Bölüm: Matlab e Giriş.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bölüm: Matlab e Giriş."

Transkript

1 1.Bölüm: Matlab e Giriş. Aşağıdaki problemleri MATLAB komut penceresinde komut yazarak çözünüz. Aşağıdaki formüllerde (.) ondalıklı sayı için, ( ) çarpma işlemi için kullanılmıştır ln e 4.4 log cos 5π sin 7π + tan π 6 ln x değişkenini tanımlayın ve x=9.75 iken 4x 3 14x 6.3x + 7.3=? e 3x 3 =? x ve z değişkenlerini tanımlayın ve x=5.3 ve z=7.8 iken xz x z + 14x 0.8z =? 9. a,b,c ve d değişkenlerini tanımlayın; a=-18., b=6.4, c=a/b, d=0.5 (cb+a) iken; a + b d + c a + d abc =? 10. Bir kürenin yarıçapı r=15 cm dir. Buna göre; a. Küre ile aynı yüzey alanına sahip kübün bir kenar uzunluğunu bulunuz. b. Küre ile aynı hacme sahip kübün bir kenar uzunluğunu bulunuz. Yüzey Alan Hacim Küre 4πr 4 3 πr3 Küp 6a a Bir üçgende a=1 cm, b=45 cm ve c=60 cm dir. a. Kosinüs teoremine göre γ açısını hesaplayınız. b. Sinüs teoremine göre α ve β açılarını hesaplayınız. Kosinüs teoremi c = a + b abcosγ Bilgisayar Programlama, Matlab Uygulamaları, Öğr.Gör.Feridun Karakoç,

2 a Sinüs teoremi sinα = b sinβ = c sin γ 1. (x 0,y 0) noktasının Ax+By+c=0 doğrusuna dik uzaklığı d, aşağıdaki formülle hesaplanmaktadır. d = Ax 0 + By 0 + c A + B Buna göre (3,-4) noktasının -x-7y-10=0 doğrusuna uzaklığını bulunuz. 13. Aşağıda görülen trigonometrik denklemlerde x=7 değeri için, eşitliğin sağ ve sol tarafın birbirine eşit olduğunu doğrulayınız. a. tan3x = 3tanx tan 3 x 1 3tan x b. tan x = sinx 1+cosx.Bölüm: Dizilerin Oluşturulması. Tek Boyutlu ve İki Boyutlu Diziler. 1. 6, 8, 81, e.5, 65, sin(π/3) elemanlara sahip satır vektörünü oluşturun.. 44, 9,In(51), 3, 0.1, 5tan(5 ) elemanlarına sahip olan sütun vektörü oluşturun. 3. İlk elemanı 0, son elemanı 4, artış miktarı 3 olan satır vektörü oluşturun.(0,3,6, 4) 4. İlk elemanı 18, son elemanı -, azalma miktarı -4 olan sütun vektörü oluşturun.(bir sütun vektör bir satır vektörün devriği ile oluşturulabilir) 5. İlk elemanı 5 ve son elemanı 61 olan eşit aralıklı 16 elemana sahip satır vektörünü oluşturun. 6. İlk elemanı 3 ve son elemanı -36 olan eşit aralıklı 14 elemana sahip sütun vektörünü oluşturun. 7. Aşağıdaki matrisi, sabit aralıklı ve/veya linspace komutu ile vektör oluşturmada anlatılanları kullanarak oluşturun. B = A matrisini oluşturun. A = a) A nın ilk satırdaki elemanları içeren va isimli beş elemanlı satır vektörünü oluşturun. b) A nın üçüncü sütunundaki elemanları içeren vb isimli üç elemanlı satır vektörü oluşturun. c) A nın dördüncü sütunu ve A nın ikinci satır elemanlarını içeren vc isimli sekiz elemanlı satır vektörü oluşturun. d) A nın birinci ve beşinci sütunundaki elemanları içeren vd isimli altı elemanlı satır vektörünü oluşturun. Not: (Şıklarda istenen vektörleri : kullanarak oluşturunuz) MATLAB de bir M matrisi tanımlanmıştır. M = Aşağıdaki komutlar çalıştırıldığında ekranda ne görüleceğini kağıt üzerinde gösteriniz. a) A=M ( [1, 3 ], [, 4] ) b) B=M (:, [1, 4 : 6] ) C=M ([, 3], :) Bilgisayar Programlama, Matlab Uygulamaları, Öğr.Gör.Feridun Karakoç,

3 3.Bölüm: Dizilerde Matematiksel İşlemler 1. y = x 5x+4 x fonksiyonu için eleman elemana işlemler kullanarak x=-,-1,0,1,,3,4,5 değerleri için y değerlerini hesaplayın.. y = 5 t t+ + 8 fonksiyonu için eleman elemana işlemler kullanarak 0.5 t+1 t=0,1,,3,4,5,6,7,8 değerleri için y değerlerini hesaplayın. 3. Yere doğru serbest bırakılan bir top her zıpladıktan sonra daha düşük bir yüksekliğe ulaşarak, birçok kez geri sıçrar. Top yere çarptıktan sonra, çarpma hızının 0.85 i kadar hızla yükselir. h yüksekliğinden bırakıldıktan sonra topun çarpma hızı v= gh ile hesaplanır. Burada g=9.81 m/s olarak yerçekimi ivmesidir. Bir topun ulşacağı maks yükseklik h maks = v ile hesaplanır. Buradaki v g hızı çarpmadan sonraki hızdır. m yükseklikten bırakılan bir top düşünün. Topun ilk 8 sıçramadan sonra ulaştığı yüksekliğini belirleyin. (Önce topun yere çarptığı andaki hızını hesaplayın. Sonra sıçrama sayısı olarak n=1,, 8 elemanlarına sahip bir vektör oluşturun. Sıçrama sayısının bir fonksiyonu olarak h max için bir formül elde edin. Daha sonra eleman elemana işlemleri kullanarak her n değeri için h max değerini bulan ve aşağıda görüldüğü gibi ekrana yazdıran matlab komutlarını yazınız) Problem 3 Ekran çıktısı 1.satırda n; sıçrama sayısı ve.satırda hmax;sıçrama yüksekliği 4. x ve y vektörlerini x=,4,6,8,10 ve y=3,6,9,1,15 olarak tanımlayın. Ardından eleman elemana hesaplamaları kullanarak ve aşağıdaki formülü dikkate alarak z yi hesaplayın z = y x + x + y y x x 5. Aşağıdaki üç matrisi oluşturun: A = B = C = a) A+B ve B+A işlemlerini yapın. Sonuçları irdeleyin. b) A+(B+C) ve (A+B)+C işlemlerini yapın. Sonuçları irdeleyin. c) 5(A+C) ve 5A+5C işlemlerini yapın. Sonuçları irdeleyin. d) A(B+C) ve AB+AC işlemlerini yapın. Sonuçları irdeleyin. Bilgisayar Programlama, Matlab Uygulamaları, Öğr.Gör.Feridun Karakoç,

4 6. Aşağıdaki üç lineer denklemi çözünüz. 7. Aşağıdaki beş lineer denklemi çözünüz. 4.Bölüm: Matlabde M-dosya ile Programlama 1. input komutu ile kullanıcıdan klavye yoluyla aldığı sayının geometrik ortalamasını hesaplayan ve bu ortalamayı fprintf komutuyla ekrana yazdıran bir matlab programını b4u1.m adındaki m-. input komutu ile kullanıcıdan klavye yoluyla aldığı 3 sayının aritmetik ortalamasını hesaplayan ve bu ortalamayı fprintf komutuyla ekrana yazdıran bir matlab programını b4u.m adındaki m- 3. input komutu ile kullanıcıdan klavye yoluyla aldığı 4 sayının harmonik ortalamasını hesaplayan ve bu ortalamayı fprintf komutuyla ekrana yazdıran bir matlab programını b4u3.m adındaki m- 4. input komutu ile kullanıcıdan klavye yoluyla aldığı Celsius derece( C) cinsinden bir sıcaklık değerini Fahrenhayt derece(( F) değerine dönüştüren ve bu değeri fprintf komutuyla ekrana yazdıran bir matlab programını b4u4.m adındaki m- 5. Uygulama 4 teki program içinde Celcius dereceyi (1-100 C) Fahrenhayt dereceye dönüştüren ve ekrana tablo olarak yazdıran bir matlab programını b4u5.m adındaki m- Fahrenhayt=1.8*Celsius+3 6. input komutu ile kullanıcıdan klavye yoluyla aldığı bir dairenin yarıçap değerini kullanarak bu dairenin çevresini ve alanını hesaplayan ve bu değerleri fprintf komutuyla ekrana yazdıran bir matlab programını b4u6.m adındaki m- 7. input komutu ile kullanıcıdan klavye yoluyla aldığı 3 kenar uzunluk değerini kullanarak bu üçgenin alanını Heron formülü ile hesaplayan ve bu alanı fprintf komutuyla ekrana yazdıran bir matlab programını b4u7.m adındaki m- u = (a + b + c) Alan = u u a u b (u c) a,b,c: üçgenin kenarları Bilgisayar Programlama, Matlab Uygulamaları, Öğr.Gör.Feridun Karakoç,

5 8. Taban daireleri yarıçapları arasında R =1.5R 1 oranı olan kesik koni şeklindeki kâğıt bardak, 50 cm 3 hacme sahip olacak şekilde tasarlanmıştır. 5,6,7,8,9,10 mm yüksekliğe sahip kağıt bardaklar için R 1, R ve yüzey alanı S yi hesaplayan ve fprintf komutuyla ekrana yazdıran bir matlab programını b4u8.m adındaki m- Kabın hacmi V = 1 3 πh R 1 + R + R 1 R Kabın yüzey alanı S = π R 1 + R R R 1 + h + πr 1 9. Duran bir araç, a sabit ivmesi ile ivmelenerek hızlanırsa aracın hızı ve aldığı yol zamanın bir fonksiyonu olarak; v t = at ve d t = 1 at şeklinde hesaplanır. Buna göre 1.55 m/s ivme ile harekete başlayan bir aracın ilk 10 saniyede her saniyedeki hızını(v) ve katettiği yolu (d) bulan program yazınız. Sonuçlar 3 sütun şeklinde 1.sütunda zaman,.sütunda yol(d) ve 3.sütunda hız olacak şekilde görüntüleyin.(sonuçları sütun şeklinde görmek için değişkenler matris formunda yazılmalı ve fprint komutu aşağıdaki gibi yazılmalıdır. 10. Metre olarak boy(örneğin 1.70) ve kg olarak ağırlığı(örneğin 85) verilen bir insanın beden kütle endeksini hesaplayan ve ekranda BKE yi gösteren programı yazınız. Beden Kütle endeksi (BKE) şu şekilde hesaplanır: BKE = ağırlık boy : Zayıf : Normal : Fazla Kilolu : Şişman (Obez) - I. Sınıf : Şişman (Obez) - II. Sınıf 45.0 ve üstü: Aşırı Şişman (Aşırı Obez) - III. Sınıf Bilgisayar Programlama, Matlab Uygulamaları, Öğr.Gör.Feridun Karakoç,

BİLGİSAYAR PROGRAMLAMA DERSİ

BİLGİSAYAR PROGRAMLAMA DERSİ BİLGİSAYAR PROGRAMLAMA DERSİ 4. DERS NOTU Konu: M-dosya yapısı ve Kontrol Yapıları Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU 1 M-Dosya Yapısı Bir senaryo dosyası (script file) özel bir görevi yerine getirmek

Detaylı

BİLGİSAYAR PROGRAMLAMA DERSİ

BİLGİSAYAR PROGRAMLAMA DERSİ BİLGİSAYAR PROGRAMLAMA DERSİ Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü DERS NOTU 3 KONU: M-dosya yapısı ve Kontrol Yapıları M-Dosya Yapısı

Detaylı

MATLAB. Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI

MATLAB. Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI MATLAB Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI İçerik Matlab Nedir? Matlab ın Kullanım Alanları Matlab Açılış Ekranı Matlab Programı İle Temel İşlemlerin Gerçekleştirilmesi Vektör İşlemleri

Detaylı

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1 Test 6. Teorem: a R ve a ise a dir. Kanıt: Varsayalım ki, olsun. a a olduğundan a 0 dır. Bu durumda, eşitsizliğin yönü değişmeden, a a olur. Demek ki, a a dir. Fakat bu durum a hipotezi ile çelişmektedir.

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

Matlab da Dizi ve Matrisler. Mustafa Coşar

Matlab da Dizi ve Matrisler. Mustafa Coşar Matlab da Dizi ve Matrisler Mustafa Coşar MATLAB Değişkenleri Matlab da değişkenler; skaler, dizi(vektör), matris veya metin (string) türünde olabilirler. Örnek olarak: a=1; b=-3.2e3; c=22/5; metin= mustafa

Detaylı

Bilgisayar Programlama

Bilgisayar Programlama Bilgisayar Programlama M Dosya Yapısı Kontrol Yapıları Doç. Dr. İrfan KAYMAZ Matlab Ders Notları M-dosyası Genel tanıtımı : Bir senaryo dosyası (script file) özel bir görevi yerine getirmek için gerekli

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

MATLAB. Fen ve Mühendislik Uygulamaları ile. Doç. Dr. M. Akif CEVİZ. MATLAB de Dizi Kavramı

MATLAB. Fen ve Mühendislik Uygulamaları ile. Doç. Dr. M. Akif CEVİZ. MATLAB de Dizi Kavramı Fen ve Mühislik Uygulamaları ile MATLAB Doç. Dr. M. Akif CEVİZ Atatürk Üniversitesi Mühislik Fakültesi Makine Mühisliği Bölümü MATLAB de Diziler; Vektörler ve MAtrisler Skaler, Dizi, Matrix Sklaer, bir

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

BİLGİSAYAR PROGRAMLAMA MATLAB

BİLGİSAYAR PROGRAMLAMA MATLAB BİLGİSAYAR PROGRAMLAMA MATLAB Arş. Gör. Ahmet ARDAHANLI Kafkas Üniversitesi Mühendislik Fakültesi Bu hafta? 1. Matlab ve Programlama Ortamı 2. Matlab Komut Penceresi 3. Matlab de değişken tanımlama 4.

Detaylı

1. GİRİŞ 1.1. GENEL BAKIŞ 1.2. KULLANICI ARAYÜZÜ

1. GİRİŞ 1.1. GENEL BAKIŞ 1.2. KULLANICI ARAYÜZÜ 1. GİRİŞ 1.1. GENEL BAKIŞ MATLAB (MATrix LABoratory) sayısal hesaplama ve dördüncü nesil programlama dilidir. MathWorks firması tarafından geliştiriliyor. MATLAB; - matris işlenmesine, - fonksiyonlar ve

Detaylı

disp VEYA fprintf KOMUTLARIYLA EKRANA MESAJ YAZDIRMA

disp VEYA fprintf KOMUTLARIYLA EKRANA MESAJ YAZDIRMA MATLAB 3.DERS disp VEYA fprintf KOMUTLARIYLA EKRANA MESAJ YAZDIRMA Daha önceki derslerimizde input komutu ile klavye üzerinden MATLAB programlama ortamına veri girmeyi öğrenmiştik. Bu dersimizde ise disp

Detaylı

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500 984 ÖYS. + + a a + a + a işleminin sonucu nedir? a A) +a B) a C) +a D) a E) +a a b ab. ifadesinin kısaltılmış biçimi a b + a b + ab a + b A) a b a b D) a b B) a b a + b E) ab(a-b) C) a b a + b A) 87 B)

Detaylı

V = g. t Y = ½ gt 2 V = 2gh. Serbest Düşme NOT:

V = g. t Y = ½ gt 2 V = 2gh. Serbest Düşme NOT: Havada serbest bırakılan cisimlerin aşağı doğru düşmesi etrafımızda her zaman gördüğümüz bir olaydır. Bu düşme hareketleri, cisimleri yerin merkezine doğru çeken bir kuvvetin varlığını gösterir. Daha önceki

Detaylı

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

Bilgisayar Programlama MATLAB

Bilgisayar Programlama MATLAB What is a computer??? Bilgisayar Programlama MATLAB Prof. Dr. İrfan KAYMAZ What Konular is a computer??? MATLAB ortamının tanıtımı Matlab sistemi (ara yüzey tanıtımı) a) Geliştirme ortamı b) Komut penceresi

Detaylı

1989 ÖYS. olduğuna göre a-b kaçtır? A) 2 B) 2 C) 2 2 D) 2 2 E) 4

1989 ÖYS. olduğuna göre a-b kaçtır? A) 2 B) 2 C) 2 2 D) 2 2 E) 4 989 ÖYS. a a a b 8 olduğuna göre a-b kaçtır? C). a ile b nin aritmetik ortalaması 5 tir. a ile geometrik ortalaması 0, b ile geometrik ortalaması 0 olan sayı nedir? 0 C) 8 ise a+b+d toplamı ne-. a+b+c=d

Detaylı

Bilgisayar Programlama MATLAB

Bilgisayar Programlama MATLAB What is a computer??? Bilgisayar Programlama MATLAB Diziler Vektörler Matrisler Prof. Dr. İrfan KAYMAZ What Diz kavramı is a computer??? Bir değişken içerisinde birden çok veri numaralandırılarak tek bir

Detaylı

Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL. Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK

Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL. Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK MATLAB de Bilgisayar Programlama Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK MATLAB de Karakter Tipinde Değişken Girişi: k=input( Açıklama: kl '); Komutu ile

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL. Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK

Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL. Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK MATLAB de Bilgisayar Programlama Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK ALT PROGRAMLAR:M-Fonksiyon Yapısı function cikis_ifadesi1, 2,, n =fonksiyon_adi

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. bir üçgen =

Detaylı

Fen ve Mühendislik Uygulamaları ile MATLAB

Fen ve Mühendislik Uygulamaları ile MATLAB Fen ve Mühendislik Uygulamaları ile MATLAB Doç. Dr. M. Akif CEVİZ Atatürk Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü M-Dosyaları Kontrol İfadeleri - İlişkisel ve Mantıksal Operatörler

Detaylı

BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI. Kafkas Üniversitesi Mühendislik Fakültesi

BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI. Kafkas Üniversitesi Mühendislik Fakültesi BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI Kafkas Üniversitesi Mühendislik Fakültesi Bu hafta? İki değişken değerinin yer değiştirilmesi (swapping) selection sort sıralama algoritması bubble sort

Detaylı

I=[1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1] % 4x4 lük birim matris

I=[1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1] % 4x4 lük birim matris Değişken Türleri ve Atamalar - Marislerin Değişken Olarak Atanması Matrislerin birden fazla elamanları olduğundan herhangi bir satır herhangi bir sütundaki elamanı ayrı ayrı tanımlanmak yerine [ ] sembolü

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

PROGRAMINIZI ANĠ SONLANDIRMAK ĠSTEDĠĞĠNĠZ YER BĠR DÖNGÜNÜN ĠÇĠ ĠSE NE OLUR?????????

PROGRAMINIZI ANĠ SONLANDIRMAK ĠSTEDĠĞĠNĠZ YER BĠR DÖNGÜNÜN ĠÇĠ ĠSE NE OLUR????????? MATLAB 4.DERS return Komutu Yazdığınız MATLAB programını herhangi bir anda (programın normalde sona erdiği noktanın haricinde - early termination) sona erdirmek için return komutunu kullanabilirsiniz.

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

MATEMATÝK GEOMETRÝ DENEMELERÝ

MATEMATÝK GEOMETRÝ DENEMELERÝ NM 1 MTMTÝK OMTRÝ NMLRÝ 1. o o = 75 ve y = 5 olduğuna göre,. 3 + 8 = 0 sin( y)cos( + y) + sin( + y)cos( y) sin( y)sin( + y) cos( + y)cos( y) denkleminin kaç tane farklı reel kökü vardır? ifadesinin eşiti

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

Bilgisayar Programlama MATLAB

Bilgisayar Programlama MATLAB Bilgisayar Programlama MATLAB MATLAB de Diziler Doç. Dr. İrfan KAYMAZ MATLAB Ders Notları PROGRAMLAMADA DİZİ KAVRAMI Bir değişken içerisinde birden çok veri numaralandırılarak tek bir isim altında saklanmasına

Detaylı

PROGRAMLAMAYA GİRİŞ VE ALGORİTMA «YTÜROK» EĞİTMEN:REHA ÖZGÜR ŞİMŞEK

PROGRAMLAMAYA GİRİŞ VE ALGORİTMA «YTÜROK» EĞİTMEN:REHA ÖZGÜR ŞİMŞEK PROGRAMLAMAYA GİRİŞ VE ALGORİTMA «YTÜROK» EĞİTMEN:REHA ÖZGÜR ŞİMŞEK Giriş-Tanımlamalar Program Nedir? Tanımlanmış bir problemi bilgisayar ortamında çözen ürüne program denir. Programlama Nedir? Tanımlanmış

Detaylı

Trigonometrik Fonksiyonlar

Trigonometrik Fonksiyonlar Trigonometrik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 6 Amaçlar Bu üniteyi çalıştıktan sonra; açı kavramını hatırlayacak, açıların derece ölçümünü radyan ölçümüne ve tersine çevirebilecek, trigonometrik

Detaylı

Fen ve Mühendislik Uygulamalarında MATLAB

Fen ve Mühendislik Uygulamalarında MATLAB Fen ve Mühendislik Uygulamalarında MATLAB Dosya Yönetimi Fonksiyon Yapısı Doç. Dr. İrfan KAYMAZ MATLAB Ders Notları DOSYA YÖNETİMİ Şu ana kadar bir programda hesaplanan veya elde edilen veriler RAM de

Detaylı

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUVARI DENEY RAPORU

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUVARI DENEY RAPORU Adı-Soyadı : ÖĞRENCİNİN Numarası : İmza :. Bölümü : Deney No Deney Adı Bir Boyutta Hareket: Konum, Hız ve İvme Deneyin Amacı Deneyin Teorisi (Kendi cümleleriniz ile yazınız) (0 P) T.C. SAKARYA ÜNİVERSİTESİ

Detaylı

ÇATI MAKASINA GELEN YÜKLER

ÇATI MAKASINA GELEN YÜKLER ÇATI MAKASINA GELEN YÜKLER Bir yapıyı dış etkilere karşı koruyan taşıyıcı sisteme çatı denir. Belirli aralıklarla yerleştirilen çatı makaslarının, yatay taşıyıcı eleman olan aşıklarla birleştirilmesi ile

Detaylı

BİLGİSAYAR PROGRAMLAMA DERSİ

BİLGİSAYAR PROGRAMLAMA DERSİ BİLGİSAYAR PROGRAMLAMA DERSİ 5. DERS NOTU Konu: Döngü Yapıları Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU DÖNGÜ YAPILARI Birçok uygulamada bazı işlemlerin tekrar tekrar gerçekleştirilmesi gerekir. Bizlere bu

Detaylı

BİLGİSAYAR PROGRAMLAMA DERSİ

BİLGİSAYAR PROGRAMLAMA DERSİ BİLGİSAYAR PROGRAMLAMA DERSİ 3. DERS NOTU Konu: MATLAB de Temel İşlemler Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU 1 MATLAB (Matrix Laboratory) sayısal hesaplama dilidir. MathWorks firması tarafından geliştirilmiş

Detaylı

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Bir Matrisin Rankı A m n matrisinin determinantı sıfırdan farklı olan alt kare matrislerinin boyutlarının en büyüğüne A matrisinin rankı denir. rank(a)

Detaylı

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II)

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II) 7.2 Fonksiyon ve Fonksiyon Tanımları (I) Tanım kümesindeki her elemanın değer kümesinde bir ve yalnız bir görüntüsü varsa, tanım kümesinden değer kümesine olan bağıntıya fonksiyon denir. Fonksiyonu f ile

Detaylı

Projeksiyon Kavramı. Meridyenler ve paraleller eşitliklere göre düzleme aktarılır. 1) m : harita üzerinde paralelleri çizen yarıçap

Projeksiyon Kavramı. Meridyenler ve paraleller eşitliklere göre düzleme aktarılır. 1) m : harita üzerinde paralelleri çizen yarıçap Projeksiyon Kavramı Meridyenler ve paraleller eşitliklere göre düzleme aktarılır. 1) m : harita üzerinde paralelleri çizen yarıçap ) α: harita üzerinde meridyenler arasındaki açıyı ifade eder. m = α =

Detaylı

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 101 Algoritma ve Programlama I 3. Hafta Yük. Müh. Köksal GÜNDOĞDU 1 Akış Diyagramları ve Sözde Kodlar Yük. Müh. Köksal GÜNDOĞDU 2 Sözde Kodlar (pseudo-code) Yük. Müh. Köksal GÜNDOĞDU 3 Sözde Kod Sözde

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKANİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ İÇİNDEKİLER 1. GİRİŞ - Konum, Hız ve İvme - Newton Kanunları 2. MADDESEL NOKTALARIN KİNEMATİĞİ - Doğrusal

Detaylı

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET A BASINÇ VE BASINÇ BİRİMLERİ (5 SAAT) Madde ve Özellikleri 2 Kütle 3 Eylemsizlik 4 Tanecikli Yapı 5 Hacim 6 Öz Kütle (Yoğunluk) 7 Ağırlık 8

Detaylı

Programlama Temelleri Dersi - Algoritma Örnekleri-v0.2

Programlama Temelleri Dersi - Algoritma Örnekleri-v0.2 Programlama Temelleri Dersi - Algoritma Örnekleri-v0.2 09.11.2012 İçerik Table Of Contents Bölüm 1- ) Temel Giriş/Çıkış işlemleri Uygulama 1.1- Klavyeden girilen sayıyı ekrana yazdıran program Uygulama

Detaylı

Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre

Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre Jeodezi 7 1 Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre Elipsoid yüzeyinin küçük parçalarında oluşan küçük üçgenlerin (kenarları 50-60 km den küçük) hesaplanmasında klasik jeodezide

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

ALTERNATİF AKIMIN DENKLEMİ

ALTERNATİF AKIMIN DENKLEMİ 1 ALTERNATİF AKIMIN DENKLEMİ Ani ve Maksimum Değerler Alternatif akımın elde edilişi incelendiğinde iletkenin 90 ve 270 lik dönme hareketinin sonunda maksimum emk nın indüklendiği görülür. Alternatif akımın

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir.

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir. Matrisler Satır ve sütunlar halinde düzenlenmiş tabloya matris denir. m satırı, n ise sütunu gösterir. a!! a!" a!! a!" a!! a!! a!! a!! a!" m=n şeklindeki matrislere kare matris adı verilir. [2 3 1] şeklinde,

Detaylı

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır.

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır. Bölüm 3 VEKTÖRLER Bölüm 3: Vektörler Konu İçeriği Sunuş 3-1 Koordinat Sistemleri 3-2 Vektör ve Skaler nicelikler 3-3 Vektörlerin Bazı Özellikleri 3-4 Bir Vektörün Bileşenleri ve Birim Vektörler Sunuş Fizikte

Detaylı

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7 998 ÖYS. Üç basamaklı bir doğal sayısının 7 katı, iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir? orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. Akışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. = 1 olur.

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. = 1 olur. Öğrenci Seçme Sınavı (Öss) / 8 Haziran 6 Matematik II Soruları ve Çözümleri x, x. f(x) x ise fonksiyonu için,, x olduğuna göre, a b kaçtır? lim + x f ( x) a ve lim x f ( x) b A) B) C) D) E) Çözüm x x için

Detaylı

Bilgisayar Programlama MATLAB

Bilgisayar Programlama MATLAB What is a computer??? Bilgisayar Programlama MATLAB M-dosya yapısı Kontrol yapıları Prof. Dr. İrfan KAYMAZ What M-dosya is a computer??? yapısı Bir senaryo dosyası (script file) özel bir görevi yerine

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

YZM 2105 Nesneye Yönelik Programlama

YZM 2105 Nesneye Yönelik Programlama YZM 2105 Nesneye Yönelik Programlama Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği 1 BÖLÜM - 2 C# Programlama Dili Örnekler 2 Örnek1:

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

İş-Kinetik Enerji, Potansiyel Enerji, Enerji Korunumu

İş-Kinetik Enerji, Potansiyel Enerji, Enerji Korunumu İş-Kinetik Enerji, Potansiyel Enerji, Enerji Korunumu 1. Kütlesi 7 kg olan motorsuz oyuncak bir araba, sürtünmesiz yatay bir düzlem üzerinde 4 m/s ilk hız ile gitmektedir. Araba daha sonra ilk hızı ile

Detaylı

ZAMANA BAĞLI ISI İLETİMİ ÖRNEK PROBLEMLER

ZAMANA BAĞLI ISI İLETİMİ ÖRNEK PROBLEMLER ZAMANA BAĞLI ISI İLETİMİ ÖRNEK PROBLEMLER 1) Annesi bebeğine süt ısıtmak için cm çaplı ince cidarlı bir cam bardağa su koyuyor. Bardakdaki sütün yüksekliği 7 cm dir. Daa sonra cam bardağı 0 o C de sıcak

Detaylı

LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö

LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH) Dersi Final Sınavı.Ö. 02.0.207 Ad Soyad : (25p) 2(25p) 3(25p) 4(25p) Toplam Numara : İmza : Kitap ve notlar kapalıdır. Yalnızca kalem, silgi, sınav kağıdı

Detaylı

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 996 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Bir sınıftaki örencilerin nin fazlası kız örencidir. Sınıfta erkek öğrenci olduğuna göre, kız öğrencilerin sayısı kaçtır? A) B) 8 C) 6 D) E) Çözüm Toplam öğrenci

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

BASİT HARMONİK HAREKET

BASİT HARMONİK HAREKET BASİT HARMONİK HAREKET Bir doğru üzerinde bulunan iki nokta arasında periyodik olarak yer değiştirme ve ivmesi değişen hareketlere basit harmonik hareket denir. Sarmal yayın ucuna bağlanmış bir cismin

Detaylı

BMT 101 Algoritma ve Programlama I 3. Hafta (Örnekler) Yük. Müh. Köksal GÜNDOĞDU 1

BMT 101 Algoritma ve Programlama I 3. Hafta (Örnekler) Yük. Müh. Köksal GÜNDOĞDU 1 BMT 101 Algoritma ve Programlama I 3. Hafta (Örnekler) Yük. Müh. Köksal GÜNDOĞDU 1 Örnek Uygulamalar Yük. Müh. Köksal GÜNDOĞDU 2 Örnek: Aşağıdaki akış diyagramının sonucunu bulunuz. Yük. Müh. Köksal GÜNDOĞDU

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

Harita Projeksiyonları

Harita Projeksiyonları Harita Projeksiyonları Bölüm Prof.Dr. İ. Öztuğ BİLDİRİCİ Amaç ve Kapsam Harita projeksiyonlarının amacı, yeryüzü için tanımlanmış bir referans yüzeyi üzerinde belli bir koordinat sistemine göre tanımlı

Detaylı

ÖZEL EGE LİSESİ SİMEDYAN ÜÇGENİ VE NOKTADAŞLIK

ÖZEL EGE LİSESİ SİMEDYAN ÜÇGENİ VE NOKTADAŞLIK ÖZEL EGE LİSESİ SİMEDYAN ÜÇGENİ VE NOKTADAŞLIK HAZIRLAYAN ÖĞRENCİLER: Barış BALKAN Meryem Nilsu ÇETİN DANIŞMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ İZMİR 2016 İçindekiler Sayfa 1. Giriş... 2 1.1 Projenin Amacı....

Detaylı

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4 NİSAN 21 DENEMESİ 1) ABCD dikdörtgeninin AB kenarı üzerindeki M noktasından geçen ve CM doğrusuna dik olan doğru AD kenarını E noktasında kesiyor. M noktasından CE doğrusuna indirilen dikmenin ayağı P

Detaylı

ARAZİ ÖLÇMELERİ Z P. O α X P. α = yatay açı. ω = düşey açı. µ =eğim açısı. ω + µ = 100 g

ARAZİ ÖLÇMELERİ Z P. O α X P. α = yatay açı. ω = düşey açı. µ =eğim açısı. ω + µ = 100 g Trigonometrik Fonksiyonlar ARAZİ ÖLÇMELERİ Z Z P P ω µ P O α α = yatay açı P P ω = düşey açı µ =eğim açısı ω + µ = 100 g Şekil 9 üç Boyutlu koordinat sisteminde açı tiplerinin tasviri. Trigonometrik kavramlara

Detaylı

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar Algoritma ve Programlamaya Giriş mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar İçerik Algoritma Akış Diyagramları Programlamada İşlemler o o o Matematiksel Karşılaştırma Mantıksal Programlama

Detaylı

İç bükey Dış bükey çokgen

İç bükey Dış bükey çokgen Çokgen Çokgensel bölge İç bükey Dış bükey çokgen Köşeleri: Kenarları: İç açıları: Dış açıları: Köşegenleri: Çokgenin temel elemanları Kenar Köşegen ilişkisi Bir köşe belirleyiniz ve belirlediğiniz köşeden

Detaylı

Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL. Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK

Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL. Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK MATLAB de Bilgisayar Programlama Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK M-dosyası Genel tanıtımı : Bir senaryo dosyası (script file) özel bir görevi yerine

Detaylı

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır?

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır? 99 ÖYS.,8 + (, + ), işleminin sonucu kaçtır? B) 7 D) 86 987 B) D). a, b, c birer pozitif gerçel sayı ve a=b b=c olduğuna göre, aşağıdakilerden hangisi doğrudur? a

Detaylı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı ITAP Fizik Olimpiyat Okulu 11 Seçme Sınavı 1. Dikey yönde atılan bir taş hareketin son saniyesinde tüm yolun yarısını geçmektedir. Buna göre taşın uçuş süresinin en fazla olması için taşın zeminden ne

Detaylı

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E)

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E) 77 ÜSS. ifadesi aşağıdakilerden hangisine eşittir?. C) 4 E). Şekilde a+b+c+d açılarının toplamı kaç dik açıdır? (açılar pozitif önlüdür.) 4 C) 6 7 E) 8 Verilen şekilde açıların ölçüleri verilmiştir. En

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 7 Hazırlayan: Yamaç Pehlivan Başlama saati: : Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

BİLGİSAYAR PROGRAMLAMAYA GİRİŞ

BİLGİSAYAR PROGRAMLAMAYA GİRİŞ BİLGİSAYAR PROGRAMLAMAYA GİRİŞ 5. ders notu Örnek program yazılımları İlişkisel operatörler Mantıksal operatörler Şartlı deyimler İf deyimi Kaynak: Dr.Deniz DAL ders sunumları Örnek : Dışarıdan girilen

Detaylı

Olimpiyat Eğitimi CANSU DENEME SINAVI

Olimpiyat Eğitimi CANSU DENEME SINAVI TUSİ Ortaöğretim Öğretmenleri için Olimpiyat Eğitimi CANSU DENEME SINAVI 15.11.2013-29.11.2013 2 1. Bir x sayısı x = 1 1 + x eşitliğini sağlamaktadır. x 1 x hangisidir? in en basit hali aşağıdakilerden

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi TEST: 6 5. 1. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12 2. 6. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi aşağıdakilerden hangisidir? A) 7x+5y=35 B) 7x-5y=35

Detaylı

Öğrenci Yerleştirme Sınavı (Öys) / 16 Haziran Matematik Soruları Ve Çözümleri

Öğrenci Yerleştirme Sınavı (Öys) / 16 Haziran Matematik Soruları Ve Çözümleri Öğrenci Yerleştirme Sınavı (Öys) / 6 Haziran 99 Matematik Soruları Ve Çözümleri. 0,80+ (0,+ ).0, işleminin sonucu kaçtır? A) B) C) D) E) Çözüm I. Yol 0,80+ (0,+ ).0, 80 00 + ( 0 + ). 80 + ( + ). 00 0 80

Detaylı

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek)

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek) HAZIRLAYAN MUSA DEMIRELLI BISHKEK KYRGYZ TURKISH BOYS HIGH SCHOOL education.online.tr.tc compsources0.tripod.com Olimpiyat Soruları 1- Bir diziyi ters çeviren algoritma ve program 2- Bir diziyi sıralayan

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

Matematik 1 - Alıştırma 1. i) 2(3x + 5) + 2 = 3(x + 6) 3 j) 8 + 4(2x + 1) = 5(x + 3) + 3

Matematik 1 - Alıştırma 1. i) 2(3x + 5) + 2 = 3(x + 6) 3 j) 8 + 4(2x + 1) = 5(x + 3) + 3 Matematik 1 - Alıştırma 1 A) Denklemler 1. Dereceden Denklemler 1) Verilen denklemlerdeki bilinmeyeni bulunuz (x =?). a) 4x 6 = x + 4 b) 8x + 5 = 15 x c) 7 4x = 1 6x d) 7x + = e) 5x 1 = 10x + 6 f) 0x =

Detaylı

>> 5*3-4+6/2^0 ans = 17 ( Matlab da sayılar arası işlemler [ +, -, /, *, ^ ] bu şekilde ifade edilmektedir.)

>> 5*3-4+6/2^0 ans = 17 ( Matlab da sayılar arası işlemler [ +, -, /, *, ^ ] bu şekilde ifade edilmektedir.) 7. Diferensiyel Denklemlerin Çözümünde Matlab Uygulamaları MATLAB, Matrislere dayanan ve problemlerin çözümlerinde kullanılan Matematik metotların bilgisayar ortamında kullanılmasını sağlayan yazılım paketidir.

Detaylı

STATİK VE MUKAVEMET AĞIRLIK MERKEZİ. Öğr.Gör. Gültekin BÜYÜKŞENGÜR. Çevre Mühendisliği

STATİK VE MUKAVEMET AĞIRLIK MERKEZİ. Öğr.Gör. Gültekin BÜYÜKŞENGÜR. Çevre Mühendisliği STATİK VE MUKAVEMET AĞIRLIK MERKEZİ Öğr.Gör. Gültekin BÜYÜKŞENGÜR Çevre Mühendisliği STATİK Ağırlık Merkezi Örnek Sorular 2 Değişmeyen madde miktarına kütle denir. Diğer bir anlamda cismin hacmini dolduran

Detaylı

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =.

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =. 2014 2015 Ödevin Veriliş Tarihi: 12.06.2015 Ödevin Teslim Tarihi: 21.09.2015 MEV KOLEJİ ÖZEL ANKARA OKULLARI 1. Aşağıda verilen boşluklarara ifadeler doğru ise (D), yanlış ise (Y) yazınız. A. Fiziğin ışıkla

Detaylı

BMT 101 Algoritma ve Programlama I 11. Hafta. Yük. Müh. Köksal Gündoğdu 1

BMT 101 Algoritma ve Programlama I 11. Hafta. Yük. Müh. Köksal Gündoğdu 1 BMT 101 Algoritma ve Programlama I 11. Hafta Yük. Müh. Köksal Gündoğdu 1 C++ Fonksiyonlar Yük. Müh. Köksal Gündoğdu 2 C++ Hazır Fonksiyonlar Yük. Müh. Köksal Gündoğdu 3 C++ Hazır Fonksiyonlar 1. Matematiksel

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı