ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK 2 BİLİM GRUBU ÇERÇEVE PROGRAMI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK 2 BİLİM GRUBU ÇERÇEVE PROGRAMI"

Transkript

1 ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK 2 BİLİM GRUBU ÇERÇEVE PROGRAMI 1. KURUMUN ADI: Özel Çorum Ada Özel Öğretim Kursu 2. KURUMUN ADRESİ: Yavruturna Mah. Kavukçu Sok. No:46/A ÇORUM/MERKEZ 3. KURUCUNUN ADI: Metin AKBAY 4. PROGRAMIN ADI:MATEMATİK 2 5. PROGRAMIN DAYANAĞI: sayılı Özel Öğretim Kurumları Kanunu, 2. MEB Özel Öğretim Kurumları Yönetmeliği, 3. Özel Öğretim Kursları Çerçeve Programı hükümleri dayanak alınarak hazırlanmıştır 6. PROGRAMIN SEVİYESİ: Lise ve dengi okul 10. Sınıf öğrencilerinin seviyesine uygun olarak hazırlanmıştır. (Matematik 2 Seviyesine göre) 7. PROGRAMIN AMAÇLARI: VERİ, SAYMA VE OLASILIK ÜNİTE 1: Sayma A. Sıralama ve Seçme a.) Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. b.) Sınırsız sayıda tekrarlayan nesnelerin dizilişlerini (permütasyonlarını) örneklerle açıklar. Her birinden istenilen sayıda kullanılabilen n çeşit nesne ile oluşturulabilecek r li dizilişlerin n! farklı şekilde yapılabileceği örnekler/problemler bağlamında incelenir. Örnek: Alfabedeki harfleri kullanarak anlamlı ya da anlamsız 4 harfli kaç farklı kelime yazılabilir? c.) n elemanlı bir kümenin r tane elemanının kaç farklı şekilde seçilip sıralanabileceğini hesaplar. n tane nesnenin kaç farklı şekilde sıralanabileceği n = 1, 2, 3, 4 için incelettirilerek yapılan işlemlerden faktöriyel kavramına ulaştırılır. 0! = 1 olarak tanımlanır. d.) n elemanlı bir kümenin r tane elemanının kaç farklı şekilde seçilebileceğini hesaplar. Kombinasyon kavramının aşağıdaki temel özellikleri incelenir: C(n, r) = C(n, n- r) C(n, 0) + C(n, 1) C(n, n) = 2! (n elemanlı bir kümenin alt küme sayısının 2! olduğu çarpma prensibi ile hesaplanır.) e.) Pascal özdeşliğini gösterir ve Pascal üçgenini oluşturur. Pascal özdeşliği veya Pascal üçgeni olarak isimlendirilen konu ve kavramların aralarında Ömer Hayyam ın da bulunduğu Hint, Çin, İslam medeniyetlerindeki matematikçi ve düşünürler tarafından Pascal dan çok önceleri ele alındığı; bu çerçevede matematiksel bilginin oluşumunda farklı kültür ve bilim insanlarının rolü vurgulanır. f.) Binom teoremini açıklar ve açılımdaki katsayıları Pascal üçgeni ile ilişkilendirir. A.Koşullu Olasılık a.) Koşullu olasılığı örneklerle açıklar. Tablo ve Venn diyagramlarından yararlanılır. b.) Bağımlı ve bağımsız olayları örneklerle açıklar; gerçekleşme olasılıklarını hesaplar.

2 B olayının gerçekleşip gerçekleşmemesinin A olayının gerçekleşmesi olasılığına bir etkisi yoksa A ve B olaylarının bağımsız olay olduğu vurgulanır. c.) Bileşik olayların olasılıklarını hesaplar. Ağaç şemasından yararlanılır. En fazla üç aşamalı olaylardan seçim yapılır. ve, veya bağlaçlarının doğru şekilde kullanılması ve bu bağlaçlarla oluşturulan olayların olasılıkları hesaplatılır. SAYILAR VE CEBİR ÜNİTE 3: Fonksiyonlarla İşlemler ve Uygulamaları A. Fonksiyonların Simetrileri ve Cebirsel Özellikleri a.) Bir fonksiyonun grafiğinden, simetri dönüşümleri yardımı ile yeni fonksiyon grafikleri çizer. 9. sınıfta ele alınan f(x)=x! (n Z) biçimindeki fonksiyonların grafikleri temel alınarak y = f(x)+b, y = f(x- a), y = k.f(x), y = f(k.x), y = - f(x), y = f(- x) dönüşümleri incelenir. Tek ve çift fonksiyonlar tanımlanır ve bu tür fonksiyonların hem cebirsel ifadesi hem de grafiğinin simetri özellikleri üzerinde durulur. Bilgi ve iletişim teknolojilerinden yararlanılır. b.) Gerçek sayılar kümesinde tanımlı f ve g fonksiyonlarını kullanarak f + g, f - g, f. g ve! fonksiyonlarını elde eder.! Elde edilen f + g, f - g fonksiyonları ile başlangıçtaki f ve g fonksiyonları karşılaştırılarak incelenir ve ilişkiler grafiksel olarak da açıklanır. Parçalı tanımlı fonksiyonlarla işlemlere girilmez. B. İki Fonksiyonun Bileşkesi ve Bir Fonksiyonun Tersi a.) Fonksiyonlarda bileşke işlemini açıklar. Parçalı tanımlı fonksiyonların bileşkesine girilmez. Bileşke işlemini açıklarken fonksiyon makinesi ve diğer benzetmelerden yararlanılır. Fonksiyonlarda bileşke işlemi açıklanırken disiplinler arası ilişkilendirmeler ve gerçek/gerçekçi hayat durumlarından örneklere yer verilir. Bileşke işlemi, fonksiyonların cebirsel ve grafik gösterimleri ilişkilendirilerek ele alınır. Fonksiyonlarda bileşke işleminin birleşme özelliğinin olduğu gösterilir; değişme özelliğinin olmadığı örneklerle fark ettirilir. b.) Bir fonksiyonun bileşke işlemine göre tersinin olması için gerekli ve yeterli şartları belirleyerek, verilen bir fonksiyonun tersini bulur. Grafiği verilen bire bir ve örten fonksiyonun tersinin grafiği çizdirilir; fonksiyonun grafiği ile tersinin grafiğinin y=x doğrusuna göre simetrik olduğu fark ettirilir. C. Fonksiyonlarla İlgili Uygulamalar a.) İki miktar (nicelik) arasındaki ilişkiyi fonksiyon kavramıyla açıklar; problem çözümünde fonksiyonun grafik ve tablo temsilini kullanır. İki nicelik arasındaki ilişki, gerçek hayat durumları kullanılarak Herhangi bir şekle sahip kap/havuz suyla dolarken suyun yüksekliğinin su miktarına bağlı değişimi. modellenir. Grafiğin x ve y eksenlerini kestiği noktalar; fonksiyonun pozitif, negatif, artan ve azalan olduğu aralıklar; fonksiyonun maksimum ve minimumları ve bunların (verilen durum bağlamında) anlamları grafik üzerinden açıklanır. Sembolik ifade, grafik veya tablo ile verilen bir fonksiyonun belli bir aralıktaki ortalama değişim hızı (keseninin eğimi, f(b) - f(a)/(b - a ) hesaplattırılır. GEOMETRİ ÜNİTE 4: Analitik Geometri

3 A. Doğrunun Analitik İncelenmesi a.) Analitik düzlemde iki nokta arasındaki uzaklığı veren bağıntıyı oluşturur ve uygulamalar yapar. b.) Bir doğru parçasını belli bir oranda (içten veya dıştan) bölen noktanın koordinatlarını hesaplar. Bir doğru parçasının orta noktasının koordinatları buldurulur. Bir üçgenin ağırlık merkezinin koordinatları buldurulur. c.). Analitik düzlemde doğru denklemini oluşturur ve denklemi verilen iki doğrunun birbirine göre durumlarını inceler. Bir doğrunun eğim açısı ve eğimi tanımlanır. İki noktası ile ya da eğimi ve bir noktası ile verilen doğrunun denklemi oluşturulur. Eksenlere paralel doğruların denklemleri ve grafikleri yorumlanır. İki doğrunun birbirine göre durumları (çakışık, paralel, tek noktada kesişme ve dik kesişme) inceletilir ve kesişen iki doğrunun kesişme noktası bulunur. Bilgi ve iletişim teknolojilerinden yararlanılır. d.) Bir noktanın bir doğruya uzaklığını açıklar ve uygulamalar yapar. Paralel iki doğru arasındaki uzaklık hesaplatılır. ÜNİTE 5: Dörtgenler ve Çokgenler A. Dörtgenler ve Özellikleri a.) Dörtgenin temel elemanlarını ve özelliklerini açıklar. Dörtgenin iç ve dış açılarının ölçüleri toplamı incelenir. Dörtgenin alanı incelenir. Dışbükey ve içbükey dörtgen kavramları açıklanır. Not: Bundan sonra dörtgen denilince dışbükey dörtgen anlaşılmalıdır. B. Özel Dörtgenler a.) Yamuk, paralelkenar, eşkenar dörtgen, dikdörtgen, kare ve deltoid ile ilgili açı, kenar ve köşegen özelliklerini açıklar. Yamuk, en az iki kenarı paralel olan dörtgen olarak tanımlanır. Yamukta orta taban tanımlanır ve orta tabanın uzunluğu alt ve üst taban uzunluklarından yararlanılarak buldurulur. İkizkenar ve dik yamuk incelenir. Bir dörtgenin kenarlarının orta noktalarını köşe kabul eden dörtgenin paralelkenar olduğu keşfettirilir. Yamuk, paralelkenar, eşkenar dörtgen, dikdörtgen, kare ve deltoid arasındaki hiyerarşik ilişkiler incelenir. Bilgi ve iletişim teknolojilerinden yararlanılır. b.) Yamuk, paralelkenar, eşkenar dörtgen, dikdörtgen, kare ve deltoidin alan bağıntılarını oluşturur. Analitik düzlemde köşelerinin koordinatları verilen üçgenin alan bağıntısı bulunur (Örneğin, üçgenin köşelerden eksenlerden birine indirilen dikmelerle oluşturulan yamukların alanlarından yararlanılabilir.). Paralelkenar içinde alınan bir noktanın köşelere birleştirilmesiyle elde edilen üçgenlerin alanları arasındaki ilişkiler bulunur. c.) Dörtgenlerin alan bağıntılarını modelleme ve problem çözmede kullanır. C. Çokgenler Terimler: Çokgen a.) Çokgenleri açıklar, iç ve dış açılarının ölçülerini hesaplar. Düzgün çokgenlerden bahsedilir; iç ve dış açılarının ölçüleri buldurulur.içbükey çokgenlere girilmez. Çokgenlerin köşegenleri ile ilgili özelliklere değinilmez. SAYILAR ve CEBİR ÜNİTE 6: İkinci Dereceden Denklem ve Fonksiyonlar A. İkinci Dereceden Bir Bilinmeyenli Denklemler

4 a.) İkinci dereceden bir bilinmeyenli denklemleri çözer. Her bir çözüme denklemin kökü denildiği vurgulanır. ax! + bx + c biçimindeki cebirsel ifadelerin; tam kare ve iki kare farkına ait özdeşlikler de kullanılarak çarpanlara ayrılmasıyla ilgili uygulamalar yapılır. İkinci dereceden bir bilinmeyenli denklemler; tam kareye tamamlanarak y=x! + bx + c şeklinde olanları) ve çarpanlarına ayrılarak çözdürülür. İkinci dereceden bir bilinmeyenli denklemlerin köklerini veren formül oluşturulur. İkinci dereceden bir bilinmeyenli denklemlerin gerçek köklerin varlığı diskriminantın işaretine göre inceletilir. b.) i = - 1 sanal birim olmak üzere bir karmaşık sayının a + bi (a, b R) biçiminde ifade edildiğini açıklar. Diskriminantın sıfırdan küçük olduğu durumlarda ikinci dereceden bir denklemin köklerinin bulunabilmesi için gerçek sayılar kümesini de kapsayan yeni bir sayı kümesi tanımlama gereği örneklerle açıklanır. Karmaşık sayılarda toplama, çarpma ve bölme işlemleri ve özellikleri gösterilir. Bir karmaşık sayının eşleniği verilir. Karmaşık kökleri olan gerçek katsayılı ikinci dereceden bir bilinmeyenli denklemlerin çözümüyle ilgili uygulamalar yapılır. İkinci dereceden bir bilinmeyenli gerçek katsayılı bir denklemin sanal köklerinin birbirinin eşleniği olduğu keşfettirilir. c.) İkinci dereceden bir bilinmeyenli denklemin kökleri ile katsayıları arasındaki ilişkileri belirler. Sadece kökler toplamı ve çarpımı ile denklemin katsayıları arasındaki ilişkiler incelenir. Kökleri verilen ikinci dereceden denklemi oluşturmayla ilgili uygulamalara yer verilir. B. İkinci Dereceden Fonksiyonlar ve Grafikleri Terimler: İkinci dereceden fonksiyon, tepe noktası, parabol, simetri ekseni a.) İkinci dereceden bir değişkenli fonksiyonu açıklar ve grafiğini çizer. Fonksiyonun grafiğinin tepe noktası, eksenleri kestiği noktalar ve simetri ekseni buldurulur. Fonksiyonun grafiğinin tepe noktası ile fonksiyonun en küçük ya da en büyük değeri ilişkilendirilir. Grafiğin x- eksenini kestiği noktalar ile denklemin kökleri ilişkilendirilir. Fonksiyonun katsayılarındaki değişimin fonksiyonun grafiği üzerine etkisi bilgi ve iletişim teknolojilerinden yararlanılarak incelenir. y= a(x r)! + k ve y = a x x!. (x x! )şeklinde verilen ikinci dereceden fonksiyonların grafikleri çizilir. Tepe noktası ile grafiği üzerindeki bir noktası verilen ya da grafiği birisi y- eksenini kesmek şartıyla herhangi üç noktadan geçen ikinci dereceden fonksiyon oluşturulur. Grafiği verilen ikinci dereceden denklemin cebirsel ifadesi bulunur. Bilgi ve iletişim teknolojilerinden yararlanılabilir. b.) İkinci derece denklem ve fonksiyonlarla modellenebilen problemleri çözer. Bilgi ve iletişim teknolojilerinden yararlanılabilir. ÜNİTE 7: Polinomlar A. Polinom Kavramı ve Polinomlarla İşlemler a.). Gerçek katsayılı ve bir değişkenli polinom kavramını açıklar. Polinomun derecesi, katsayıları ve sabit terimi belirtilir. Sabit polinom, sıfır polinomu ve iki polinomun eşitliği örneklerle açıklanır. Polinomların özel bir fonksiyon türü olarak ele alınabileceği açıklanır. b.) Polinomlarla toplama, çıkarma, çarpma ve bölme işlemlerini yapar. Bu ve diğer kazanımlarda polinom denildiğinde gerçek katsayılı ve bir değişkenli polinomlar anlaşılmalıdır.

5 c.) Bir p(x) polinomunun q(x) polinomuna bölümünden kalanı bulur. Bir polinomun sıfırı (kökü) kavramı örneklerle açıklanır. Kalan Teoremi: Bir p(x) polinomunun x a ile bölümünden kalan p(a) dır. p(a) = 0 q(x) polinomu en fazla ikinci dereceden polinom olarak alınır. d.). Katsayıları tam sayı ve en yüksek dereceli terimin katsayısı 1 olan polinomların tam sayı sıfırlarının, sabit terimin çarpanları arasından olacağını örneklerle gösterir. B. Polinomlarda Çarpanlara Ayırma Terimler: Polinomun çarpanları, özdeşlik, değişken değiştirme a.) Gerçek katsayılı bir polinomu çarpanlarına ayırır. Bir polinomu ortak çarpan parantezine alma yoluyla çarpanlarına ayırma uygulamaları yapılır. Tam kare, iki kare farkı, iki terimin toplamının ve farkının küpü, iki terimin küplerinin toplamı ve farkına ait özdeşlikleri kullanılarak çarpanlara ayırma uygulamaları yapılır. Bir polinoma terim ekleyerek veya polinomdan terim çıkararak çarpanlara ayırma uygulamaları yapılır. Değişken değiştirme yöntemi ile polinomlarda çarpanlara ayırma uygulamaları yapılır. C. Polinom ve Rasyonel Denklemlerin Çözüm Kümeleri Terimler: Rasyonel ifade, polinom denklem, rasyonel denklem a.) Rasyonel ifade kavramını örneklerle açıklar ve rasyonel ifadelerin sadeleştirilmesi ile ilgili uygulamalar yapar. b.) Polinom ve rasyonel denklemlerle ilgili uygulamalar yapar. Çözümlerin grafikler yardımıyla yorumlanmasında bilgi ve iletişim teknolojilerinden yararlanılır. GEOMETRİ ÜNİTE 8: Çember ve Daire A. Çemberin Temel Elemanları Terimler: Çember, merkez, yarıçap, çap, kiriş, teğet, kesen, yay a.) Çemberlerde teğet, kiriş, çap ve yay kavramlarını açıklar. [R] Bir çember ile bir doğrunun birbirlerine göre durumları incelenir. b.) Çemberde kirişin özelliklerini gösterir. Bir çemberde, kirişin orta dikmesinin çemberin merkezinden geçtiği ve bir kirişin orta noktasını çemberin merkezine birleştiren doğrunun da kirişe dik olduğu keşfettirilir. Bir çemberde kirişlerin uzunlukları ile merkeze olan uzaklıkları arasındaki ilişki incelenir. B. Çemberde Açılar Terimler: Merkez açı, çevre açı, iç açı, dış açı, teğet- kiriş açı a.) Bir çemberde merkez, çevre, iç, dış ve teğet- kiriş açıları açıklar; bu açıların ölçüleri ile gördükleri yayların ölçülerini ilişkilendirir. Çapı gören çevre açının ölçüsünün 90 olduğu fark ettirilir. Eş kirişlerin ve paralel kirişlerin ayırdığı yay parçalarının eş olduğu fark ettirilir. Sinüs teoreminin çevrel çemberin yarıçapı ile ilişkisi incelenir. C. Çemberde Teğet Terimler: Teğet, teğet parçası a.) Çemberde teğetin özelliklerini gösterir. Çemberin dışındaki bir noktadan çizilen teğet parçalarının uzunluklarının eşit olduğu üçgende Pisagor Teoremi kullanılarak gösterilir. D. Dairenin Çevresi ve Alanı Terimler: Daire, daire dilimi a.) Dairenin çevresini ve alanını veren bağıntılar oluşturur ve uygulamalar yapar. Daire diliminin alanı hesaplatılır ve uygulamalar yapılır. ÜNİTE 9: Geometrik Cisimler A. Katı Cisimlerin Yüzey Alanları ve Hacimleri

6 Terimler: Dik prizma, piramit, dik piramit, dik dairesel silindir, dik dairesel koni, küre, ayrıt, yükseklik, ana doğru, yan yüz yüksekliği, tepe noktası, taban alanı, yüzey alanı, hacim a.) Dik prizma ve dik piramitlerin yüzey alan ve hacim bağıntılarını oluşturur. Dik prizma ve tabanı düzgün çokgen olan dik piramitlerin temel elemanları ve özellikleri incelenir. Düzgün dört yüzlü incelenir. b.) Dik dairesel silindiri ve dik dairesel koniyi açıklar, yüzey alan ve hacim bağıntılarını oluşturur. Dik dairesel silindir ve dik dairesel koninin elemanları ve özellikleri incelenir. c.) Küreyi açıklar, yüzey alanı ve hacim bağıntısını oluşturur. d.) Katı cisimlerin yüzey alan ve hacim bağıntılarını modelleme ve problem çözmede kullanır. 8. PROGRAMIN UYGULANMASIYLA İLGİLİ AÇIKLAMALAR: Talim ve Terbiye Kurulu Başkanlığı nın tarih ve 73 sayılı kararı ile kabul edilen Özel Öğretim Kursu Çerçeve Programının 5. Maddesine uygun olarak; 1- Bu kurs programı ile ortaöğretim öğrencileri ve mezun statüsündeki öğrencilerin bilgi ve becerilerinin artırılması,kursta öğrendikleri bilgilerle kursiyerin hayata hazırlanması,kendisine ve topluma faydalı bir birey haline getirilmesi ayrıca,kursiyerin merkezi, ulusal ve uluslararası sınavlarda başarılı olması amaçlanmış,programlar bu amaca yönelik olarak hazırlanmıştır. 2- Bu Programın uygulanmasında her aşamada yukarıda belirtilen amaçlar göz önünde bulundurulacak, öğretmen, öğretim ve değerlendirmelerini bu amaçlar ışığında yapacaktır. 3- Teorik olarak verilen bilgiler uygulamada pratik sonuçların öğretilmesi ve gösterilmesi ile pekiştirilecektir. 4- Konular öğretilirken peşin hükme ve ezberciliğe değil konular arası ilişkileri ve konunun özelliklerini kendisinin bulmasına,teorik bilgiyle pratik uygulamaların birleştirilmesine yardım edilecektir. 5- Konular işlenirken alanında uzman kişilerden uygun zaman ve şartlarda yararlanılacak ve kursiyerin bu tecrübelerden istifadesine zemin hazırlanacaktır. 6- Bu program ile öğrencilerin bir yandan ortaöğretim seviyesinde matematik konularını öğrenirken bir yandan da problem çözme becerisi kazandırmaya yönelik uygulamalar yapılacaktır.bu uygulamada: Deneme- yanılma,şekil,model kullanma,sistematik liste oluşturma,geriye doğru çalışma,varsayımları kullanma,problemleri basitleştirme yöntemleri uygulanacaktır. 7.Bu program tasarlanan matematik derslerinde kavramlar arasındaki ilişkilerin araştırılması, tartışılması ve genelleştirilmesine olanak sağlayacak ortamlar yaratmayı amaçlamıştır.böylece matematiksel kavramların birbirinden bağımsız olmadıklarını algılama ve matematiği bir bütün olarak görme uygulaması amaçlanmıştır. 8- Kursiyerlerin matematik dilini doğru geliştirmelerini ve kullanmalarını sağlamak,iletişim becerisi sayesinde soyut matematik dili ve sembolleri arasında köprü kurma uygulaması amaçlanmıştır.

7 9- Bu programın uygulanması ile kursiyerlerin matematiksel modelleme becerisi,akıl yürütme becerisi kazanması sağlanacaktır. Öğretmen, Keşfetmeye dayalı öğrenme etkinlikleri geliştirmeli ve uygulamalı, Öğrenme ve öğretme sürecini düzenlemeli, Öğrencilerini tanıma ve gelişimlerini incelemeli, Öğrenme ve öğretme sürecinde zamanı etkin olarak kullanmalı, Öğrencilerin varsayımda bulunma, genelleme yapma, doğrulama gibi bilişsel süreçlere etkin katılımını sağlamalı, Öğrencilere öğrenme süreci boyunca rehberlik yapmalı Sınıf içi tartışmaları düzenlemeli, Kendi öğrenme- öğretme sürecine ilişkin öz değerlendirme yapmalı ve bunu kendi mesleki gelişiminde kullanmalı, Öğrenci, öğretmen ve veli iletişiminin etkin olarak sürdürülebilmesini sağlamalı, Mesleki gelimini takip etmeli ve sürdürmeli, Her öğrencinin matematiği öğrenebileceğine inanmalı, Öğrencilerinin matematiğe yönelik olumlu tutumlar geliştirmelerinde onlara yardımcı olmalı, Sınıf içi ve dışı çalışmalarında insan haklarına ve etik değerlere uygun hareket etmeli, Kendi mesleki gelişimi için bilimsel araştırmaları takip etmeli, Kendi sınıfında karşılaştığı problemleri bilimsel yöntemlerle çözmeli, Okulun gelişiminden kendinin de sorumlu olduğunu bilerek okulun gelişimine katkıda bulunmalı, Öğrencilerinin öğrenmelerini izlemek ve gelişimlerini takip etmek için sürekli ölçmedeğerlendirme yapmalı. 9. PROGRAMIN SÜRESİ 10.SINIF MATEMATİK 2 ÖĞRETİM KURSU: TOPLAM: 34 Hafta HAFTALIK:3 Saat TOPLAM SÜRE:102 Saat

8 10. PROGRAM İÇERİĞİNİN TOPLAM KURS SÜRESİNE GÖRE HAFTALIK DAĞILIMI: MATEMATİK 2 KURS PROGRAMINDA;. 1. HAFTA 1. VERİ, SAYMA VE OLASILIK SAYMA Sıralama ve Seçme Toplama ve Çarpma Prensipleri Nesnelerin Dizilişleri 2.HAFTA 3. HAFTA Faktöriyel ve Permütasyon Kombinasyon Pascal Özdeşliği ve Pascal Üçgeni Binom Açılımı 4. HAFTA OLASILIK Koşullu Olasılık Koşullu Olasılık 5. HAFTA Bağımlı ve Bağımsız Olaylar Bileşik Olayların Olasılıkları 6.HAFTA 2. SAYILAR VE CEBİR FONKSİYONLARLA İŞLEMLER VE UYGULAMALARI Fonksiyonların Simetrileri ve Cebirsel Özellikleri 7.HAFTA Simetri Dönüşümleri ve Fonksiyon Grafikleri y = f(x) + b Dönüşümü y = f(x a) Dönüşümü y = k.f(x) Dönüşümü y = f(kx) Dönüşümü Çift ve Tek Fonksiyonlar

9 8.HAFTA Fonksiyonlarda Dört İşlem Toplama ve Çıkarma İşlemleri Çarpma İşlemi 9.HAFTA Bölme İşlemi. Bir Fonksiyonun Bir Gerçek Sayı ile Çarpımı 10.HAFTA İki Fonksiyonun Bileşkesi ve Bir Fonksiyonun Tersi Fonksiyonlarda Bileşke İşlemi Bir Fonksiyonun Bileşke İşlemine Göre Tersi 11.HAFTA Fonksiyonlarla İlgili Uygulamalar İki Nicelik Arasındaki ilişkinin Fonksiyon Kavramıyla Açıklanması 12.HAFTA 3. ÜNİTE GEOMETRİ ANALİTİK GEOMETRİ Doğrunun Analitik İncelenmesi Analitik Düzlemde İki Nokta Arasındaki Uzaklık 13.HAFTA Bir Doğru Parçasını Belli Bir Oranda (İçten veya Dıştan) Bölen Noktanın Koordinatları 14.HAFTA Analitik Düzlemde Doğru Denklemi ve Denklemi Verilen İki Doğrunun Birbirine Göre Durumları 15.HAFTA Doğrunun Denklemi Doğrunun Eğimi Eğimi ve Bir Noktası Bilinen Doğrunun Denklemi 16.HAFTA İki Noktası Bilinen Doğrunun Denklemi Eksenlere Paralel ve Orijinden Geçen Doğrular

10 İki Doğrunun Birbirine Göre Durumları 17.HAFTA Bir Noktanın Bir Doğruya Olan Uzaklığı DÖRTGENLER VE ÇOKGENLER Dörtgenler ve Özellikleri 18.HAFTA Dörtgenin Temel Elemanları Dörtgenin Alanı 19.HAFTA Özel Dörtgenler Özel Dörtgenler Yamuk Paralelkenar 20.HAFTA Dikdörtgen Eşkenar Dörtgen Kare Deltoid 21.HAFTA Özel Dörtgenlerin Alan Bağıntıları Paralelkenarın Alanı Dikdörtgenin Alanı Eşkenar Dörtgenin Alanı 22.HAFTA Karenin Alanı Deltoidin Alanı 23.HAFTA Dörtgenlerin Alan Bağıntılarının Modellenmesi ve Problem Çözmede Kullanılması 24.HAFTA Çokgenler Çokgen ve Çokgende Açılar 4. ÜNİTE SAYILAR VE CEBİR

11 10.6. İKİNCİ DERECEDEN DENKLEM VE FONKSİYONLAR 25.HAFTA İkinci Dereceden Bir Bilinmeyenli Denklemler İkinci Dereceden Bir Bilinmeyenli Denklemlerin Çözümü Karmaşık Sayılar Karmaşık Sayılarda Toplama ve Çıkarma İşlemi Karmaşık Sayılarda Çarpma İşlemi Karmaşık Sayılarda Bölme İşlemi 26.HAFTA İkinci Dereceden Bir Bilinmeyenli Denklemin Kökleri ile Katsayıları Arasındaki İlişkiler 27.HAFTA 28.HAFTA İkinci Dereceden Fonksiyonlar ve Grafikleri İkinci Dereceden Bir Değişkenli Fonksiyonlar ve Grafikleri İkinci Dereceden Denklem ve Fonksiyonlarla Modellenebilen Problemler POLİNOMLAR Polinom Kavramı ve Polinomlarla İşlemler Polinom Kavramı Sabit Polinom, Sıfır Polinomu ve İki Polinomun Eşitliği 29.HAFTA 30.HAFTA Polinomlar Kümesinde İşlemler Bir Polinomun Başka Bir Polinoma Bölümünden Kalan Polinomun Tam Sayı Kökleri Polinomlarda Çarpanlara Ayırma Bir Polinomu Çarpanlarına Ayırma 31. HAFTA Ortak Çarpan Parantezine Alma Yoluyla Çarpanlarına Ayırma Özdeşlikler Yardımıyla Çarpanlarına Ayırma Terim Ekleme ve Çıkarma Yöntemiyle Çarpanlara Ayırma Değişken Değiştirme Yöntemi ile Çarpanlarına Ayırma 32.HAFTA Polinom ve Rasyonel Denklemlerin Çözüm Kümeleri Rasyonel İfade Kavramı ve Rasyonel İfadelerin Sadeleştirilmesi Polinom ve Rasyonel Denklemler ile İlgili Uygulamalar 5. ÜNİTE GEOMETRİ ÇEMBER VE DAİRE Çemberin Temel Elemanları Çemberlerde Teğet, Kiriş, Çap ve Yay Kavramları Çemberde Kirişin Özellikleri

12 33.HAFTA Çemberde Açılar Çemberde Merkez, Çevre, İç, Dış ve Teğet- Kiriş Açıları Çemberde Teğet Çemberde Teğetin Özellikleri Dairenin Çevresi ve Alanı Dairenin Çevresini ve Alanını Veren Bağıntılar ve Uygulamalar 34.HAFTA GEOMETRİK CİSİMLER Katı Cisimlerin Yüzey Alanları ve Hacimleri Dik Prizma ve Dik Piramit Dik Dairesel Silindir ve Dik Dairesel Koni Küre Katı Cisimlerin Modellenmesi ve Problem Çözmede Kullanılması 11. ÖLÇME VE DEĞERLENDİRMEYLE İLGİLİ ESASLAR:, Öğretim programlarında yer alan kazanımların ölçülmesi amacıyla açık uçlu sorularında yer aldığı ücretsiz sınavlar yapılacaktır. Kursiyerlerin gelişimini takip etmek amacıyla; 1) Eğitim döneminin başında, 2) Eğitim döneminin ortasında, 3) Eğitim döneminin sonunda sınavlar uygulanacaktır. Bu sınavlar sonucunda kursiyerlerin konulara göre başarı analizleri yapılacak ve kursiyerlere sınav sonuç karnesi şeklinde geri bildirim verilecektir. Bu sınavlara sadece kuruma kayıtlı kursiyerler katılır. Bu kurslara devam eden kursiyerler için kurs bitirme belgesi düzenlenmez. 12. PROGRAMIN UYGULANMASINDA KULLANILACAK ÖĞRETİM ARAÇ- GEREÇLERİ: Okul Ders Kitapları Matematik Konu Anlatımlı Kitap Matematik Soru Bankası Kitabı Matematik Konu Anlatımlı Fasiküller İletki, Gönye, Pergel, Kitaplık, Tahta, Silgi, Üç Boyutlu Cisimler, Oyun Hamuru, Tahta ( Akıllı Tahta Kullanılmamaktadır.) Bilim adamlarıyla ilgili görseller KURUCU Metin AKBAY

13

10. SINIF MATEMATİK DERSİ ÖĞRETİM PROGRAMI

10. SINIF MATEMATİK DERSİ ÖĞRETİM PROGRAMI 10. SINIF MATEMATİK DERSİ ÖĞRETİM PROGRAMI Programın öğrencilerde geliştirmeyi hedeflediği becerilerle 10. sınıf matematik öğretim programı ilişkisi; Modelleme/Problem çözme Matematiksel Süreç Becerileri

Detaylı

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ EKİM 07-08 EĞİTİM - ÖĞRETİM YILI 0. SINIF MATEMATİK DERSİ 0... Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. 0... Sınırsız sayıda tekrarlayan nesnelerin dizilişlerini

Detaylı

MATEMATİK BİLİM GRUBU II KURS PROGRAMI

MATEMATİK BİLİM GRUBU II KURS PROGRAMI MATEMATİK BİLİM GRUBU II KURS PROGRAMI 1.Kurumun Adı 2.Kurumun adresi 3.Kurucunun Adı 4.Programın Adı : OĞUZHAN ÖZKAYA ÖZEL ÖĞRETİM KURSU : Onur Mahallesi Leylak Sok.No:9 Balçova-İzmir : Oğuzhan Özkaya

Detaylı

TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 10. SINIF MATEMATİK DERSİ YILLIK PLANI

TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 10. SINIF MATEMATİK DERSİ YILLIK PLANI 9 Eylül- Eylül 0-07 TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 0. SINIF MATEMATİK DERSİ YILLIK PLANI Veri, Sayma ve Sayma. Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. Sıralama

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-II ÇERÇEVE PROGRAMI. :Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-II ÇERÇEVE PROGRAMI. :Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-II ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu :Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM Danışmanlık

Detaylı

ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK 3 BİLİM GRUBU ÇERÇEVE PROGRAMI

ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK 3 BİLİM GRUBU ÇERÇEVE PROGRAMI ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK 3 BİLİM GRUBU ÇERÇEVE PROGRAMI 1.KURUM ADI: Özel Çorum Ada Özel Öğretim Kursu 2. KURUMUN ADRESİ: Yavruturna Mah. Kavukçu Sok. No:46/A ÇORUM/MERKEZ 3. KURUCUNUN

Detaylı

T.C. MİLLİ EĞİTİM BAKANLIĞI ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK V BİLİM GRUBU ÇERÇEVE PROGRAMI

T.C. MİLLİ EĞİTİM BAKANLIĞI ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK V BİLİM GRUBU ÇERÇEVE PROGRAMI T.C. MİLLİ EĞİTİM BAKANLIĞI ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK V BİLİM GRUBU ÇERÇEVE PROGRAMI 1 1. KURUMUN ADI : Özel Çorum Ada Özel Öğretim Kursu 2. KURUMUN ADRESİ : Yavruturna mah. Kavukçu sok.

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-V ÇERÇEVE PROGRAMI. 3. KURUCUNUN ADI :ARTI ÖZEL EĞİTİM ÖĞRETİM Danışmanlık Turizm Hizmetleri Ticaret İth. İhr. Ltd. Şti.

ÖZEL ÖĞRETİM KURSU MATEMATİK-V ÇERÇEVE PROGRAMI. 3. KURUCUNUN ADI :ARTI ÖZEL EĞİTİM ÖĞRETİM Danışmanlık Turizm Hizmetleri Ticaret İth. İhr. Ltd. Şti. ÖZEL ÖĞRETİM KURSU MATEMATİK-V ÇERÇEVE PROGRAMI 1. KURUMUN ADI : Tercih Özel Öğretim Kursu 2. KURUMUN ADRESİ : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA 3. KURUCUNUN ADI :ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-IV ÇERÇEVE PROGRAMI. 2. KURUMUN ADRESİ : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-IV ÇERÇEVE PROGRAMI. 2. KURUMUN ADRESİ : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-IV ÇERÇEVE PROGRAMI 1. KURUMUN ADI : Tercih Özel Öğretim Kursu 2. KURUMUN ADRESİ : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA 3. KURUCUNUN ADI : ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

MATEMATİK BİLİM GRUBU III KURS PROGRAMI

MATEMATİK BİLİM GRUBU III KURS PROGRAMI MATEMATİK BİLİM GRUBU III KURS PROGRAMI 1.Kurumun Adı 2.Kurumun adresi 3.Kurucunun Adı 4.Programın Adı : OĞUZHAN ÖZKAYA ÖZEL ÖĞRETİM KURSU : Onur Mahallesi Leylak Sok.No:9 Balçova-İzmir : Oğuzhan Özkaya

Detaylı

1. KURUMUN ADI : Özel Osmaniye Artı Bilim Temel Lisesi. 3. KURUCUNUN ADI : Sinerji Eğitimcilik San. Tic. Ltd. Şti./Celal DEMİR

1. KURUMUN ADI : Özel Osmaniye Artı Bilim Temel Lisesi. 3. KURUCUNUN ADI : Sinerji Eğitimcilik San. Tic. Ltd. Şti./Celal DEMİR 1. KURUMUN ADI : Özel Osmaniye Artı Bilim Temel Lisesi 2. KURUMUN ADRESİ : Cumhuriyet Mah. Akyar Cad. No:87/B 3. KURUCUNUN ADI : Sinerji Eğitimcilik San. Tic. Ltd. Şti./Celal DEMİR 4. PROGRAMIN ADI : MATEMATİK

Detaylı

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar.

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar. 7. SINIF KAZANIM VE AÇIKLAMALARI M.7.1. SAYILAR VE İŞLEMLER M.7.1.1. Tam Sayılarla Toplama, Çıkarma, Çarpma ve Bölme İşlemleri M.7.1.1.1. Tam sayılarla toplama ve çıkarma işlemlerini yapar; ilgili problemleri

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-I ÇERÇEVE PROGRAMI. :Kesikkapı Mah. Atatürk Cad.No.79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-I ÇERÇEVE PROGRAMI. :Kesikkapı Mah. Atatürk Cad.No.79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-I ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu :Kesikkapı Mah. Atatürk Cad.No.79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM Danışmanlık

Detaylı

PENDİK ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI 10.SINIF MATEMATİK DERSİ YILLIK PLANI

PENDİK ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI 10.SINIF MATEMATİK DERSİ YILLIK PLANI PENDİK ANADOLU İMAM HATİP LİSESİ 0-0 EĞİTİM VE ÖĞRETİM YILI 0.SINIF MATEMATİK DERSİ YILLIK PLANI EYLÜL EKİM. Gerçek katsayılı ve tek değişkenli polinomu kavram olarak örneklerle açıklar, polinomun derecesini,

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Ay 2016 2017 EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Hafta ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIMLAR EYLÜL 3 4 Sayılar ve İşlemler Çarpanlar

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN ÜNİTE ÖĞRENME ALANI ALT ÖĞRENME ALANI Ders Saati 9.09.06/.09.06 Tam Sayılarla Çarpma ve Bölme i 7...

Detaylı

Çarpanlar ve Katlar

Çarpanlar ve Katlar 8.1.1. Çarpanlar ve Katlar 8.1.2. Üslü İfadeler 8.1.3. Kareköklü İfadeler 8.2.1. Cebirsel İfadeler ve Özdeşlikler 8.1.1.1 Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN E Y L Ü L ÜNİTE SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN 9.09.06/.09.06 6.09.06/0.09.06 Çarpanlar ve Katlar Çarpanlar ve Katlar 8... Verilen

Detaylı

9. SINIF. Kazanım Sayısı

9. SINIF. Kazanım Sayısı Öğrenme Alanları, Üniteler ve Zaman Dağılımı: Bir kazanımın işleniş süresi başta öğrencilerin seviyesi olmak üzere birçok değişkene bağlıdır. Bu nedenle programdaki kazanımlara yönelik aşağıda verilen

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

12.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ

12.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ .SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ A-TEST SAYILAR- TEMEL KAVRAMLAR A-TEST SAYILAR- POLİNOMLAR B-TEST POLİNOMLAR- PARALEL DOĞRULARDA VE ÜÇGENDE AÇILAR A- B TEST PARALEL

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

1. BÖLÜM: PERMÜTASYON (SIRALAMA) BÖLÜM: KOMBİNASYON (SEÇME) A. SEÇME (KOMBİNASYON) B. KOMBİNASYON GEOMETRİ İLİŞKİSİ

1. BÖLÜM: PERMÜTASYON (SIRALAMA) BÖLÜM: KOMBİNASYON (SEÇME) A. SEÇME (KOMBİNASYON) B. KOMBİNASYON GEOMETRİ İLİŞKİSİ İçindekiler 1. BÖLÜM: PERMÜTASYON (SIRALAMA)... 10 A. SAYMA KURALLARI... 10 B. FAKTÖRİYEL... 14 C. n ELEMANLI BİR KÜMENİN r Lİ PERMÜTASYONLARI (Dizilişleri)... 17 Ölçme ve Değerlendirme...20 Kazanım Değerlendirme

Detaylı

SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR

SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR 06-07 8.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR Sıra No Adı ve Soyadı İmza Sıra No 8 9 0 6 Adı ve Soyadı İmza 7 Ömer Askerden 06 07 EĞİTİM VE ÖĞRETİM YILI FATİH SULTAN

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

ÜNİTELENDİRME ŞEMASI

ÜNİTELENDİRME ŞEMASI LENDİRME ŞEMASI ÜNİTE DOĞRULAR VE AÇILAR. Aynı düzlemde olan üç doğrunun birbirine göre durumlarını belirler ve inşa eder.. Paralel iki doğrunun bir kesenle yaptığı açıların eş olanlarını ve bütünler olanlarını

Detaylı

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14. 1. Ünite: Polinomlar Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Polinomlarda Bölme, Bölüm ve Kalan Bulma 1 1 1 1 1 1 1 1 1

Detaylı

MİLLİ EĞİTİM BAKANLIĞI ÖZEL ÖĞRETİM KURUMLARI GENEL MÜDÜRLÜĞÜ ÖZEL KONYA SİSTEM TEMEL LİSESİ MATEMATİK BİLİM GRUBU V KURS PROGRAMI

MİLLİ EĞİTİM BAKANLIĞI ÖZEL ÖĞRETİM KURUMLARI GENEL MÜDÜRLÜĞÜ ÖZEL KONYA SİSTEM TEMEL LİSESİ MATEMATİK BİLİM GRUBU V KURS PROGRAMI MİLLİ EĞİTİM BAKANLIĞI ÖZEL ÖĞRETİM KURUMLARI GENEL MÜDÜRLÜĞÜ ÖZEL KONYA SİSTEM TEMEL LİSESİ MATEMATİK BİLİM GRUBU V KURS PROGRAMI MATEMATİK BİLİM GRUBU V KURS PROGRAMI 1. Kurumun Adı : Özel Konya Sistem

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03 I 5. SINIF MATEMATİK VE İŞLEMLER 1.1. En çok dokuz basamaklı doğal sayıları okur ve yazar. 1.2. En çok dokuz basamaklı doğal sayıların bölüklerini, basamaklarını ve rakamların basamak değerlerini belirtir.

Detaylı

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI 11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI Programın öğrencilerde geliştirmeyi hedeflediği becerilerle 11. sınıf matematik öğretim programı ilişkisi Modelleme/Problem çözme Matematiksel Süreç

Detaylı

8. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI

8. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI 8. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI Tudem Eğitim Hiz. San. ve Tic. A.Ş 1476/1 Sokak No: 10/51 Alsancak/Konak/ÝZMÝR Yazarlar: Tudem Yazý Kurulu Dizgi ve Grafik: Tudem Grafik Ekibi Baský ve Cilt:

Detaylı

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI -6.09.0 DÖNÜŞÜM Sİ 5-9.09.0 ÖRÜNTÜ VE SÜSLEMELER SİDRE 000 ORTAOKULU 0 05 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI,. Doğru, çokgen ve çember modellerinden örüntüler

Detaylı

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25 1 İçindekiler 1. Bölüm: SIRALAMA (PERMÜTASYON)... 5 2. Bölüm: SEÇME (KOMBİNASYON)...13 3. Bölüm: BİNOM AÇILIMI...21 4. Bölüm: OLASILIK...25 5. Bölüm: FONKSİYONLARIN SİMETRİLERİ VE CEBİRSEL ÖZELLİKLERİ...37

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR

SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR 06-07 7.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR Adı Soyadı İmza Adı Soyadı 8 9 0 6 7 Ömer Askerden İmza 06-07 EĞİTİM VE ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU

Detaylı

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik 1. Ünite: Geometriden Olasılığa 1. Bölüm: Yansıyan ve Dönen Şekiller, Fraktallar Yansıma, Öteleme, Dönme Fraktallar 2. Bölüm: Üslü Sayılar Tam

Detaylı

BERK HAZIRLIK LİSESİ DERS REHBERLERİ EĞİTİM YILI BHL206 MATEMATİK

BERK HAZIRLIK LİSESİ DERS REHBERLERİ EĞİTİM YILI BHL206 MATEMATİK BERK HAZIRLIK LİSESİ DERS REHBERLERİ 2015-2016 EĞİTİM YILI BHL206 MATEMATİK Berk Hazırlık Lisesi ne Hoş geldiniz... İnsanlık tarihi boyunca ihtiyaçlar ekseninde mükemmeli aramak bizlerin en temel dürtülerinden

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ KASIM EKİM 2017-2018 EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ 1 4 TÜREV 12.1.1.1. Bir fonksiyonun bir noktadaki limiti, soldan limiti

Detaylı

DERS BİLGİ FORMU. Zorunlu Ders X. Haftalık Ders Saati Okul Eğitimi Süresi

DERS BİLGİ FORMU. Zorunlu Ders X. Haftalık Ders Saati Okul Eğitimi Süresi DERSİN ADI MATEMATİK 1 BÖLÜM PROGRAM DÖNEMİ DERSİN DİLİ DERS KATEGORİSİ ÖN ŞARTLAR SÜRE VE DAĞILIMI KREDİ DERSİN AMACI ÖĞRENME ÇIKTILARI VE YETERLİKLER DERSİN İÇERİĞİ VE DAĞILIMI (MODÜLLER VE HAFTALARA

Detaylı

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI:

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: Bu formun ç kt s n al p ço altarak ö rencilerinizin ücretsiz Morpa Kampüs yarıyıl tatili üyeli inden yararlanmalar n sa layabilirsiniz.! ISBN NUMARASI: 84354975 ISBN NUMARASI: 84354975! ISBN NUMARASI:

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 19 HAZİRAN 2016 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

7. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI

7. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI 7. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI Tudem Eğitim Hiz. San. ve Tic. A.Ş 1476/1 Sokak No: 10/51 Alsancak/Konak/ÝZMÝR Yazarlar: Tudem Yazý Kurulu Dizgi ve Grafik: Tudem Grafik Ekibi Baský ve Cilt:

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ 2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ YGS sonrası adayları puan getirisinin daha çok olan LYS ler bekliyor. Kalan süre içinde adayların girecekleri testlere kaynaklık eden derslere sabırla çalışmaları

Detaylı

MİLLÎ EĞİTİM BAKANLIĞI Talim ve Terbiye Kurulu Başkanlığı İLKÖĞRETİM MATEMATİK DERSİ (1-8. SINIFLAR) ÖĞRETİM PROGRAMINDA YAPILAN DEĞİŞİKLİKLER

MİLLÎ EĞİTİM BAKANLIĞI Talim ve Terbiye Kurulu Başkanlığı İLKÖĞRETİM MATEMATİK DERSİ (1-8. SINIFLAR) ÖĞRETİM PROGRAMINDA YAPILAN DEĞİŞİKLİKLER MİLLÎ EĞİTİM BAKANLIĞI Talim ve Terbiye Kurulu Başkanlığı İLKÖĞRETİM MATEMATİK DERSİ (18. SINIFLAR) ÖĞRETİM PROGRAMINDA YAPILAN DEĞİŞİKLİKLER ARALIK2008 1 İLKÖĞRETİM MATEMATİK DERSİ (18. SINIFLAR) ÖĞRETİM

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4 NİSAN 21 DENEMESİ 1) ABCD dikdörtgeninin AB kenarı üzerindeki M noktasından geçen ve CM doğrusuna dik olan doğru AD kenarını E noktasında kesiyor. M noktasından CE doğrusuna indirilen dikmenin ayağı P

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

KPSS KONU GÜNLÜĞÜ 30 GÜNDE MATEMATİK

KPSS KONU GÜNLÜĞÜ 30 GÜNDE MATEMATİK KPSS KONU LÜĞÜ 30 DE MATEMATİK ISBN: 978-605-2329-07-8 Bu kitabın basım, yayın ve satış hakları Kısayol Yayıncılık a aittir. Anılan kuruluşun izni alınmadan yayınların tümü ya da herhangi bir bölümü mekanik,

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

GEOMETRİ SORU BANKASI KİTABI

GEOMETRİ SORU BANKASI KİTABI LİSE ÖĞRENCİLERİNİN ÜNİVERSİTE SINAVLARINA HAZIRLANMALARI İÇİN GEOMETRİ SORU BANKASI KİTABI HAZIRLAYAN Erol GEDİKLİ Matematik Öğretmeni SUNUŞ Sevgili öğrenciler! Bu kitap; hazırlandığınız üniversite sınavlarında,

Detaylı

KPSS KONU GÜNLÜĞÜ 30 GÜNDE MATEMATİK

KPSS KONU GÜNLÜĞÜ 30 GÜNDE MATEMATİK KPSS KONU LÜĞÜ 30 DE MATEMATİK ISBN: 978-605-2329-07-8 Bu kitabın basım, yayın ve satış hakları Kısayol Yayıncılık a aittir. Anılan kuruluşun izni alınmadan yayınların tümü ya da herhangi bir bölümü mekanik,

Detaylı

6. SINIF ÖF RETH M PROGRAMI

6. SINIF ÖF RETH M PROGRAMI 6. SINIF ÖF RETH M PROGRAMI Öğrenme Alanları ve Alt Öğrenme Alanları 6.1. Sayılar ve İşlemler 6.1.1. Doğal Sayılarla İşlemler 6.1.2. Çarpanlar ve Katlar 6.1.3. Tam Sayılar 6.1.4. Kesirlerle İşlemler 6.1.5.

Detaylı

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ OLİMPİK GEOMETRİ MATEMATİK OLİMPİYATLARINA HAZIRLIK KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ ÖMER GÜRLÜ ALTIN NOKTA YAYINEVİ İZMİR - 2014 İÇİNDEKİLER 1. TEMEL ÇİZİMLER... 7 2. ÜÇGENLER... 21 (Üçgende Açılar, Üçgende

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır?

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? 014 LYS GOMTRİ 1. y 1 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? parabolü ile. O merkezli çeyrek çemberde O deltoid olduğuna göre, taralı alan kaç birim karedir? O. d:y a b doğrusu -ekseni

Detaylı

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi TEST: 6 5. 1. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12 2. 6. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi aşağıdakilerden hangisidir? A) 7x+5y=35 B) 7x-5y=35

Detaylı

5. SINIF ÖĞRETİM PROGRAMI

5. SINIF ÖĞRETİM PROGRAMI 5. SINIF ÖĞRETİM PROGRAMI Öğrenme Alanları ve Alt Öğrenme Alanları 5.1. Sayılar ve İşlemler 5.1.1. Doğal Sayılar 5.1.2. Doğal Sayılarla İşlemler 5.1.3. Kesirler 5.1.4. Kesirlerle İşlemler: Toplama ve Çıkarma

Detaylı

E.Ö.Y TEKİRDAĞ S.B LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı

E.Ö.Y TEKİRDAĞ S.B LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı A ELÜL 9 Eylül Eylül Eylül 0 Eylül 0-07 E.Ö. TEKİRDAĞ S.B LİSESİ 9. SINIF MATEMATİK İ ILLIK PLANI Temel Kavramlar Temel Kavramlar Temel Kavramlar Temel Kavramlar. Küme kavramını örneklerle açıklar ve kümeleri

Detaylı

EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI 1.DÖNEM AY HAFTA TARİH KAZANIM AÇIKLAMA

EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI 1.DÖNEM AY HAFTA TARİH KAZANIM AÇIKLAMA 06-07 EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI.DÖNEM EYLÜL EKİM.Hafta 9-.Hafta 6-0 K)Doğal sayılar, kesirler, ondalık sayılar ve yüzdelerle hesaplamaları

Detaylı

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2.

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2. LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS na) HAZIRLIK İÇİN Konu anlatımlı Örnek çözümlü Test çözümlü Test sorulu Deneme sınavlı GEOMETRİ-2 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

6 2. Bir fonksiyonun bir noktadaki sürekliliği kavramını açıklar. Süreklilik

6 2. Bir fonksiyonun bir noktadaki sürekliliği kavramını açıklar. Süreklilik AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 201-2017 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 12.SINIFLAR İLERİ DÜZEY ÜNİTELENDİRİLMİŞ YILLIK PLANI AY: TÜREV (70) LİMİT VE SÜREKLİLİK (14) 1. Bir fonksiyonun bir

Detaylı

sunu Erciyes İş Yerleri Sitesi 198 cadde no: 4 Yenimahalle / Ankara Tel: Fax:

sunu Erciyes İş Yerleri Sitesi 198 cadde no: 4 Yenimahalle / Ankara Tel: Fax: Copyright Bu soruların her hakkı ÇANTA Yayıncılık A.Ş. ye aittir. Hangi amaçla olursa olsun, tamamının veya bir kısmının kopya edilmesi, fotoğraflarının çekilmesi, herhangi bir yolla çoğaltılması ya da

Detaylı

Merhaba Arkadaşlar; Bizim okul(bergama Anadolu Öğretmen Lisesi) bu sene teftiş geçirdi. Ben aşağıdaki tebliğler dergisine göre seçmeli matematik

Merhaba Arkadaşlar; Bizim okul(bergama Anadolu Öğretmen Lisesi) bu sene teftiş geçirdi. Ben aşağıdaki tebliğler dergisine göre seçmeli matematik Merhaba Arkadaşlar; Bizim okul(bergama Anadolu Öğretmen Lisesi) bu sene teftiş geçirdi. Ben aşağıdaki tebliğler dergisine göre seçmeli matematik yıllık planını hazırladım. (Anlamsız ama yönetmeliklere

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN Konu Anlatımlı Örnek Çözümlü Test Çözümlü Test Sorulu Karma Testli GEOMETRİ 1 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 7. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 7. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI 9 EYLÜL 0 EKİM CEBİR ÖRÜNTÜLER VE İLİŞKİLER 9 EYLÜL 0 EKİM TAM LA İŞLEMLER 6 EYLÜL TAM LA İŞLEMLER 5 9 EYLÜL TAM LA İŞLEMLER SİDRE 000 ORTAOKULU 04 05 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 7. SINIF ÜNİTELENDİRİLMİŞ

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 9 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI:

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: Bu formun ç kt s n al p ço altarak ö rencilerinizin ücretsiz Morpa Kampüs yarıyıl tatili üyeli inden yararlanmalar n sa layabilirsiniz.! ISBN NUMARASI: 65482465 ISBN NUMARASI: 65482465! ISBN NUMARASI:

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500 984 ÖYS. + + a a + a + a işleminin sonucu nedir? a A) +a B) a C) +a D) a E) +a a b ab. ifadesinin kısaltılmış biçimi a b + a b + ab a + b A) a b a b D) a b B) a b a + b E) ab(a-b) C) a b a + b A) 87 B)

Detaylı

SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR

SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR 06 07 6.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR Adı Soyadı İmza Adı Soyadı 8 9 0 6 7 Ömer Askerden İmza 06-07 EĞİTİM VE ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU

Detaylı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı A 1. Köşeleri, yarıçapı 1 olan çemberin üstünde yer alan düzgün bir n-genin çevre uzunluğunun alanına oranı 4 3 ise, n kaçtır? 3 a) 3 b) 4 c) 5 d)

Detaylı

MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI

MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI I.YARIYIL MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI 3715055832012 Z Uzmanlık Alan Dersi 3715055702017 Z Bilimsel Araştırma Yöntemleri ve

Detaylı

BASIN KİTAPÇIĞI ÖSYM

BASIN KİTAPÇIĞI ÖSYM BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Matematik Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 75 dakikadır. 3. Bu kitapç ktaki testlerde

Detaylı

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom:

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom: Matematik A A ile B nin Kartezyen Çarpımı: Birinci bileşeni A dan, ikinci bileşeni B den alınarak elde edilen ikililerin kümesidir. A Kümesinden B nin Farkı: A kümesinin B kümesi ile ortak olmayan elemanlarından

Detaylı

11. Sınıf Hazır Bulunuşluk Sınavı

11. Sınıf Hazır Bulunuşluk Sınavı . Sınıf Hazır Bulunuşluk Sınavı Bölüm Adı Kapsadığı Üniteler Soru Sayısı Dil Anlatım (0. Sınıf) Sunum-Tartışma-Panel: Sunum:.Sunumun özelliklerini belirler. Tartışma:. Tartışmaları, toplumla iletişim imkânlarını

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Eğitimde. Lise ve Ön Lisans Adayları İçin. konu anlatımlı

GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Eğitimde. Lise ve Ön Lisans Adayları İçin. konu anlatımlı KPSS Genel Yetenek Genel Kültür Lise ve Ön Lisans Adayları İçin GEOMETRİ KPSS 206 Pegem Akademi Sınav Komisyonu; 204 KPSS ye Pegem Yayınları ile hazırlanan adayların, 00'ün üzerinde soruyu kolaylıkla çözebildiğini

Detaylı