Bölüm-4. İki Boyutta Hareket

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bölüm-4. İki Boyutta Hareket"

Transkript

1 Bölüm-4 İki Boyutta Hareket

2 Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme Bu bölümde, bir boyutta türettiğimiz hareket denklemlerini iki boyutta hareket eden parçacık için genelleştireceğiz ve parçacığın hareketini düzlemde tanımlayacağız. Önce, iki boyutta (düzlemde) hareket eden bir cismin yer değiştirme, hız ve ivmesini tanımlayıp bu nicelikleri vektörel olarak ifade edeceğiz. Daha sonra düzlem üzerinde sabit ivme ile hareket eden cismin hareket denklemlerini ayrıntılı olarak yazıp, sabit ivmeli harekete güzel bir örnek olan eğik atış problemini inceleyeceğiz.

3 Yer değiştirme, Hız ve İvme Vektörleri Bir boyutta hareketi incelerken hareketli cismin bir boyutta yer değiştirmesini, hızını ve ivmesini bulmuştuk. Eğer cisim sadece bir boyutta hareket etmeyip bir düzlem üzerinde hareket ediyor ise yapacağımız iş, cismin hareketini dik koordinat sistemi kullanarak her bir eksen üzerinde (x ve y) ayrı ayrı incelemek ve hareketin her bir eksendeki izdüşümlerini kullanarak yer değiştirme, hız ve ivme niceliklerini vektörel olarak en genel bir şekilde ifade etmek olacaktır. Her bir eksen üzerindeki hareket diğer eksen üzerindeki hareketi etkilemeyeceği için eksenler üzerindeki izdüşümler birbirlerinden bağımsız olacaktır.

4 Bir ve iki boyuttaki harekete ilişkin fiziksel niceliklerimizi özetlersek:

5 İki Boyutta Sabit İvmeli Hareket Aşağıdaki şekilde noktasal bir parçacık düzlemsel bir yolda hareket etmektedir. Parçacık t i zamanda r i ile gösterilen ilk konumdadır ve t f zamanında ise parçacığın konumu son konum olan r f konumudur (Konum vektörlerinde yazılan i ve f alt indisleri ilk ve son konumlar anlamına gelmektedir). Bu parçacığın her hangi bir t anındaki konumu aşağıdaki gibi ifade edilebilir.

6 Parçacığın x- ve y-eksenlerindeki izdüşümleri, parçacığın hareketine bağlı olarak zaman içersinde değişir. Dolayısı ile konumun zamanla nasıl değiştiğine bakarsak cismin hızını bulabiliriz. Parçacığın hızını vektörel olarak aşağıdaki gibi tanımlayabiliriz; Buradaki v x ve v y parçacığın hızının x ve y eksenlerindeki izdüşümleridir (bileşenleridir). Aynı şekilde hızın zaman içeresindeki değişimine bakarsak hareketli cismin ivmesini vektörel olarak aşağıdaki gibi tanımlayabiliriz. a = a x i + a y j

7 Parçacığın ivmesi sabit olarak kabul edildiği için ivmenin a x ve a y bileşenleri de sabit olacaktır. Bu nedenle Bölüm 2 de türettiğimiz kinematik denklemlerini hız vektörünün hem x hem de y bileşenlerine uyarlayabiliriz. Hız v = v xf i + v yf j x-bileşeni v xf = v ix + a x t y-bileşeni v yf = v iy + a y t

8 Vektörel olarak yazarsak; Elde edilen bu ifadeye göre; sabit ivmeli düzlemsel hareket eden bir parçacığın belirli bir t anındaki hızı (v f ), ilk hızı (v i ) ile at nin toplamına eşittir.

9 Aynı şekilde sabit ivme ile hareket eden bir parçacığın x ve y konum denklemleri aşağıdaki gibi tanımlanmaktadır.

10

11 Eğik Atış Hareketi İki boyutta sabit ivmeli harekete en güzel örnek eğik atış problemidir. Serbest düşme bir boyutta olmasına rağmen eğik atış iki boyutta gerçekleşmektedir. Çünkü eğik atışta cisim sadece y-ekseni boyunca hareket etmeyip xy düzleminde hareket etmektedir. Dolayısı ile eğik atış problemini y-ekseni boyunca sabit ivmeli hareket (a y =-g) ve x-ekseni boyunca ivmenin sıfır olduğu ( a x =0) bir boyutlu iki hareketin bileşkesi olarak düşünebiliriz. Eğik atış problemini daha ayrıntılı olarak incelerken yapacağımız kabuller: a) Yerçekimi ivmesinin sabittir, b) Hava direncinin etkisi ihmal edilecektir. c) İvme değerleri a x =0 a y =-g d) t=0 başlangıç anında eğik atılan cismin konum değerleri x i = 0, y i = 0 dır.

12 Eğik atış problemlerinde kinematik denklemleri belirlemek için aşağıdaki şekilde gösterildiği gibi t = 0 başlangıç anında bir cismin v i hızıyla eğik atıldığını düşünüyoruz. v i hız vektörü yatayla θ i açısı yapmakta olup bu açıya atış açısı adı verilmektedir. Kosinüs ve sinüs fonksiyonlarının tanımından; dır Böylece, ilk hızın x ve y bileşenleri; ile tanımlanmaktadır.

13 x-ekseni boyunca alınan yol: (ekseni boyunca cismin ivmesi sıfır olacağından hızın x bileşeni (v ix ) zamanla değişmez)..1 y-ekseni boyunca alınan yol: (y-ekseni boyunca sabit ivmeli hareket (a y =-g) )..2 Eğik atış hareketinin yörüngesini nasıl olacağını öğrenmek istersek: Uçuş süresini 1. eşitlikten bulunup 2. eşitlikte yerine koyarsak elde ederiz

14 Görüldüğü gibi bu en genel olarak bu denklem y = ax bx 2 şeklinde tanımlanan bir parabol denklemidir. Yani eğik atışta cismin izlediği yol xy düzleminde her zaman bir parabol şeklindedir.

15 v ix = 20 m/sn, a x = 0 v iy = 40 m/sn, a y = 9,8 m/sn 2 Hız vektörünün; Top tam tepe noktasındaki iken hızın y bileşeni sıfır olduğundan hız vektörü aşağıdaki gibi yazılabilir. v x i + 0 j = v ix i + v iy j + (a x i + a y j)t Burada yatay hız (v x ) sabit olup değeri ilk hıza eşittir (v x =v ix ). Değerler yerine yazılır ve t çekilirse; 20 i + 0 j = 20 i + 40 j + 0 i 9,8 j t t = 40/9,8 = 4 saniye

16 Topun tepeye ulaşma zamanı 4 saniye olduğundan topun toplam uçuş zaman 4*2=8 saniyedir. t=8 saniye süresince x yer değiştirmesi: x f = 20 8 = 160 metre

17 Eğik atışta cismin menzili ve maksimum yüksekliği: Cismin şekildeki gibi, pozitif v iy bileşeniyle, t i = 0 anında orijinden atıldığını varsayalım. Şekilde gösterilen R uzaklığı cismin menzili, h uzunluğuna ise cismin maksimum yüksekliği denir. Tepe noktasında cismin yatay hız bileşeni sıfır olduğundan v ya = 0, cismin maksimum yüksekliğe ulaştığında geçen zamanı (t A ) aşağıdaki gibi bulabiliriz.

18 Eğik atış problemlerinde y-ekseni boyunca alınan yol aşağıdaki gibi tanımlanmaktaydı; Bu denklemde y f yerine maksimum yükseklik (h), t yerine ise biraz önce elde ettiğimiz maksimum yüksekliğe ulaşma süresini ( t A ) yazarsak, cismin maksimum yüksekliği aşağıdaki gibi elde ederiz.

19 Cismin R menzili, cismin tepe noktasına ulaşmak için geçen zamanın iki katında yani, t B = 2t A zamanı içinde alınan yatay uzaklıktır. Eğik atış problemlerinde x-ekseni boyunca alınan yol aşağıdaki gibi tanımlanmaktaydı; Bu denklemde x f yerine cismin menzili (R), t yerine ise biraz önce elde ettiğimiz maksimum yüksekliğe ulaşma süresinin 2 katını (2t A ) yazarsak, cismin R menzili aşağıdaki gibi elde ederiz.

20 sin2θ = 2sinθcosθ özdeşliği kullanılarak menzil ifadesi aşağıdaki gibi elde ifade edilebilir. Elde edilen maksimum yükseklik ve menzil denklemleri incelendiğinde sadece v i ve θ i değerlerinin bilinmesiyle hesaplanması istenilebilecek maksimum yükseklik ve menzil değerleri kolayca bulunabilir.

21 Örnek: Uzun atlama yapan bir sporcu, yatayla 20 açı altında 11 m/sn lik hızla fırlıyor. Sporcu ne kadar yatay uzaklığa sıçrayabilir? Sporcunu ulaştığı maksimum yükseklik nedir? Tepe noktasında sporcunun yatay hız bileşeni sıfır olduğundan v ya = 0, sporcunun maksimum yüksekliğe ulaştığında geçen zamanı ( t A ) aşağıdaki gibi bulabiliriz.

22 B noktasına ulaştığında geçen süre maksimum yüksekliğe ulaşılan sürenini iki katı olduğundan; Sporcu ulaşabileceği maksimum yatay uzaklık; Ulaşılan maksimum yükseklik ise; Not: Bu problemi elde edilen maksimum yükseklik ve menzil formülleriyle yeniden çözerek karşılaştırınız.

23 Örnek: Bir taş şekilde gösterildiği gibi, bir binanın tepesinden yatayla 30 derecelik bir açı altında ve 20 m/sn lik bir ilk hızla yukarıya doğru fırlatılmaktadır. Binanın yüksekliği 45 m ise, taş ne kadar sürede havada kalır? Zemine çarpmadan hemen önce taşın hızının büyüklüğü nedir? Çözüm: Taşın ne kadar sürede havada kaldığını bulmak için eğik atış problemlerinde y-ekseni boyunca alınan yol denklemini kullanabiliriz. *Çizilen koordinat sistemine göre y f değeri -45 metredir. 45 m = 20 m/sn sin30 t 1 2 9,8 t2 Bu ikinci dereceden denklemin pozitif kökü alınırsa; t=4,22 saniye elde edilir.

24 Taşın zemine çarpmadan hemen önce, hızının y bileşenini elde etmek için; v yf = v yi + a y = v i sinθ i + a y = 20 sin30 9,8 4,22 = 31,4 Taşın zemine çarpmadan hemen önce, hızının x bileşenini elde etmek için; v xf = v xi = v i cosθ i = 20 cos30 = 17,3

25

26 ÖDEV: Bir kayak sporcusu, kayak pistini şekildeki gibi 25 m/sn lik hızla yatay doğrultuda giderek terk eder. Aşağı inişinde 35 derecelik bir eğimle düşer. Sporcunun tepeden aşağıya nereye düştüğünü (x, y koordinatlarını) bulunuz.

27 Kaynak: Bu ders notları, R. A. Serway ve R. J. Beichner (Çeviri Editörü: K. Çolakoğlu), Fen ve Mühendislik için FİZİK-I (Mekanik), Palme Yayıncılık, kitabından derlenmiştir.

Bölüm 4: İki Boyutta Hareket

Bölüm 4: İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Kavrama Soruları 1- Yerden h yüksekliğinde, yere paralel tutulan bir silah ateşleniyor ve aynı anda silahın yanında başka bir kurşun aynı h yüksekliğinden serbest düşmeye bırakılıyor.

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Şekil 8.1: Cismin yatay ve dikey ivmesi

Şekil 8.1: Cismin yatay ve dikey ivmesi Deney No : M7 Deneyin Adı : EĞİK ATIŞ Deneyin Amacı : 1. Topun ilk hızını belirlemek 2. Ölçülen menzille hesaplanan menzili karşılaştırmak 3. Bir düzlem üzerinde uygulanan eğik atışta açıyla menzil ve

Detaylı

Fizik 101-Fizik I 2013-2014. Nurdan Demirci Sankır Enerji Araştırmaları Laboratuarı- YDB Bodrum Kat Ofis: 325, Tel:4332. İçerik

Fizik 101-Fizik I 2013-2014. Nurdan Demirci Sankır Enerji Araştırmaları Laboratuarı- YDB Bodrum Kat Ofis: 325, Tel:4332. İçerik Fizik 101-Fizik I 2013-2014 İki Boyutta Hareket Nurdan Demirci Sankır Enerji Araştırmaları Laboratuarı- YDB Bodrum Kat Ofis: 325, Tel:4332 İçerik Yerdeğiştirme, hız ve ivme vektörleri Sabit ivmeli iki-boyutlu

Detaylı

r r s r i (1) = [x(t s ) x(t i )]î + [y(t s ) y(t i )]ĵ. (2) r s

r r s r i (1) = [x(t s ) x(t i )]î + [y(t s ) y(t i )]ĵ. (2) r s Bölüm 4: İki-Boyutta Hareket(Özet) Bir-boyutta harekeçin geliştirilen tüm kavramlar iki-boyutta harekeçin genelleştirilebilir. Bunun için hareketli cismin(parçacığın) yer değiştirme vektörü xy-düzleminde

Detaylı

DİNAMİK (2.hafta) Yatay Hareket Formülleri: a x =0 olduğundan ilk hız ile yatay bileşende hareketine devam eder.

DİNAMİK (2.hafta) Yatay Hareket Formülleri: a x =0 olduğundan ilk hız ile yatay bileşende hareketine devam eder. EĞİK ATIŞ Bir merminin serbest uçuş hareketi iki dik bileşen şeklinde, yatay ve dikey hareket olarak incelenir. Bu harekette hava direnci ihmal edilerek çözüm yapılır. Hava direnci ihmal edilince yatay

Detaylı

DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ

DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ Öğrencinin ; Adı : Özgür Soyadı : ATİK Numarası : 387 Sınıfı : 10F/J Ders Öğretmeninin ; Adı : Fahrettin Soyadı : KALE Ödevin

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

EĞİK ATIŞ Ankara 2008

EĞİK ATIŞ Ankara 2008 EĞİK ATIŞ Ankara 8 EĞİK ATIŞ: AMAÇ: 1. Topun ilk hızını belirlemek. Ölçülen menzille hesaplanan menzili karşılaştırmak 3. Bir düzlem üzerinde uygulanan eğik atışda açıyla menzil ve tepenoktası arasındaki

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

DİNAMİK MEKANİK. Şekil Değiştiren Cisimler Mekaniği. Mukavemet Elastisite Teorisi Sonlu Elemanlar Analizi PARÇACIĞIN KİNEMATİĞİ

DİNAMİK MEKANİK. Şekil Değiştiren Cisimler Mekaniği. Mukavemet Elastisite Teorisi Sonlu Elemanlar Analizi PARÇACIĞIN KİNEMATİĞİ DİNAMİK Dinamik mühendislik mekaniği alanının bir alt grubudur: Mekanik: Cisimlerin dış yükler altındaki davranışını inceleyen mühendislik alanıdır. Aşağıdaki alt gruplara ayrılır: MEKANİK Rijit-Cisim

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

2 TEK BOYUTTA HAREKET

2 TEK BOYUTTA HAREKET 2 TEK BOYUTTA HAREKET 2.1 Konum, hız ve sürat 2.2 Anlık hız ve sürat 2.3 İvme 2.4 Hareket diyagramları 2.5 Tek boyutta sabit ivmeli hareket 2.6 Serbest düşen cisimler 2.7 Kinematik denklemlerin türetilmesi

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKANİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ İÇİNDEKİLER 1. GİRİŞ - Konum, Hız ve İvme - Newton Kanunları 2. MADDESEL NOKTALARIN KİNEMATİĞİ - Doğrusal

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

STATİĞİN TEMEL PRENSİPLERİ

STATİĞİN TEMEL PRENSİPLERİ 1.1. Temel Kavramlar ve Tanımlar Mühendislik mekaniği: Kuvvet etkisi altındaki cisimlerin denge veya hareket koşullarını inceleyen bilim dalı Genel olarak mühendislik mekaniği Sert (rijit) katı cisimlerin

Detaylı

Vektörler Bölüm Soruları 1. İki vektör eşit olmayan büyüklüklere sahiptir. Toplamları sıfır olabilir mi? Açıklayınız.

Vektörler Bölüm Soruları 1. İki vektör eşit olmayan büyüklüklere sahiptir. Toplamları sıfır olabilir mi? Açıklayınız. Vektörler Bölüm Soruları 1. İki vektör eşit olmayan büyüklüklere sahiptir. Toplamları sıfır olabilir mi? Açıklayınız. 2. Bir parçacığın yerdeğiştirmesinin büyüklüğü, alınan yolun uzunluğundan daha büyük

Detaylı

x ve y bileşenlerinin bağımsızlığı

x ve y bileşenlerinin bağımsızlığı Fizik 11: Ders ugünün Konusu Hatırlatma: Sabit imeli 1-D hareket 1-D serbest düşme örnek Vektörler 3-D Kinematik Serbest atış (şut) e bileşenlerinin bağımsızlığı Sabit imeli harekette: t erine konduğunda:

Detaylı

SORULAR 1. Serbest düşmeye bırakılan bir cisim son iki saniyede 80 m yol almıştır.buna göre,cismin yere çarpma hızı nedir? a) 40 b) 50 c) 60 d) 70

SORULAR 1. Serbest düşmeye bırakılan bir cisim son iki saniyede 80 m yol almıştır.buna göre,cismin yere çarpma hızı nedir? a) 40 b) 50 c) 60 d) 70 SORUAR 1. Serbest düşmeye bırakılan bir cisim son iki saniyede 80 m yol almıştır.buna göre,cismin yere çarpma ızı nedir? a) 40 b) 50 c) 60 d) 70 2. cismi v ızı ile ukarı atılıp, ise serbets bırakılıyor.

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

G = mg bağıntısı ile bulunur.

G = mg bağıntısı ile bulunur. ATIŞLAR Havada serbest bırakılan cisimlerin aşağı doğru düşmesi etrafımızda her zaman gördüğümüz bir olaydır. Bu düşme hareketleri, cisimleri yerin merkezine doğru çeken bir kuvvetin varlığını gösterir.

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

İş-Kinetik Enerji, Potansiyel Enerji, Enerji Korunumu

İş-Kinetik Enerji, Potansiyel Enerji, Enerji Korunumu İş-Kinetik Enerji, Potansiyel Enerji, Enerji Korunumu 1. Kütlesi 7 kg olan motorsuz oyuncak bir araba, sürtünmesiz yatay bir düzlem üzerinde 4 m/s ilk hız ile gitmektedir. Araba daha sonra ilk hızı ile

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 15 Parçacık Kinetiği: İmpuls ve Momentum Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 15 Parçacık

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ 1.1. FİZİKTE ÖLÇME VE BİRİMLERİN ÖNEMİ... 2 1.2. BİRİMLER VE BİRİM SİSTEMLERİ... 2 1.3. TEMEL BİRİMLERİN TANIMLARI... 3 1.3.1. Uzunluğun

Detaylı

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine etkiyen F kuvveti görülmektedir. Parçacık A noktasından r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve A dan A ne diferansiyel

Detaylı

Harran Üniversitesi 2015 Yılı Ziraat Fakültesi Fizik Final Sınav Test Soru Örnekleri

Harran Üniversitesi 2015 Yılı Ziraat Fakültesi Fizik Final Sınav Test Soru Örnekleri 31.12.2015 Harran Üniversitesi 2015 Yılı Ziraat Fakültesi Fizik Final Sınav Test Soru Örnekleri Soru 1 ) Kuzey istikametinde 8m giden bir aracın, sonrasında 6m doğuya ve 10m güneye ilerlediği görülüyorsa,

Detaylı

Fizik 101: Ders 6 Ajanda. Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket

Fizik 101: Ders 6 Ajanda. Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket Fizik 101: Ders 6 Ajanda Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket Özet Dinamik. Newton un 3. yasası Serbest cisim diyagramları Problem çözmek için sahip olduğumuz gereçler:

Detaylı

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak

Detaylı

DENEY 3 ATWOOD MAKİNASI

DENEY 3 ATWOOD MAKİNASI DENEY 3 ATWOOD MAKİNASI AMAÇ Bu deney bir cismin hareketi ve hareketi doğuran sebepler arasındaki ilişkiyi inceler. Bu deneyde eğik hava masası üzerine kurulmuş Atwood makinesini kullanarak Newton un ikinci

Detaylı

Mohr Dairesi Düzlem Gerilme

Mohr Dairesi Düzlem Gerilme Mohr Dairesi Düzlem Gerilme Bu bölümde düzlem gerilme dönüşüm denklemlerinin grafiksel bir yöntem ile nasıl uygulanabildiğini göstereceğiz. Böylece dönüşüm denklemlerinin kullanılması daha kolay olacak.

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi -Fizik I 2013-2014 Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi Nurdan Demirci Sankır Ofis: 325, Tel: 2924332 İçerik Açısal Yerdeğiştirme, Hız ve İvme Dönme Kinematiği Açısal ve Doğrusal Nicelikler

Detaylı

13. ÜNİTE KUVVET VE VEKTÖRLER

13. ÜNİTE KUVVET VE VEKTÖRLER 13. ÜNİTE KUVVET VE VEKTÖRLER KONULAR 1. VEKTÖR 2. Skaler Büyüklükler 3. Vektörel Büyüklükler 4. Vektörün Yönü 5. Vektörün Doğrultusu 6. Bir Vektörün Negatifi 7. Vektörlerin Toplanması 8. Uç Uca Ekleme

Detaylı

Fizik 101: Ders 3 Ajanda

Fizik 101: Ders 3 Ajanda Anlamlı Saılar Fizik 101: Ders 3 Ajanda Tekrar: Vektörler, 2 ve 3D düzgün doğrusal hareket Rölatif hareket ve gözlem çerçeveleri Düzgün dairesel hareket Vektörler (tekrar) Vektör (Türkçe) ; Vektör (Almanca)

Detaylı

VEKTÖR SORULARI SORU 1 : ÇÖZÜM : A şıkkında bileşke kuvvet 3N - 2N = 1N dir. B şıkkında 3N - 1N = 2N dir. C şıkkında 3N + 2N = 5N dir.

VEKTÖR SORULARI SORU 1 : ÇÖZÜM : A şıkkında bileşke kuvvet 3N - 2N = 1N dir. B şıkkında 3N - 1N = 2N dir. C şıkkında 3N + 2N = 5N dir. VEKTÖR SORULARI SORU 1 : ÇÖZÜM : A şıkkında bileşke kuvvet 3N - 2N = 1N dir. B şıkkında 3N - 1N = 2N dir. C şıkkında 3N + 2N = 5N dir. D şıkkında 3N - 1N = 2N dir. E şıkkında kök 10 dur. 3 ün karesi artı

Detaylı

2. Konum. Bir cismin başlangıç kabul edilen sabit bir noktaya olan uzaklığına konum denir.

2. Konum. Bir cismin başlangıç kabul edilen sabit bir noktaya olan uzaklığına konum denir. HAREKET Bir cismin zamanla çevresindeki diğer cisimlere göre yer değiştirmesine hareket denir. Hareket konumuzu daha iyi anlamamız için öğrenmemiz gereken diğer kavramlar: 1. Yörünge 2. Konum 3. Yer değiştirme

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi Fizik-1 UYGULAMA-7 Katı bir cismin sabit bir eksen etrafında dönmesi 1) Bir tekerlek üzerinde bir noktanın açısal konumu olarak verilmektedir. a) t=0 ve t=3s için bu noktanın açısal konumunu, açısal hızını

Detaylı

VEKTÖRLER. 1. Skaler Büyüklükler

VEKTÖRLER. 1. Skaler Büyüklükler VEKTÖRLER Fizikte bazı büyüklükler sayılarla ifade edilebildiği halde, bazılarının ifade edilebilmesinde sayılar yeterli olmamaktadır. Sayılarla birlikte yönün de belirtilmesi gerekir. Bu nedenle fizikte

Detaylı

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ 1. BÖLÜM FİZİĞİN DĞASI - VEKÖRLER DENGE - MMEN - AĞIRLIK MERKEZİ FİZİĞİN DĞASI - VEKÖRLER - DENGE - MMEN - AĞIRLIK MERKEZİ SRULAR 1. I. ork (x) II. Güç (P) III. Açısal momentum (L) Yukarıdakilerden hangisi

Detaylı

Mekanik Deneyleri I ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Ertuğrul YÖRÜKOĞULLARI

Mekanik Deneyleri I ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Ertuğrul YÖRÜKOĞULLARI Mekanik Deneyleri I Yazar Prof.Dr. Ertuğrul YÖRÜKOĞULLARI ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; hareket, kuvvet ve kuvvetlerin bileşkesi, sürtünme kuvveti, Newton'un II. hareket yasası, serbest

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ

BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ BÖLÜM - KOMPLEKS (KARMAŞIK) SAYILAR - KARMAŞIK SAYILAR VE ÖELLİKLERİ ax + bx +c ikinci derece denkleminin < iken reel köklerinin olmadığını biliyoruz. Örneğin x + denkleminin reel sayılar kümesinde çözümü

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

DİNAMİK Ders_3. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ

DİNAMİK Ders_3. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ DİNAMİK Ders_3 Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü Ders notları için: http://kisi.deu.edu.tr/serkan.misir/ 2016-2017 GÜZ EĞRİSEL HAREKET: SİLİNDİRİK BİLEŞENLER Bugünün Hedefleri:

Detaylı

Karadeniz Teknik Üniversitesi

Karadeniz Teknik Üniversitesi Karadeniz Teknik Üniversitesi MHN 243 Sürmene Deniz Bilimleri Fakültesi Gemi İnşaatı ve Gemi Makineleri Mühendisliği Bölümü, Dinamik Dersi 2013-2014 Güz Yarıyılı Dersi Veren: Ömer Necati Cora (Yrd.Doç.Dr.)

Detaylı

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır.

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. PO.D. MUAT DEMİ AYDIN ***Bu ders notları bir sonraki slatta verilen kanak kitaplardan alıntılar apılarak hazırlanmıştır. Mühendisler için Vektör Mekaniği: STATİK.P. Beer, E.. Johnston Çeviri Editörü: Ömer

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur?

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur? 3.1 Koordinat sistemleri 3.2 Kartezyen koordinatlar 3.3 Vektörler 3.4 Vektörlerin bileşenleri 3.5 Vektörlerin toplanması 3.6 Vektörlerin çıkarılması 37Bii 3.7 Birim vektör 3 VEKTÖRLER Pilot uçağın kokpit

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü MM 2023 Dinamik Dersi 2016 Güz Yarıyılı Dersi Veren: Ömer Necati Cora (Yrd.Doç.Dr.) K.T.Ü Makine Müh. Bölümü, Oda No: 320

Detaylı

Karadeniz Teknik Üniversitesi

Karadeniz Teknik Üniversitesi Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Maden Mühendisliği Bölümü MDM 240 Dinamik Dersi 2013-2014 Güz Yarıyılı Dersi Veren: Ömer Necati Cora (Yrd.Doç.Dr.) K.T.Ü Makine Müh. Bölümü, Oda No:

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 1.. Kutupsal Formda Gösterim z x + iy vektörünün pozitif reel eksenle yaptığı açıya θ diyelim. cos θ x, sin θ y ve buradan tan θ y θ arctan y olup θ ya z z

Detaylı

DİNAMİK (4.hafta) İKİ PARÇACIĞIN BAĞIMLI MUTLAK HAREKETİ (MAKARALAR) Örnek 1

DİNAMİK (4.hafta) İKİ PARÇACIĞIN BAĞIMLI MUTLAK HAREKETİ (MAKARALAR) Örnek 1 DİNAMİK (4.hafta) İKİ PARÇACIĞIN BAĞIMLI MUTLAK HAREKETİ (MAKARALAR) Bazı problemlerde bir cismi hareket ettirdiğimizde ona halatla bağlı başka bir cisimde farklı bir konumda hareket edebilir. Bu iki cismin

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

Soru 1: Şekil-1 de görülen düzlem gerilme hali için: b) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir

Soru 1: Şekil-1 de görülen düzlem gerilme hali için: b) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir Soru 1: Şekil-1 de görülen düzlem gerilme hali için: a) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir eden gerilme bileşenlerini, gerilme dönüşüm denklemlerini kullanarak

Detaylı

3. KUVVET SİSTEMLERİ

3. KUVVET SİSTEMLERİ 3. KUVVET SİSTEMLERİ F F W P P 3.1 KUVVET KAVRAMI VE ETKİLERİ Kuvvet, bir cisme etki eden yapısal yüklerdir. Kuvvet Şiddeti, yönü ve uygulama noktası olan vektörel bir büyüklüktür. Bir cismin üzerine uygulanan

Detaylı

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0 ĐŞ GÜÇ ENERJĐ Đş kelimesi, günlük hayatta çok kullanılan ve çok geniş kapsamlı bir kelimedir. Fiziksel anlamda işin tanımı tektir.. Yapılan iş, kuvvet ile kuvvetin etkisinde yapmış olduğu yerdeğiştirmenin

Detaylı

4. İKİ BOYUTLU UZAYDA ÇARPIŞMA

4. İKİ BOYUTLU UZAYDA ÇARPIŞMA 4. İKİ BOYUTLU UZAYDA ÇARPIŞMA AMAÇ. İki cismin çarpışması olayında momentumun korunumu ilkesinin incelenmesi,. Çarpışmada mekanik enerjinin korunumu ilkesinin incelenmesi, 3.Ölçü sonuçlarından yararlanarak

Detaylı

elde ederiz. Bu son ifade yeniden düzenlenirse,

elde ederiz. Bu son ifade yeniden düzenlenirse, Deney No : M2 Deneyin Adı : İKİ BOYUTTA ESNEK ÇARPIŞMA Deneyin Amacı : İki boyutta esnek çarpışmada, enerji ve momentum korunum bağıntılarını incelemek, momentumun vektörel, enerjini skaler bir büyüklük

Detaylı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı ITAP Fizik Olimpiyat Okulu 11 Seçme Sınavı 1. Dikey yönde atılan bir taş hareketin son saniyesinde tüm yolun yarısını geçmektedir. Buna göre taşın uçuş süresinin en fazla olması için taşın zeminden ne

Detaylı

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 1. Konu VEKTÖRLER TEST ÇÖZÜMLERİ

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 1. Konu VEKTÖRLER TEST ÇÖZÜMLERİ 11. SINI SOU BANKASI 1. ÜNİTE: KUVVET VE HAEKET 1. Konu VEKTÖLE TEST ÇÖZÜMLEİ 1 Vektörler Test 1 in Çözümleri 3. 4 N 1. 1,2 = 2 3 2 3 120 4 N 4 N 6 N 4 N Şekil I Şekil II A Şekil I Şekil II A 3 Değeri

Detaylı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Birinci Ara Sınavı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Birinci Ara Sınavı Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Birinci Ara Sınavı 6 Kasım 2010 Hazırlayan: Yamaç Pehlivan Başlama saati: 11:00 Bitiş Saati: 12:20 Toplam Süre: 80 Dakika Lütfen adınızı

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

SBA/ANR 2016 Spor Biyomekaniği ( Bahar) Ders 3: Açısal Kinematik

SBA/ANR 2016 Spor Biyomekaniği ( Bahar) Ders 3: Açısal Kinematik SBA/ANR 2016 Spor Biyomekaniği (2016-2017 Bahar) Ders 3: Açısal Kinematik Arif Mithat AMCA amithat@hacettepe.edu.tr 1 Hareket Türleri Doğrusal Hareket Düz bir çizgi ya da eğri üzerinde olan harekettir.

Detaylı

Fizik 101: Ders 21 Gündem

Fizik 101: Ders 21 Gündem Fizik 101: Ders 21 Gündem Yer çekimi nedeninden dolayı tork Rotasyon (özet) Statik Bayırda bir araba Statik denge denklemleri Örnekler Asılı tahterevalli Asılı lamba Merdiven Ders 21, Soru 1 Rotasyon Kütleleri

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Dinamik. Fatih ALİBEYOĞLU -10-

Dinamik. Fatih ALİBEYOĞLU -10- 1 Dinamik Fatih ALİBEYOĞLU -10- Giriş & Hareketler 2 Rijit cismi oluşturan çeşitli parçacıkların zaman, konum, hız ve ivmeleri arasında olan ilişkiler incelenecektir. Rijit Cisimlerin hareketleri Ötelenme(Doğrusal,

Detaylı

Sears ve Zemansky nin Üniversite Fiziği Cilt I Yazarlar: Young, Freedman. Temel Fizik Cilt I Yazarlar: Fishbane, Gasiorowicz, Thornton, Yayınevi:

Sears ve Zemansky nin Üniversite Fiziği Cilt I Yazarlar: Young, Freedman. Temel Fizik Cilt I Yazarlar: Fishbane, Gasiorowicz, Thornton, Yayınevi: 1 Bu ders notlarını hazırlarken Sears ve Zemansky nin Üniversite Fiziği Cilt I Yazarlar: Young, Freedman. Yayınevi: Pearson Temel Fizik Cilt I Yazarlar: Fishbane, Gasiorowicz, Thornton, Yayınevi: Arkadaş.

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

Kısa İçindekiler. Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: Bölümleri kapsar

Kısa İçindekiler. Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: Bölümleri kapsar Kısa İçindekiler Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: 22-34 Bölümleri kapsar Bölüm 1 Temeller 1 Bölüm 2 Bir Boyutta Hareket 28 Bölüm 3 İvme 53 Bölüm 4 Momentum 75 Bölüm 5 Enerji 101

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU VEKTÖRLER KT YRD.DOÇ.DR. KMİLE TOSUN ELEKOĞLU 1 Mekanik olaları ölçmekte a da değerlendirmekte kullanılan matematiksel büüklükler: Skaler büüklük: sadece bir saısal değeri tanımlamakta kullanılır, pozitif

Detaylı

Fizik 101: Ders 4 Ajanda

Fizik 101: Ders 4 Ajanda Fizik 101: Ders 4 Ajanda Tekrar ve devam: Düzgün Dairesel Hareket Newton un hareket yasaları Cisimler neden ve nasıl hareket ederler? Düzgün Dairesel Hareket Ne demektir? Nasıl tanımlarız? Düzgün Dairesel

Detaylı

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II)

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II) 7.2 Fonksiyon ve Fonksiyon Tanımları (I) Tanım kümesindeki her elemanın değer kümesinde bir ve yalnız bir görüntüsü varsa, tanım kümesinden değer kümesine olan bağıntıya fonksiyon denir. Fonksiyonu f ile

Detaylı

Şekil 2 Hareketin başladığı an

Şekil 2 Hareketin başladığı an Şekil 2 Hareketin başladığı an Bir savaş uçağı şekildeki gibi 1500 km/sa hızla sorti (dalışa geçerek bombardıman gerçekleştirmek) için harekete başlıyor ve eğrilik yarıçapı 300m. olan dairesel yörüngede

Detaylı

1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir?

1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir? 1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir? A) -1/6 B) 1 C) 1/2 D) 1/5 E) 3 2) Durgun halden harekete geçen bir cismin konum-zaman grafiği şekildeki

Detaylı

GÜZ YARIYILI FİZİK 1 DERSİ

GÜZ YARIYILI FİZİK 1 DERSİ 2015-2016 GÜZ YARIYILI FİZİK 1 DERSİ Yrd. Doç. Dr. Hakan YAKUT SAÜ Fen Edebiyat Fakültesi Fizik Bölümü Ofis: FEF A Blok, 812 nolu oda Tel.: +90 264 295 (6092) Bölüm 2 DOĞRUSAL BĠR YOL BOYUNCA HAREKET (Bir

Detaylı

Hava Masası Deney Seti

Hava Masası Deney Seti Hava Masası Deney Seti Öğrenci Deney Föyü Ankara-04 Paketleme Listesi. Hava Masası.. Düz Tabla.. Ark Kronometresi ve Ayak Pedalı.3. Hava Kompresörü (Hava Pompası) ve Ayak Pedalı.3. Metal Diskler ve Disk

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

2. Işık Dalgalarında Kutuplanma:

2. Işık Dalgalarında Kutuplanma: KUTUPLANMA (POLARİZASYON). Giriş ve Temel ilgiler Işık, bir elektromanyetik dalgadır. Elektromanyetik dalgalar maddesel ortamlarda olduğu gibi boşlukta da yayılabilirler. Elektromanyetik dalgaların özellikleri

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı