. Bir dik üçgende hipotenüse ait yüksekliğini hipotenüsten ayırdığı doğru parçalarının uzunlukları verildiğinde, üçgenin diğer elemanlarının uzunluğunu 2. Bir dik üçgende dik kenarlar, yükseklik ve yüksekliğin hipotenüs üzerinde ayırdığı parçalardan herhangi ikisinin uzunluğu verildiğinde diğerlerinin uzunluklarını ÇEMBER Amaç-1: Çember ile İlgili Temel Kavramları Kavrayabilme. 1. Çember, çap. yarıçap, merkez, kesen, kiriş, teğet ve normali tanımlama. 2. Çemberin iç ve dış bölgelerim tanımlama. 3. İki çemberin eşliğini tanımlama. 4. Aynı düzlem içindeki bir doğru ile bir çemberin birbirine göre konumlarım açıklama. 5. Çemberde kirişin özelliklerini 6. Çemberde teğetin özelliklerini 7. Aynı düzlemdeki iki çemberin birbirine göre konumlarım açıklama. Amaç-2: Çembere İlişkin Temel Kavramlarla İlgili Uygulama Yapabilme. 1. Yarıçap uzunluğu verilen bir çemberin merkezinden belli bir uzaklıktaki kirişin uzunluğunu 2. Verilen bir çemberde merkezden aynı uzaklıktaki kirişlerin uzunlukları arasındaki ilişkiyi 3. Dıştan (veya içten) teğet olarak verilen iki çemberin, merkezleri ile değme noktası arasındaki ilişkileri Amaç-3: Çemberde Yay ve Açılar ile İlgili Temel Kavramları Kavrayabilme. 1. Merkez açıyı tanımlama. 2. Çemberde küçük yay ve büyük yay ile ölçülerim tanımlama. 3. Çemberde iki yayın eşliğim tanımlama. 4. Çemberde merkez açının ölçüşü ile gördüğü yayın ölçüşü arasındaki bağıntıyı yazma. 5. Çevre açıyı tanımlama. 6. Çevre açı ile gördüğü yayın ölçüşü arasındaki bağıntıyı 7. Teğet-kiriş açıyı tanımlama. 8. Teğet-kiriş açının ölçüşü ile gördüğü yayın ölçüşü arasındaki bağıntıyı 9. Aynı yayı gören merkez, çevre ve teğet-kiriş açılar arasındaki bağıntıları 10.Tam açıyı tanımlama. 11. İç açıyı tanımlama. 12.Bir açının ölçüşü ile kolları (kenarları) arasında kalan yayların ölçüleri arasındaki bağıntıyı 13.Dış açıyı tanımlama. 14.Bir dış açının ölçüsü ile kolları (kenarları) arasında kalan yayların ölçüleri arasındaki bağıntıyı 15.Çemberin uzunluğunu yazma. 16.Bir merkez açının gördüğü yayın uzunluğunu yazma. Amaç-4: Çemberde Yay ve Açılara İlişkin Temel Kavramlarla İlgili Uygulama Yapabilme. 1. Aynı yayı gören merkez, çevre, teğet-kiriş açılardan biri verildiğinde diğerlerim 2. Merkez (veya çevre) açının gördüğü yayın ölçüşü verildiğinde açının ölçüsünü yazma. 3. Bir iç açının ölçüsü ile kolları arasında kalan yaylardan birinin ölçüşü verildiğinde diğer yayın ölçüsünü 4. Bir dış açının ölçüsü ile kolları arasında kalan yaylardan birinin ölçüşü verildiğinde diğer yayın ölçüsünü 5. Yarıçap uzunluğu ile merkez açının gördüğü yayın uzunluğu verildiğinde. merkez açının ölçünü

5 KATI CİSİMLERİN ALAN VE HACİMLERİ Amaç-1: Prizmayı, Özelliklerini ve Çeşitlerini Kavrayabilme. 1. Prizmayı tanımlama. 2. Prizmanın tabanlarım tanımlama. 3. Prizmanın taban ayrıtlarım tanımlama. 4. Prizmanın yan yüzlerim tanımlama. 5. Prizmanın yan ayrıtlarım tanımlama. 6. Prizmanın yüksekliğim tanımlama. 11. Dik prizmayı tanımlama 13. Düzgün prizmayı tanımlama. 14. Paralelyüzü tanımlama. 15. Dikdörtgenler prizmasına tanımlama. 16. Küpü tanımlama. 17. Tabanlarına göre prizmaları adlandırma. 18. Dikdörtgenler prizmasının cisim köşegeni ile bir köşeden çıkan ayrıtlar arasındaki bağıntıyı söyleme ve Amaç-2: Prizmaların Alan ve Hacimlerini Kavrayabilme. 1. Dik prizmanın yanal alanım veren bağıntıyı söyleme ve 3. Prizmanın toplam alanım veren bağıntıyı söyleme ve 4. Dik prizmanın hacmini veren bağıntıyı söyleme ve Amaç-3: Prizmaların Alan ve Hacimleri ile İlgili Uygulama Yapabilme. 1. Tabanı yamuk olan bir dik prizmanın taban kenarları ile yüksekliği verildiğinde yanal alanım 2. Yüksekliği ile tabanının kenarları verilen bir dik prizmanın yanal alanım bulma 3. Yanal alanı ile tabanının çevresi verilen bir dik prizmanın yüksekliğim 4. Tabanının bir kenarı ile yüksekliği verilen eşkenar üçgen dik prizmanın toplam alanım ve hacmini 5. Cisim köşegeninin uzunluğu verilen bir küpün toplam alanım ve hacmini Amaç-4: Piramitleri, Alan ve Hacimlerim Kavrayabilirle. 1. Piramidi tanımlama. 2. Piramidin tepe noktasını. tabanım: yan ayrıtlarım, yüksekliğim, yanyüz yüksekliğim tanımlama. 3. Düzgün piramidi tanımlama. 4. Düzgün dörtyüzlüyü tanımlama. 7. Bir piramidin hacmini veren bağıntıyı söyleme ve 8.Düzgün piramidin yanal alanım veren bağıntıyı söyleme ve gösterme Amaç-5: Piramitlerin Alan ve Hacimleri ile İlgili Uygulama Yapabilme. 2. Tabanının bir kenarı ile yüksekliği verilen düzgün bir kare piramidin yanal alanım, toplam alanım ve hacmini Amaç-6: Dairesel Silindiri, Alan ve Hacmini Kavrayabilirle. 1. Silindiri tanımlama. 2. Dik dairesel silindiri tanımlama. 4. Dairesel silindirin yüksekliğim tanımlama 6. Dairesel silindirin yanal alanım veren bağıntıyı 7. Dairesel silindirin hacmini veren bağıntıyı söyleme ve yazma. Amaç-7 Dairesel Silindirin Alan ve Hacmi ile İlgili Uygulama Yapabilme.

6 1. îç ve dış çapları ile yüksekliği verilen dik dairesel silindir biçimindeki bir borunun dolgu kısminin hacmini hesaplama. 2. İç ve dış çapları ile yüksekliği verilen dik dairesel silindir biçimindeki bir borunun dolgu kısminin toplam alanım hesaplama. 3. Yanal alanı ile yüksekliği verilen dik dairesel silindirin hacmini ve toplam alanım 4. Bir dikdörtgenin kenarları etrafında döndürülmesi ile oluşan silindirin hacimleri ve alanları arasındaki ilişkiyi Amaç-8: Dairesel Koniyi, Alanım ve Hacmini Kavrayabilme. 1. Koniyi tanımlama. 2. Dik dairesel koniyi tanımlama 4. Dairesel koninin yüksekliğim tanımlama. 5. Dik dairesel koninin ana doğrusunu tanımlama 7. Dairesel koninin hacmini veren bağıntıyı yazma 10. Dik dairesel koninin yanal alanım veren bağıntıyı söyleme ve 11. Dik dairesel koninin toplam alanım veren bağıntıyı söyleme ve Amaç-9: Dik Dairesel Koninin Alanı ve Hacmi ile "ilgili Uygulama Yapabilme. 1. Yanal yüksekliği ile tabanının çapı verilen dik dairesel koninin toplam alanım ve hacmini 2. Verilen bir dik yamuğun dik kenarı etrafında döndürülmesiyle elde edilen cismin hacmini ve toplam alanım 3. Verilen bir yamuğun paralel kenarları etrafında döndürülmesiyle elde edilen cisimlerin hacimlerini ve toplam alanlarım hesaplama. Amaç-10: Küreyi, Alanım ve Hacmini Kavrayabilme. 1.Küreyi tanımlama 4. Kürenin bir büyük çemberim tanımlama 7. Kürenin alanım veren bağıntıyı söyleme ve yazma. 8. Kürenin hacmini veren bağıntıyı söyleme ve yazma. Amaç-11: Kürenin Alanı ve Hacmi ile İlgili Uygulama Yapabilme. 1. Hacmi alanına sayısal olarak eşit olan kürenin çapım 2. Verilen bir dik dairesel silindire içten teğet olan bir küre ile silindirin hacimleri ve alanları arasındaki bağıntıyı 3. Yarıçapları verilen iki kürenin alanlarının ve hacimlerinin oranlarım DÜZLEMDE VEKTÖRLER Amaç 1: Yönlü Doğru Parçasını ve Vektörü Kavrayabilme. 1. Yönlü doğru parçasını tanımlama ve sembolle 2. Yönlü doğru parçasının uzunluğunu tanımlama ve sembolle 3. Yönlü doğru parçasının taşıyıcısını tanımlama. 4. Yönlü doğru parçalarının paralelliğini tanımlama ve sembolle 5. Yönlü iki doğru parçasının eşliğini tanımlama ve sembolle 6. Düzlemdeki yönlü doğru parçaları kümesinde tanımlanan eşlik bağıntısının bir denklik bağıntısı olduğunu 7. Vektörü tanımlama,

7 8. Yönlü doğru parçaları ile vektör arasındaki ilişkiyi yazma. 9. Sıfır vektörünü tanımlama. Amaç 2: Yönlü Doğru Parçaları ile Uygulama Yapabilme. 1. Verilen bir yönlü doğru parçasının başlangıç noktasını, bitim noktasına doğrultusunu, yönünü, uzunluğunu belirtme. 2. Verilen bir yönlü doğru parçasının ters yönlüsünü çizme. 3. Düzlemde verilen yönlü doğru parçasına, dışındaki bir noktadan eş bir yönlü doğru parçası çizme. Amaç 5: Analitik Düzlemde Vektörü Kavrayabilme. 1. Yer (konum) vektörünü tanımlama. 2. Yer vektörleri ile analitik düzlemin noktaları arasındaki ilişkiyi söyleme. 3. Yer vektörünün bileşenlerini tanımlama ve sembolle 4. Vektörü temsil eden yönlü doğru parçasının başlangıç ve bitim noktaları verildiğinde vektörün bileşenlerini bulma ve bu vektöre eş olan yer vektörü ile ilişkisini 5. Yer vektörünün uzunluğunu 6. Bir vektörün uzunluğunu bileşenleri cinsinden yazma. 7. Bir vektörün toplamını ve farkını bileşenleri cinsinden 8. Vektörler kümesinde toplama işleminin özelliklerini bileşenler yardımıyla söyleme ve 9. Bir vektörün bir reel sayı ile çarpımını bileşenleri cinsinden belirleme. 10. Bir vektörün bir reel sayı ile çarpımının özellikleri bileşenleri cinsinden belirleme. 11. Paralel iki vektörün bileşenleri arasındaki ilişkiyi Amaç 6: Analitik Düzlemde Vektörlerle İlgili Uygulama Yapabilme. 1. Verilen bir vektörün bileşenlerinin nasıl bulunacağını açıklama. 2. Bileşenleri ile verilen bir vektörün uzunluğunu 3. Verilen iki noktanın belirttiği vektörün bileşenlerini 4. Bileşenleri ile verilen iki vektörün toplamını 5. Verilen bir vektörün toplama işlemine göre tersini 6. Sıfırdan farklı olarak verilen iki vektörün paralel olup olmadığını belirleme. 7. Verilen bir vektörün, belirtilen bir reel sayı ile çarpımını Amaç 7: Vektörler Kümesinde Vektörlerin Lineer Bileşimini kavra-yabilme. 1. Birim vektörünü tanımlayabilme. 2. Bir vektörle aynı yönlü birim vektörü bulma ve yazma. 3. İki vektörün lineer bileşimini tanımlama. 4. İki vektörün lineer bağımlı olmasını tanımlama. 5. İki vektörün lineer bağımsız olmasını tanımlama. Amaç 8: Vektörler Kümesinde Vektörlerin Lineer Bileşimi ile İlgili Uygulama Yapabilme. 1. Bileşenleri ile verilen bir vektörün, birim vektör olup olmadığını söyleme ve yazma. 2. Bileşenleri ile verilen bir vektörü standart taban vektörler kümesi türünden yazma. 3. Bileşenleri ile verilen iki vektörün lineer bağımlı olup olmadığını belirtme. 5. Verilen iki vektörün bağımsız olup olmadığını belirtme. 6. Sıfır vektörünü kapsayacak şekilde verilen her vektör kümesinin lineer bağımlı olduğunu

UZAY KAVRAMI VE UZAYDA DOĞRULAR

UZAY KAVRAMI VE UZAYDA DOĞRULAR UZAY KAVRAMI VE UZAYDA DOĞRULAR Cisimlerin kapladığı yer ve içinde bulundukları mekan uzaydır. Doğruda sadece uzunluk, düzlemde uzunluk ve genişlik söz konusudur. Uzayda ise uzunluk ve genişliğin yanında

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır?

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? 014 LYS GOMTRİ 1. y 1 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? parabolü ile. O merkezli çeyrek çemberde O deltoid olduğuna göre, taralı alan kaç birim karedir? O. d:y a b doğrusu -ekseni

Detaylı

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi TEST: 6 5. 1. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12 2. 6. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi aşağıdakilerden hangisidir? A) 7x+5y=35 B) 7x-5y=35

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

BASIN KİTAPÇIĞI ÖSYM

BASIN KİTAPÇIĞI ÖSYM BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Geometri Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 45 dakikadır. 3. Bu kitapç ktaki testlerde yer

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI

10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI 10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI KONULAR HACİM VE HACİM ÖLÇÜLERİ KAVRAMI HACİM ÖLÇÜLERİ BİRİMLERİ 1. Metreküpün Katları As Katları 2. Birimlerin

Detaylı

PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ

PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ 2011 PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ 15.12.2011 ĠÇĠNDEKĠLER ÜNİTE HAKKINDA GENEL BİLGİ... 3 KONULAR... 4 PİRAMİTLER... 4 KARE PİRAMİT... 5 EŞKENAR ÜÇGEN PİRAMİT... 6 DÜZGÜN DÖRTYÜZLÜ... 6 DÜZGÜN

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM UD VEKTÖRLER ve DĞRU DÜLEM. ir küpün ayrıtlarını taşıyan doğrular kaç farklı doğrultu oluşturur? ) ) ) D) 7 E) 8. ir düzgün altıgenin en uzun köşegeni ile aynı doğrultuda kaç farklı kenar vardır?. şağıdaki

Detaylı

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ.

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. DERS : GEOMETRİ KONU : ÜÇGEN EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. AMAN SIKILMAYIN NOT BİRAZ UZUN DA :-) Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. bir üçgen =

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR 7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR KONULAR 1. DOĞRUDA AÇILAR 2. Açı 3. Açının Düzlemde Ayırdığı Bölgeler 4. Açı Ölçü Birimleri 5. Ölçülerine Göre Açılar 6. Açıortay 7. Tümler Açı 8. Bütünler Açı 9. Ters

Detaylı

Geometrik Cisimlerin Hacimleri

Geometrik Cisimlerin Hacimleri 1 Ülkemizin kongre ve fuar merkezlerinden biri, Antalya daki Cam Piramit Kongre ve Fuar Merkezi dir. Renkli ısıcamlı uzay çatı ile örülerek piramit şeklinde inşa edilmiştir. 2 Şekildeki piramidin tabanı

Detaylı

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR 1. Bir üçgende ölçüsü büyük olan açının karşısındaki kenar uzunluğu, ölçüsü küçük olan açının karşısındaki kenar uzunluğundan daha büyüktür. ABC üçgeninde m(a) >

Detaylı

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2.

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2. LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS na) HAZIRLIK İÇİN Konu anlatımlı Örnek çözümlü Test çözümlü Test sorulu Deneme sınavlı GEOMETRİ-2 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

TEK ve ÇOK YÜZEYLİ KAPALI YÜZEYLER ve KATI CİSİMLER 1 TEST

TEK ve ÇOK YÜZEYLİ KAPALI YÜZEYLER ve KATI CİSİMLER 1 TEST ve Ç ÜLİ PLI ÜLR ve S I İSİMLR.. P(a,, ) ukarıdaki dik koordinat sisteminde (,, ) olduğuna göre, dikdörtgenler prizmasının hacmi kaç br tür? nalitik uzayda yukarıdaki dikdörtgenler prizmasının yüzey alanı

Detaylı

9. SINIF GEOMETRİ KONU ÖZETİ

9. SINIF GEOMETRİ KONU ÖZETİ 2012 9. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ Nokta: Herhangi bir büyüklüğü olmayan ve yer belirten geometrik terimdir.

Detaylı

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir.

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. ÜÇGENDE AÇILAR Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. Burada; A, B, C noktaları üçgenin köşeleri, [AB], [AC], [BC] doğru parçaları

Detaylı

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03 I 5. SINIF MATEMATİK VE İŞLEMLER 1.1. En çok dokuz basamaklı doğal sayıları okur ve yazar. 1.2. En çok dokuz basamaklı doğal sayıların bölüklerini, basamaklarını ve rakamların basamak değerlerini belirtir.

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar. azanım : ir üçgenin iç açılarının ölçüleri toplamının 80, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği. azanım

Detaylı

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI 9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI KONULAR DİK ÜÇGENLERDE METRİK BAĞINTILAR 1. Pythagoras (Pisagor) Bağıntısı. Euclides (öklit) Bağıntısı 3. Pisagor ve öklit Bağıntıları ile İlgili Problemler

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

GEOMETRİ SORU BANKASI KİTABI

GEOMETRİ SORU BANKASI KİTABI LİSE ÖĞRENCİLERİNİN ÜNİVERSİTE SINAVLARINA HAZIRLANMALARI İÇİN GEOMETRİ SORU BANKASI KİTABI HAZIRLAYAN Erol GEDİKLİ Matematik Öğretmeni SUNUŞ Sevgili öğrenciler! Bu kitap; hazırlandığınız üniversite sınavlarında,

Detaylı

TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 10. SINIF MATEMATİK DERSİ YILLIK PLANI

TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 10. SINIF MATEMATİK DERSİ YILLIK PLANI 9 Eylül- Eylül 0-07 TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 0. SINIF MATEMATİK DERSİ YILLIK PLANI Veri, Sayma ve Sayma. Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. Sıralama

Detaylı

PİRAMİT, KONİ VE KÜRENİN ALANLARI

PİRAMİT, KONİ VE KÜRENİN ALANLARI PİRAMİT, KNİ VE KÜRENİN ALANLARI KAZANIMLAR Piramit kavramı Piramitin yüzey alanı Kesik piramitin yüzey alanı Düzgün dörtyüzlü kavramı Piramitin dönme simetri açısı Koni kavramı Koninin yüzey alanı Kesik

Detaylı

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Ay 2016 2017 EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Hafta ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIMLAR EYLÜL 3 4 Sayılar ve İşlemler Çarpanlar

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

ÜNİTELENDİRME ŞEMASI

ÜNİTELENDİRME ŞEMASI LENDİRME ŞEMASI ÜNİTE DOĞRULAR VE AÇILAR. Aynı düzlemde olan üç doğrunun birbirine göre durumlarını belirler ve inşa eder.. Paralel iki doğrunun bir kesenle yaptığı açıların eş olanlarını ve bütünler olanlarını

Detaylı

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN Konu Anlatımlı Örnek Çözümlü Test Çözümlü Test Sorulu Karma Testli GEOMETRİ 1 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

10. SINIF GEOMETRİ KONU ÖZETİ

10. SINIF GEOMETRİ KONU ÖZETİ 2012 10. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: DÜZLEM GEOMETRİDE TEMEL ELEMANLAR VE İSPAT BİÇİMLERI Temel Postulatlar İspatlanamayan ve ispatına gerek duyulmayan ancak doğru

Detaylı

LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 16 HAZİRAN 2013 PAZAR

LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 16 HAZİRAN 2013 PAZAR T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 16 HAZİRAN 2013 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN E Y L Ü L ÜNİTE SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN 9.09.06/.09.06 6.09.06/0.09.06 Çarpanlar ve Katlar Çarpanlar ve Katlar 8... Verilen

Detaylı

10. SINIF MATEMATİK DERSİ ÖĞRETİM PROGRAMI

10. SINIF MATEMATİK DERSİ ÖĞRETİM PROGRAMI 10. SINIF MATEMATİK DERSİ ÖĞRETİM PROGRAMI Programın öğrencilerde geliştirmeyi hedeflediği becerilerle 10. sınıf matematik öğretim programı ilişkisi; Modelleme/Problem çözme Matematiksel Süreç Becerileri

Detaylı

çemberi ile O Çemberlerin birbirine göre durumlarını inceleyelim. İlk durumda alalım. olduğu takdirde O2K1

çemberi ile O Çemberlerin birbirine göre durumlarını inceleyelim. İlk durumda alalım. olduğu takdirde O2K1 . merkezli R yarıçaplı Ç çemberi ile merkezli R yarıçaplı ve noktasından geçen Ç çemberi veriliyor. Ç üzerinde, T Ç K T Ç, ve K K T K olacak şekilde bir T noktası alınıyor. Buna göre, uzunluklarından birinin

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

TEMEL SORU KİTAPÇIĞI ÖSYM

TEMEL SORU KİTAPÇIĞI ÖSYM 1-16062012-1-1161-1-00000000 TEMEL SORU KİTAPÇIĞI AÇIKLAMA 1. Bu kitapçıkta Lisans Yerleştirme Sınavı-1 Geometri Testi bulunmaktadır. 2. Bu test için verilen cevaplama süresi 45 dakikadır. 3. Bu testte

Detaylı

DERS BİLGİ FORMU. Zorunlu Ders X. Haftalık Ders Saati Okul Eğitimi Süresi

DERS BİLGİ FORMU. Zorunlu Ders X. Haftalık Ders Saati Okul Eğitimi Süresi DERSİN ADI MATEMATİK 1 BÖLÜM PROGRAM DÖNEMİ DERSİN DİLİ DERS KATEGORİSİ ÖN ŞARTLAR SÜRE VE DAĞILIMI KREDİ DERSİN AMACI ÖĞRENME ÇIKTILARI VE YETERLİKLER DERSİN İÇERİĞİ VE DAĞILIMI (MODÜLLER VE HAFTALARA

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS GNL KTILIMLI TÜRKİY GNLİ NLİN NM SINVI GMTRİ (M-TM) 1. u testte Geometri ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için arılan kısmına işaretleiniz. 3. u test için süreniz

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

GEOMETRİK KAVRAMLAR. 1. Nokta: Geometrinin en temel terimidir.. biçiminde gösterilir. Boyutu yoktur.

GEOMETRİK KAVRAMLAR. 1. Nokta: Geometrinin en temel terimidir.. biçiminde gösterilir. Boyutu yoktur. GEOMETRİK KAVRAMLAR Geometrinin temelini oluşturan bazı kavramları bir sıraya koymalıyız ki daha anlaşılabilir olsun. Geometride özel anlamı olan ifadelere geometrik terim denir. Nokta, doğru, açı, kare,

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran 2010. Geometri Soruları ve Çözümleri. ABC bir üçgen CA = CD. m(acd) = m(dcb) m(bac) = 80.

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran 2010. Geometri Soruları ve Çözümleri. ABC bir üçgen CA = CD. m(acd) = m(dcb) m(bac) = 80. Lisans Yerleştirme Sınavı (Lys ) / 9 Haziran 00 Geometri Soruları ve Çözümleri. ABC bir üçgen CA = CD m(acd) = m(dcb) m(bac) = 80 m(abc) = x Yukarıdaki verilere göre x kaç derecedir? A) 40 B) 45 C) 50

Detaylı

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom:

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom: Matematik A A ile B nin Kartezyen Çarpımı: Birinci bileşeni A dan, ikinci bileşeni B den alınarak elde edilen ikililerin kümesidir. A Kümesinden B nin Farkı: A kümesinin B kümesi ile ortak olmayan elemanlarından

Detaylı

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar.

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar. 7. SINIF KAZANIM VE AÇIKLAMALARI M.7.1. SAYILAR VE İŞLEMLER M.7.1.1. Tam Sayılarla Toplama, Çıkarma, Çarpma ve Bölme İşlemleri M.7.1.1.1. Tam sayılarla toplama ve çıkarma işlemlerini yapar; ilgili problemleri

Detaylı

DEVREK ANADOLU LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı

DEVREK ANADOLU LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı ELÜL TRİH/SÜRE HFT Eylül 0Eylül Eylül 7 Eylül STİ LNI 0-0 DEVREK NDOLU LİSESİ 9. SINIF MTEMTİK İ ILLIK PLNI lt de Temel Kavramlar de Temel Kavramlar de Temel Kavramlar de Temel Kavramlar de de de de. Küme

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-II ÇERÇEVE PROGRAMI. :Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-II ÇERÇEVE PROGRAMI. :Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-II ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu :Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM Danışmanlık

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar 1. Kazanım : ir üçgenin iç açılarının ölçüleri toplamının 180, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği.

Detaylı

EMİRDAĞ M.Z.SARI ANADOLU LİSESİ 2010-2011 EĞİTİM ÖĞRETİM YILI 9. SINIFLAR GEOMETRİ DERSİ ÜNİTELENDİRİLMİ YILLIK PLANI

EMİRDAĞ M.Z.SARI ANADOLU LİSESİ 2010-2011 EĞİTİM ÖĞRETİM YILI 9. SINIFLAR GEOMETRİ DERSİ ÜNİTELENDİRİLMİ YILLIK PLANI EMİRDAĞ M.Z.SARI ANADOLU LİSESİ 00-0 EĞİTİM ÖĞRETİM YILI 9. SINIFLAR GEOMETRİ DERSİ ÜNİTELENDİRİLMİ YILLIK PLANI ÜNİTE AY HAFTA SAAT KAZANIMLAR KONULAR ÖĞRENME ÖĞRETME YÖNTEM İ KAYNAK ARAÇ VE GEREÇKLER

Detaylı

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25 Yükseköğretime Geçiş Sınavı (Ygs) / Nisan 00 Matematik Soruları ve Çözümleri. 0, 0,0 0, işleminin sonucu kaçtır? A) B) 4 7 C) 0 8 D) E) Çözüm 0, 0,0 0, = 0,00 0,0 0, = 0,7 0, 000 7 7. = = 000 00 0... işleminin

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ OLİMPİK GEOMETRİ MATEMATİK OLİMPİYATLARINA HAZIRLIK KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ ÖMER GÜRLÜ ALTIN NOKTA YAYINEVİ İZMİR - 2014 İÇİNDEKİLER 1. TEMEL ÇİZİMLER... 7 2. ÜÇGENLER... 21 (Üçgende Açılar, Üçgende

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Eğitimde. Lise ve Ön Lisans Adayları İçin. konu anlatımlı

GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Eğitimde. Lise ve Ön Lisans Adayları İçin. konu anlatımlı KPSS Genel Yetenek Genel Kültür Lise ve Ön Lisans Adayları İçin GEOMETRİ KPSS 206 Pegem Akademi Sınav Komisyonu; 204 KPSS ye Pegem Yayınları ile hazırlanan adayların, 00'ün üzerinde soruyu kolaylıkla çözebildiğini

Detaylı

MATEMATİK SINAVI GEOMETRİ TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 GEOMETRİ TESTİ SORULARINI İÇERMEKTEDİR.

MATEMATİK SINAVI GEOMETRİ TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 GEOMETRİ TESTİ SORULARINI İÇERMEKTEDİR. Ö S Y M T.. YÜKSKÖĞRTİM KURULU ÖĞRNİ SÇM V YRLŞTİRM MRKZİ LİSNS YRLŞTİRM SINVI MTMTİK SINVI GOMTRİ TSTİ SORU KİTPÇIĞI 9 HZİRN 00 U SORU KİTPÇIĞI 9 HZİRN 00 LYS GOMTRİ TSTİ SORULRINI İÇRMKTİR. u testlerin

Detaylı

5. ÜNİTE AÇILAR, ÜÇGENLER VE MESLEKİ UYGULAMALARI

5. ÜNİTE AÇILAR, ÜÇGENLER VE MESLEKİ UYGULAMALARI 5. ÜNİTE ÇILR, ÜÇGENLER VE MESLEKİ UYGULMLRI açılar KONULR 1. çı, çı Türleri ve Mesleki Uygulamaları 2. Tümler ve ütünler çılar ÜÇGENLER 1. Üçgene it Temel ilgiler 2. Üçgen Türleri 3. Üçgenin Yardımcı

Detaylı

E.Ö.Y TEKİRDAĞ S.B LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı

E.Ö.Y TEKİRDAĞ S.B LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı A ELÜL 9 Eylül Eylül Eylül 0 Eylül 0-07 E.Ö. TEKİRDAĞ S.B LİSESİ 9. SINIF MATEMATİK İ ILLIK PLANI Temel Kavramlar Temel Kavramlar Temel Kavramlar Temel Kavramlar. Küme kavramını örneklerle açıklar ve kümeleri

Detaylı

Öğrenci Seçme Sınavı (Öss) / 9 Nisan Matematik Soruları ve Çözümleri = 10

Öğrenci Seçme Sınavı (Öss) / 9 Nisan Matematik Soruları ve Çözümleri = 10 Öğrenci Seçme Sınavı (Öss) / 9 Nisan 99 Matematik Soruları ve Çözümleri.. 0, 0, 0,44. işleminin sonucu kaçtır? A) 0, B) 0,4 C) D) 4 E) 0 Çözüm. 0, 0, 0,44. 00 0, 0 0,44 00.( )..( )..( ) 0, 00 0 00 00 44..

Detaylı

12.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ

12.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ .SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ A-TEST SAYILAR- TEMEL KAVRAMLAR A-TEST SAYILAR- POLİNOMLAR B-TEST POLİNOMLAR- PARALEL DOĞRULARDA VE ÜÇGENDE AÇILAR A- B TEST PARALEL

Detaylı

1. KURUMUN ADI : Özel Osmaniye Artı Bilim Temel Lisesi. 3. KURUCUNUN ADI : Sinerji Eğitimcilik San. Tic. Ltd. Şti./Celal DEMİR

1. KURUMUN ADI : Özel Osmaniye Artı Bilim Temel Lisesi. 3. KURUCUNUN ADI : Sinerji Eğitimcilik San. Tic. Ltd. Şti./Celal DEMİR 1. KURUMUN ADI : Özel Osmaniye Artı Bilim Temel Lisesi 2. KURUMUN ADRESİ : Cumhuriyet Mah. Akyar Cad. No:87/B 3. KURUCUNUN ADI : Sinerji Eğitimcilik San. Tic. Ltd. Şti./Celal DEMİR 4. PROGRAMIN ADI : MATEMATİK

Detaylı

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500 984 ÖYS. + + a a + a + a işleminin sonucu nedir? a A) +a B) a C) +a D) a E) +a a b ab. ifadesinin kısaltılmış biçimi a b + a b + ab a + b A) a b a b D) a b B) a b a + b E) ab(a-b) C) a b a + b A) 87 B)

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-V ÇERÇEVE PROGRAMI. 3. KURUCUNUN ADI :ARTI ÖZEL EĞİTİM ÖĞRETİM Danışmanlık Turizm Hizmetleri Ticaret İth. İhr. Ltd. Şti.

ÖZEL ÖĞRETİM KURSU MATEMATİK-V ÇERÇEVE PROGRAMI. 3. KURUCUNUN ADI :ARTI ÖZEL EĞİTİM ÖĞRETİM Danışmanlık Turizm Hizmetleri Ticaret İth. İhr. Ltd. Şti. ÖZEL ÖĞRETİM KURSU MATEMATİK-V ÇERÇEVE PROGRAMI 1. KURUMUN ADI : Tercih Özel Öğretim Kursu 2. KURUMUN ADRESİ : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA 3. KURUCUNUN ADI :ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

2003 ÖSS Soruları. işleminin sonucu kaçtır? ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A) 1 B) 7 C) 9 D) 11 E) 21

2003 ÖSS Soruları. işleminin sonucu kaçtır? ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A) 1 B) 7 C) 9 D) 11 E) 21 00 ÖSS Soruları,, 0,0. + + 0, 0, 0,00 işleminin sonucu kaçtır? ) ) 7 ) 9 ) ). ( y )( + y+ y ) ( y) c + m y ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? ) y ) + y ) y y + y ) ) + y y. (0,

Detaylı

1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4)

1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4) HAZİNE-1 Düzlemde sabit M(a,b) noktasından eşit uzaklıkta bulunan noktaların geometrik yeri, M merkezli R yarıçaplı çemberdir. HAZİNE-2 O(0,0) merkezli, R yarıçaplı çemberin denklemi; x 2 +y 2 =R 2 dir.

Detaylı

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm:

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm: EKSTREMUM PROBLEMLERİ Ekstremum Problemleri Bu tür problemlerde bir büyüklüğün (çokluğun alabileceği en büyük (maksimum değer ya da en küçük (minimum değer bulunmak istenir. İstenen çokluk bir değişkenin

Detaylı

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º ğlence başlıyor yor 1 º 0º üçgeninin alanı kaç birim karedir? ) ) 9 LN SI 1 LN SI 1 )1 ) üçgeninin alanı kaç birim karedir? üçgeninin alanı kaç birim karedir? ) ) ) ) ) ) üçgen, = birim, = birim, m() =

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

12. SINIF GEOMETRİ KONU ÖZETİ

12. SINIF GEOMETRİ KONU ÖZETİ 2012 12. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni ÜNİTE 1: UZAYDA VEKTÖRLER Hepsi birden aynı düzlemde olmayan tüm noktaların kümesine uzay denir. Uzayda farklı iki noktadan bir ve yalnız

Detaylı

T.C. MİLLİ EĞİTİM BAKANLIĞI ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK V BİLİM GRUBU ÇERÇEVE PROGRAMI

T.C. MİLLİ EĞİTİM BAKANLIĞI ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK V BİLİM GRUBU ÇERÇEVE PROGRAMI T.C. MİLLİ EĞİTİM BAKANLIĞI ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK V BİLİM GRUBU ÇERÇEVE PROGRAMI 1 1. KURUMUN ADI : Özel Çorum Ada Özel Öğretim Kursu 2. KURUMUN ADRESİ : Yavruturna mah. Kavukçu sok.

Detaylı

Katı Cisimlerin Yü zey Alanı Ve Hacmi

Katı Cisimlerin Yü zey Alanı Ve Hacmi Katı Cisimlerin Yü zey Alanı Ve Hacmi Dikdörtgenler Prizması Hacmi ve Yüzey Alanı Paralelkenar Prizmanın Hacmi Kürenin Hacmi ve Kürenin Yüzey Alanı Kürenin temel elemanları; bir merkez noktası, bu merkez

Detaylı

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD LYS 1 / OMTRİ OMTRİ TSTİ 1. u testte 0 soru vardır. 2. u testin cevaplanması için tavsiye olunan süre 60 dakikadır. 1.. bir eşkenar üçgen 1 4 2 5, üçgeninin ağırlık merkezi = x irim karelere bölünmüş düzlemde

Detaylı

TEST. Dik Prizmalar. 1. Ayrıtlarının uzunlukları 10 cm, 12 cm ve 15 cm. 2. Ayrıtlarının uzunlukları toplamı 120 cm olan küp 5. A B 6.

TEST. Dik Prizmalar. 1. Ayrıtlarının uzunlukları 10 cm, 12 cm ve 15 cm. 2. Ayrıtlarının uzunlukları toplamı 120 cm olan küp 5. A B 6. ik Prizmalar 8. Sınıf Matematik Soru ankası TEST 75 1. yrıtlarının uzunlukları, 1 cm ve 1 olan dikdörtgenler prizması şeklindeki bir kolinin bütün yüzeyleri kağıt ile kaplanacaktır. 4. 8 cm 1 una göre,

Detaylı

TRİGONOMETRİ Test -1

TRİGONOMETRİ Test -1 TRİGONOMETRİ Test -. y. y K O O. nalitik düzlemde verilen O merkezli birim çemberde hangi noktanın koordinatları (0, ) dir? (O noktası orijindir.) O y [OK] açıortay olmak üzere, nalitik düzlemde verilen

Detaylı

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI -6.09.0 DÖNÜŞÜM Sİ 5-9.09.0 ÖRÜNTÜ VE SÜSLEMELER SİDRE 000 ORTAOKULU 0 05 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI,. Doğru, çokgen ve çember modellerinden örüntüler

Detaylı

1990 ÖYS. 1. si 13 olan si kaçtır? A) 91 B) 84 C) 72 D) 60 E) 52 A) 65 B) 63 C) 56 D) 54 E) 45

1990 ÖYS. 1. si 13 olan si kaçtır? A) 91 B) 84 C) 72 D) 60 E) 52 A) 65 B) 63 C) 56 D) 54 E) 45 990 ÖYS. si olan si kaçtır? A) 9 B) 8 C) D) 60 E) 5. Ağırlıkça %0 si şeker olan 0 kg lık un-şeker karışımına 8 kg daha un eklendiğine göre, yeni şeker (kg) karışımın oranı kaçtır? un (kg) A) B) C) D) E)

Detaylı

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º Geometri Çözmek ir yrıcal calıkt ktır ÇI I ve UZUNLUK 1? m()=, m()=, m()= 7º merkezli çemberde m()= 7º Verilenlere göre açısının ölçüsü kaç derecedir? ) 10 ) 1 ) 10 ) 1 ) 17 Verilenlere göre açısının ölçüsü

Detaylı

GEOMETR 7 ÜN TE IV KON

GEOMETR 7 ÜN TE IV KON ÜN TE IV KON 1. KON K YÜZEY VE TANIMLAR 2. KON a. Tan m b. Dik Dairesel Koni I. Tan mlar II. Dik Dairesel Koninin Özelikleri III. Dönel Koni c. E ik Dairesel Koni 3. D K DA RESEL KON N N ALANI 4. DA RESEL

Detaylı

Y ll k Plan MATEMAT K 8. SINIF Ö RETMEN KILAVUZ K TABI

Y ll k Plan MATEMAT K 8. SINIF Ö RETMEN KILAVUZ K TABI ÜNİTELENDİRİLMİŞ YILLIK PLAN MATEMAT K 8. SINIF Ö RETMEN KILAVUZ K TABI 9 SINIF : 8 LEND R LM fi Y I L L I K P L A N ÖRÜNTÜ VE SÜSLEMELER. Do ru, çokgen ve çember modellerinden örüntüler infla eder, çizer

Detaylı

ÜÇ BOYUTLU CİSİMLER-1

ÜÇ BOYUTLU CİSİMLER-1 ÜÇ BOYUTLU CİSİMLER-1 PRİZMA 1. Bir dikdörtgenler prizmasının boyutları 3,5,7 ile orantılıdır. Bu prizmanın tüm alanı 568 cm 2 olduğuna göre hacmi kaç cm 3 dür? A) 440 B) 540 C) 840 D) 740 E) 640 6. Bir

Detaylı

Page 1. İz Düşüm Çeşitleri ve Metotları

Page 1. İz Düşüm Çeşitleri ve Metotları 4. İz Düşümler TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Genel Bilgi Kullandığımız bir çok eşya ve makineyi veya bunlara ait parçaların imal edilebilmesi için şekillerini ifade eden resimlerinin

Detaylı

EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI 1.DÖNEM AY HAFTA TARİH KAZANIM AÇIKLAMA

EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI 1.DÖNEM AY HAFTA TARİH KAZANIM AÇIKLAMA 06-07 EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI.DÖNEM EYLÜL EKİM.Hafta 9-.Hafta 6-0 K)Doğal sayılar, kesirler, ondalık sayılar ve yüzdelerle hesaplamaları

Detaylı

GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan başlayarak gezimize çıkalım.

GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan başlayarak gezimize çıkalım. GEOMETRİ Geometriyi seven veya sevmeyenler için farklı bir bakış açısı. Gerçeğin kilidini açacak anahtarın Aritmetik ve Geometri olduğunu söyleyen ve Tanrının da bir Matematikçi olduğuna inanan ünlü düşünür

Detaylı

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56 , 006 MC Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Türev TEST I 7. f() = sin cos fonksionunun. f()= sin( + )cos( ) için f'() nin eşiti nedir? A) B) C) 0 D) E) için erel minimum değeri nedir? A) B)

Detaylı

ÇEMBER KARMA / TEST-1

ÇEMBER KARMA / TEST-1 ÇMR RM / S-... Verilenlere göre, m( ) ) ) 0 ) ) 0 ) Verilenlere göre, m(g ) ) ) ) 6 ) 0 ) 60 0 0 G 0 ) ) ) ) ) 8 L 0 [] [] = {} m( ) = 0 m() = 0 ve üçgenlerinin çevrel çemberi m( ) = 0 m() = 0 m() = üçgen

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10 LİSNS YRLŞTİRM SINVI- MTMTİK-GOMTRİ SINVI MTMTİK TSTİ SORU KİTPÇIĞI 0 U SORU KİTPÇIĞI LYS- MTMTİK TSTİ SORULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik

Detaylı

DOĞRUNUN ANALİTİK İNCELEMESİ

DOĞRUNUN ANALİTİK İNCELEMESİ Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen

Detaylı

3. Düzlem: Her yönde sonsuza uzandığı kabul edilir. Sayılmaz çoğunlukta doğru ve noktalardan oluşmuştur.

3. Düzlem: Her yönde sonsuza uzandığı kabul edilir. Sayılmaz çoğunlukta doğru ve noktalardan oluşmuştur. DERS : GEOMETRİ KONU : GEOMETRİK KAVRAMLAR Geometrinin temelinde her soruda karşılaşacağımız terimler kavramlar vardır bu derste onları işleyeceğiz. Geometride özel anlamı olan ifadelere geometrik terim

Detaylı

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI:

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: Bu formun ç kt s n al p ço altarak ö rencilerinizin ücretsiz Morpa Kampüs yarıyıl tatili üyeli inden yararlanmalar n sa layabilirsiniz.! ISBN NUMARASI: 84354975 ISBN NUMARASI: 84354975! ISBN NUMARASI:

Detaylı

İç bükey Dış bükey çokgen

İç bükey Dış bükey çokgen Çokgen Çokgensel bölge İç bükey Dış bükey çokgen Köşeleri: Kenarları: İç açıları: Dış açıları: Köşegenleri: Çokgenin temel elemanları Kenar Köşegen ilişkisi Bir köşe belirleyiniz ve belirlediğiniz köşeden

Detaylı

Öğrenci Seçme Sınavı (Öss) / 19 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 19 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 9 Nisan 99 Matematik Soruları ve Çözümleri. Üç basamaklı bir sayının iki basamaklı bir sayıyla çarpımı en az kaç basamaklı bir sayı olur? A) B) C) D) 6 E) 7 Çözüm I. Yol basamaklı

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-I ÇERÇEVE PROGRAMI. :Kesikkapı Mah. Atatürk Cad.No.79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-I ÇERÇEVE PROGRAMI. :Kesikkapı Mah. Atatürk Cad.No.79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-I ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu :Kesikkapı Mah. Atatürk Cad.No.79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM Danışmanlık

Detaylı