Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür."

Transkript

1 - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle açıklar. denklemlerinin gerçek sayılar kümesindeki çözümü araştırılır. denklemlerinin gerçek sayılar kümesindeki çözümü araştırılır. Not: İkinci dereceden denklemlerin çözümünde Δ<0 olduğunda denklemin gerçek kökü yoktur. Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. Albert EINSTEIN t, yılları arasındaki zaman aralığını göstermek üzere, bir cep telefonu şirketinin bir ülkede ğını göstermek üzere, bir cep telefonu şirketinin bir ülkede yılları arasındaki yıllık satış tutarı A= t 2 + 3t + 100, 0 t 10 biçiminde verilmektedir. Bu modele bağılı olarak, (A milyon TL) a) Satışların hangi yıllar içinde 90 milyon TL ye ulaştığını, b) Satışların hangi yıllar içinde 110 milyon TL ye ulaştığını bulunuz. Çözüm : a) 90 = t 2 + 3t t=5 olur yılı b) 110 = t 2 + 3t Δ<0 olur. Hiçbir zaman Kazanım 2 : Sanal birimi ( sayısı) belirtir ve bu sayının kuvvetlerini hesaplar. Tanım: Karesi 1 olan sayıya sanal sayı birimi denir. ile gösterilir. Şeklinde ifade edilir. Aşağıdaki işlemler yaptırılır. a) b)

2 - 2 - Not : ü Aşağıdaki tablo doldurulur. Kazanım 3 : Karmaşık sayıyı,standart biçimini, gerçek kısmını, sanal kısmını açıklar ve iki karmaşık sayının eşitliğini ifade eder. Tanım : ( Karmaşık Sayılar ) : ü Biçimindeki sayılara karmaşık ( kompleks ) sayı denir. Karmaşık sayılar C ile gösterilir. { Karmaşık sayının standart biçimi Reel (Gerçek) Kısmı Sanal (İmajiner) Kısmı Analitik Gösterimi Re(Z)= a İm(Z)= b (a,b) Örnekler : Tabloyu doldurunuz. Karmaşık sayı Reel Kısmı Sanal Kısmı Analitik Gösterimi Not : n N olmak üzere { ise ise olmak üzere Not : Her reel sayı, sanal kısmı sıfır olan bir karmaşık sayıdır. O halde R C C=R {i}

3 - 3 - Tanım : (İki Karmaşık Sayının Eşitliği ) : Reel ve sanal kısımları karşılıklı birbirine eşit olan iki karmaşık sayı eşit iki sayıdır. olmak üzere, x ve y reel sayılar olmak üzere ise KARMAŞIK SAYININ EŞLENİĞİ ve MUTLAK DEĞERİ Tanım : ( Eşlenik ) : karmaşık sayısının eşleniği sanal kısmının işaretinin değişmesi ile bulunur. ile gösterilir. x ve y reel sayılar olmak üzere Kazanım 4 : Karmaşık düzlemi açıklar ve verilen bir karmaşık sayıyı karmaşık düzlemde gösterir. KARMAŞIK DÜZLEM karmaşık sayısı analitik düzlemde sıralı ikilisine karşılık gelir. Tanım : ( Modül ) : Karmaşık düzlemde ; bir z karmaşık sayısına karşılık gelen noktanın başlangıç noktasına olan uzaklığına, bu karmaşık sayının mutlak değeri veya modülü denir. z ile gösterilir. Bu ikililerden oluşan düzleme Karmaşık Düzlem denir. Aşağıdaki karmaşık sayıları karmaşık düzlemde gösteriniz. Aşağıdaki tabloyu doldurunuz. Karmaşık sayı Reel Kısmı Sanal Kısmı Modülü Eşleniği Eşleniğinin Modülü Kazanım 5 : Bir karmaşık sayının eşleniğini ve modülünü açıklar, karmaşık düzlemde gösterir. ise z nin modülünü hesaplayınız.

4 - 4 - Kazanım 6 : Karmaşık sayılarda ikinci dereceden bir bilinmeyenli denklem çözümü yapar. Not : ikinci dereceden gerçek katsayılı bir bilinmeyenli denkleminde ; olmak üzere ise denklemin birbirinden farklı iki reel kökü vardır. Bu kökler ise Ç=? ise Ç=? Not : Katsayıları, karmaşık sayı olan ikinci derecen denklemin kökleri birbirinin eşleniği olmaya bilir. Kazanım 7 : Karmaşık sayılarda toplama ve çıkarma işlemlerini ve geometrik yorumlarını yapar, toplama işleminin özelliklerini gösterir. ile bulunur. KARMAŞIK SAYILARDA TOPLAMA ve ÇIKARMA İŞLEMLERİ ise denklemin birbirine eşit iki reel kökü vardır. Bu kökler ile bulunur. İle tanımlıdır. } ise denklemin reel kökü yoktur. Karmaşık sayılı iki kökü vardır. Bu kökler Aşağıdaki tabloyu doldurunuz. ile bulunur. denkleminin çözüm kümesini bulunuz, köklerini karmaşık düzlemde gösteriniz. Not : İkinci dereceden bir bilinmeyenli gerçek katsayılı bir denklemin köklerinden biri ise diğer kök dir. Not : Kökler toplamı T, Kökler çarpımı Ç olan ikinci dereceden gerçek katsayılı bir bilinmeyenli denklemi x 2 Tx + Ç = 0 ile buluruz. Köklerinden biri olan ikinci dereceden gerçek katsayılı denklemi yazınız. Köklerinden biri olan ikinci dereceden gerçek katsayılı denklemi yazınız. Özellikler : ( Toplama İşlemi ) : 1) İki karmaşık sayının toplamı yine bir karmaşık sayıdır. 3) 4) Karmaşık sayılarda toplama işleminin etkisiz elemanı 0 (sıfır) dır. 5) nin toplama işlemine göre tersi dir.

5 - 5 - Kazanım 8 : Karmaşık sayılarda çarpma ve bölme işlemlerini yapar, çarpma işleminin özelliklerini gösterir. KARMAŞIK SAYILARDA ÇARPMA İŞLEMİ } Özellikler : ( Çarpma İşlemi ) : 1) İki karmaşık sayının çarpımı yine bir karmaşık sayıdır. 3) 4) Çarpma işleminin etkisiz elemanı 1 dir. İle tanımlıdır. 5) nin çarpma işlemine göre tersi dir. Ve Örnek: Aşağıdaki tabloyu doldurunuz. Karmaşık Sayı 6) Dağılma özelliği bir kökü ise k=? denkleminin KARMAŞIK SAYILARDA BÖLME İŞLEMİ } ( ) İle tanımlıdır. Pay ve payda, paydanın eşleniği ile çarpılır. ( )

6 - 6 - Kazanım 9 : Eşlenik ve modül ile ilgili özellikleri gösterir. EŞLENİK ve MODÜL İLE İLGİLİ ÖZELLİKLER 1) ( ) 3) 4) ve 5) 6) 7) ve ( ) ( ) Kazanım 10 : Karmaşık düzlemde iki karmaşık sayı arasındaki uzaklığı açıklar ve karmaşık sayı ile çember ilişkisini belirtir. İKİ KARMAŞIK SAYI ARASINDAKİ UZAKLIK bulunuz. Çözüm : Not : } sayıları arasındaki uzaklığı } ( ) ( ) a) b) c) d)? e) ( ) ( ) } verilsinler. } İki karmaşık sayı arasındaki uzaklık; için Bağıntısının belirttiği doğru denklemini bulunuz. Not : yerine yaz x=y bulunur. eşitsizliğini sağlayan z karmaşık sayıların karmaşık düzlemde görünü bulunuz. Not : x>y bulunur. ise Çözüm : çarpanlarına ayır.

7 - 7 - KARMAŞIK SAYI İLE ÇEMBER ARASINDAKİ İLİŞKİ eşitsizliğini sağlayan z karmaşık sayıların kümesini bulunuz. eşitliğini sağlayan karmaşık sayıların modülü en küçük ve en büyük olanların modüllerini bulunuz. Z 2 Bu denklem merkezi (a,b) ve yarıçapı r olan çemberin denklemidir. eşitliğini sağlayan karmaşık sayıların geometrik yerini gösteriniz. Not : a) eşitliği, merkezi (a,b) ve yarıçapı r olan çemberin denklemidir. b) eşitsizliği, merkezi (a,b) ve yarıçapı r olan çemberin iç bölgesidir. c) eşitsizliği, merkezi (a,b) ve yarıçapı r olan çemberin dış bölgesidir. olur.dolayısıyla En küçük z nin modülü br En büyük z nin modülü br olmak üzere eşitliğini sağlayan karmaşık sayıların geometrik yerini gösteriniz. { kümesini karmaşık düzlemde gösteriniz. eşitliğini sağlayan karmaşık sayıların geometrik yerini gösteriniz.

8 - 8 - KARMAŞIK SAYILARIN KUTUPSAL BİÇİMİ BAZI ÖNEMLİ ÖZDEŞLİKLER 7) 8) 9) 10) olmak üzere, Cevap : her iki tarafın karesini al. DİK ÜÇGENDE TRİGONOMETRİK ORANLAR 11) 1 13) DERECELİK AÇILARIN TRİGONOMETRİK ORANLARI TOPLAM FARK VE YARIM AÇI FORMÜLLERİ Sin Cos Tan Cot BİRİM ÇEMBER YARIM AÇI FORMÜLLERİ Sin Cos Tan Cot UYGULAMALAR 1) 3) 4) 5) 6) UYGULAMALAR 1) 3) 4) 5) 6) 7)

9 - 9 - Kazanım 1 : Bir noktanın Kartezyen koordinatları ile kutupsal koordinatları arasındaki bağıntıları bulur, standart biçimde verilen bir karmaşık sayının kutupsal koordinatlarını belirler ve karmaşık düzlemde gösterir. Standart biçimde verilen karmaşık sayı r nin Bulunması Açısının Bulunması Düzlemd e Gösteril mesi Karmaşık Sayının Kutupsal Biçiimi KUTUPSAL KOORDİNAT SİSTEMİ ve KARMAŞIK SAYILARIN KUTUPSAL BİÇİMİ sayını karmaşık düzlemde P noktası ile gösterelim. [OP ışınının x ekseni ile pozitif yönde yaptığı açının esas ölçüsü olsun. Olur ki P Özel olarak ile gösterilir. karmaşık sayısını ikilisi ile gösteriniz. Tanım : karmaşık sayısının biçiminde yazılışına, z karmaşık sayısının kutupsal biçimi denir. ve olmak üzere [ ] Biçiminde yazılır. z nin argümenti : Aşağıdaki karmaşık sayıları analitik düzlemde gösteriniz kutupsal biçime çeviriniz. 1) 3) 4) Aşağıda Kutupsal Koordinatları verilen karmaşık sayıları standart biçimde yazınız. 1) 3) 4) Aşağıda grafiği verilen karmaşık sayıları standart biçimde ifade ediniz. 1) İkinci bölgede 3) Üçüncü bölgede 4) Dördüncü bölgede 5) y ekseninin negatif tarafında 6) y ekseninin pozitif tarafında denir. açısına esas argüment

10 KUTUPSAL BİÇİMDE VERİLEN BİR KARMAŞIK SAYININ EŞLENİĞİ ile sayıları x-eksenine göre simetriktir. O halde UYGULAMALAR 1) Kutupsal koordinatları olan karmaşık sayının imajiner kısmı kaçtır? olduğuna göre sayısını kutupsal biçimde yazınız. 3) olduğuna göre 4) olduğuna göre ( ) kutupsal biçimini yazınız. 5) olduğuna göre karmaşık sayısının esas argümenti kaç derecedir? 6) şeklinde verilen karmaşık sayının modülünü ve esas argümentini bulunuz. 7) Aşağıdaki karmaşık sayıların esas argümentlerini bulunuz. Kazanım 2 : Kutupsal biçimde verilen iki karmaşık sayı arasında toplama, çıkarma, çarpma ve bölme işlemleri yapar. KUTUPSAL BİÇİMDEKİ KARMAŞIK SAYILARDA DÖRT İŞLEM TOPLAMA ÇIKARMA İŞLEMLERİ Kutupsal biçimde verilmiş iki karmaşık sayının toplamını ( farkını ) bulmak için, bu sayıları önce standart biçimine dönüştürmek gerekir. Dönüşüm sonunda iki karmaşık sayı toplanır. ( çıkarılır.) UYGULAMALAR Not: 1) olarak verilsinler. olduğuna göre karmaşık sayısını bulunuz. olarak verilsinler. 3) Olmak üzere, işlemlerini yapınız. a) b) c) d) e) sayıları için a) b) karmaşık

11 ÇARPMA İŞLEMİ } Kazanım 3 : Bir karmaşık sayının orijin etrafında pozitif yönde açısı kadar döndürülmesiyle elde edilen karmaşık sayıyı bulur. 3 ORİJİN ETRAFINDA DÖNME noktasını orijin etrafında, orijine olan uzaklığı değiştirmeksizin açısı kadar döndürerek noktasını elde edersek; Verilenlere göre BÖLME İŞLEMİ } olarak verilsin. olur. karmaşık sayının orijin etrafında pozitif yönde 30 0 döndürülmesi ile elde edilen noktanın koordinatlarını bulunuz. noktasının orijin etrafında pozitif yönde 75 0 döndürülmesiyle elde edilen noktanın koordinatlarını bulunuz z karmaşık sayısı için olduğuna göre, z nin orijin etrafında pozitif yönde 60 0 döndürülmesiyle oluşacak karmaşık sayı nedir? (standart) Verilenlere göre z olmak üzere Z karmaşık sayısının pozitif yönde döndürülürse hangi noktaya gelir. ( standart koordinat )

12 Kazanım 4 : De Moivre kuralını ifade eder ve kutupsal koordinatlarda verilen bir karmaşık sayının kuvvetlerini belirler. BİR KARMAŞIK SAYININ KUVVETİ ( DE MOİVRE ) için; olur. Yani olmak üzere karmaşık sayıyı bulunuz. UYGULAMALAR 1) 3) ( ) 4) 5) 6) ( ) } } 7) Grafikte verilenlere göre; olmak üzere, De Moivre formülü kullanarak karmaşık sayıyı bulunuz. olmak üzere, karmaşık sayısını bulunuz KUTUPSAL BİÇİMDE VERİLEN KARMAŞIK SAYININ ÇARPMA İŞLEMİNE GÖRE TERSİ a) b) c) ( ) 8) Grafikte verilenlere göre Not : 2 4 ( ) olmak üzere bölme işlemini yapınız. Çözüm :

13 Kazanım 5 : Verilen bir karmaşık sayının dereceden köklerini belirler, kareköklerini ve küp köklerini bulur, karmaşık düzlemde gösterir ve geometrik olarak yorumlar. KARMAŞIK SAYININ KÖKLERİ [ ] karmaşık sayısı verilsin. ise w nin kökleri; ( [ ]) [ ] k=0 için ve k=1 için Bulunurlar. [ ] olduğuna göre karmaşık sayısının kareköklerini bulunuz. denkleminin çözüm kümesini bulunuz. Not : olsun. 1) için karmaşık sayısının kökleri karmaşık sayısının kareköklerini bulunuz. Karmaşık düzlemde gösteriniz. denkleminin çözüm kümesini bulunuz. karmaşık sayısının kareköklerini bulunuz. ise Ç=? Tanım : bir karmaşık sayı olsun. denkleminin çözümü olan karmaşık sayılara z nin n. dereceden kökleri denir. [ ] ile bulunur. karmaşık sayısının küpköklerini bulunuz. Karmaşık düzlemde gösteriniz. karmaşık sayısının köklerini karmaşık düzlemde gösteriniz. kümesini bulunuz. denkleminin çözüm karmaşık sayısının küpköklerini bulunuz ( ) için ile bulunur. ( )

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri 1. KOMPLEKS SAYILAR 1.1. Kompleks Sayıların Cebirsel ve Geometrik Özellikleri Tanım 1. x, y R olmak üzere (x, y) sıralı ikililerine kompleks sayı denir. Burada x, z nin reel kısmı, ve y, z nin imajiner

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

KARMAŞIK SAYILAR Test -1

KARMAŞIK SAYILAR Test -1 KARMAŞIK SAYILAR Test -. i olmak üere, i olduğuna göre, Re() kaçtır? B) C) 0 D) E). i olmak üere, 00 0 06 i i i işleminin sonucu aşağıdakilerden hangisine i B) i C) i + D) E) i. i olmak üere, i olduğuna

Detaylı

Örnek...3 : β θ. Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 4. w i. = n z { i=0,1,2,...,(n 1) } Adım 1. Adım 2. Adım 3

Örnek...3 : β θ. Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 4. w i. = n z { i=0,1,2,...,(n 1) } Adım 1. Adım 2. Adım 3 KARMAŞIK SAYININ ORJİN ETRAFINDA DÖNDÜRÜLMESİ z = a + bi karmaşık sayısını, uzunluğunu değiştirmeden orijin etrafında pozitif yönde β kadar döndürülmesiyle elde edilen yeni karm aşık sa yı w olsun. İm

Detaylı

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir. Sunum ve Sistematik. BÖLÜM: KARMAŞIK SAYILAR ALIŞTIRMALAR Bu başlık altında her bölüm kazanımlara ayrılmış, kazanımlar tek tek çözümlü temel alıştırmalar ve sorular ile taranmıştır. Özellikle bu kısmın

Detaylı

Merhaba Arkadaşlar; Bizim okul(bergama Anadolu Öğretmen Lisesi) bu sene teftiş geçirdi. Ben aşağıdaki tebliğler dergisine göre seçmeli matematik

Merhaba Arkadaşlar; Bizim okul(bergama Anadolu Öğretmen Lisesi) bu sene teftiş geçirdi. Ben aşağıdaki tebliğler dergisine göre seçmeli matematik Merhaba Arkadaşlar; Bizim okul(bergama Anadolu Öğretmen Lisesi) bu sene teftiş geçirdi. Ben aşağıdaki tebliğler dergisine göre seçmeli matematik yıllık planını hazırladım. (Anlamsız ama yönetmeliklere

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

7.1 Karmaşık Sayılar. x 2 = 1. denkleminin çözümü olarak +i ve i sayıları tanımlanır. Tanım 7.1.

7.1 Karmaşık Sayılar. x 2 = 1. denkleminin çözümü olarak +i ve i sayıları tanımlanır. Tanım 7.1. Bölüm 7 Karmaşık Sayılar Karmaşık sayılar gerçel sayıların genişlemesiyle elde edilen daha büyük bir kümedier. Genişleme şu gereksemeden doğmuştur: x 2 = +1 denklemimin çözümü +1, 1 sayılarıdır ve R içindedir.

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

Cebir Notları. Karmaşık sayılar TEST I. Gökhan DEMĐR, 2006

Cebir Notları. Karmaşık sayılar TEST I. Gökhan DEMĐR,  2006 MC Karmaşık saılar www.matematikclub.cm, 006 Cebir Ntları Gökhan DEMĐR, gdemir@ah.cm.tr TEST I. i 897 + i 975 + i 997 i 995 tplamının snucu i B) i C) i D) i E) 5i 8. Z = i nin kutupsal biçimi (cs0 + isin0)

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR - 1-2 ÜNİTE İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR ÖĞRENME ALANI CEBİR İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere Şeklindeki açık önermelere, ikinci dereceden bir bilinmeyenli

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ

BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ BÖLÜM - KOMPLEKS (KARMAŞIK) SAYILAR - KARMAŞIK SAYILAR VE ÖELLİKLERİ ax + bx +c ikinci derece denkleminin < iken reel köklerinin olmadığını biliyoruz. Örneğin x + denkleminin reel sayılar kümesinde çözümü

Detaylı

( KARMAŞIK SAYI MODÜL VE ÖZELLİKLERİ İKİ KARMAŞIK SAYI ARASI UZAKLIK DÜZLEMDE BELİRTTİĞİ BÖLGELER ) 1) z = z = i.z = z =... 2) z 1.

( KARMAŞIK SAYI MODÜL VE ÖZELLİKLERİ İKİ KARMAŞIK SAYI ARASI UZAKLIK DÜZLEMDE BELİRTTİĞİ BÖLGELER ) 1) z = z = i.z = z =... 2) z 1. BİR KARMAŞIK SAYININ MUTLAK DEĞERI (MODÜLÜ) Karmaşık düzlemde, bir karmaşık sayıya karşılık gelen noktanın (A noktasının), başlangıç noktasına uzaklığına bu sayının mutlak değeri (modülü) denir ve z şeklinde

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14. 1. Ünite: Polinomlar Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Polinomlarda Bölme, Bölüm ve Kalan Bulma 1 1 1 1 1 1 1 1 1

Detaylı

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ EKİM 07-08 EĞİTİM - ÖĞRETİM YILI 0. SINIF MATEMATİK DERSİ 0... Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. 0... Sınırsız sayıda tekrarlayan nesnelerin dizilişlerini

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik 1. Ünite: Geometriden Olasılığa 1. Bölüm: Yansıyan ve Dönen Şekiller, Fraktallar Yansıma, Öteleme, Dönme Fraktallar 2. Bölüm: Üslü Sayılar Tam

Detaylı

II. DERECEDEN DENKLEMLER Test -1

II. DERECEDEN DENKLEMLER Test -1 II. DERECEDEN DENKLEMLER Test -. 5 {, 5} {, 5} { 5, } {, 5} {, 5} 5. 5 {,, } {,, } {,, } {,, } {,, }.. 5 7 7 5 5,, 5 5, 5 5, 5 5, 6. 7. 5 95 { 5,, } {,, 5} { 5,, 9} {,, 5} { 9,, 5} 6 66 {, } {,, } {,,

Detaylı

PENDİK ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI 10.SINIF MATEMATİK DERSİ YILLIK PLANI

PENDİK ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI 10.SINIF MATEMATİK DERSİ YILLIK PLANI PENDİK ANADOLU İMAM HATİP LİSESİ 0-0 EĞİTİM VE ÖĞRETİM YILI 0.SINIF MATEMATİK DERSİ YILLIK PLANI EYLÜL EKİM. Gerçek katsayılı ve tek değişkenli polinomu kavram olarak örneklerle açıklar, polinomun derecesini,

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Ay 2016 2017 EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Hafta ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIMLAR EYLÜL 3 4 Sayılar ve İşlemler Çarpanlar

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

θ x Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 3 Alıştırmalar KARMAŞIK SAYININ KUTUPSAL (TRİGONOMETRİK) GÖSTERİMİ 1) z = 1 + i 2) z = 1 i

θ x Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 3 Alıştırmalar KARMAŞIK SAYININ KUTUPSAL (TRİGONOMETRİK) GÖSTERİMİ 1) z = 1 + i 2) z = 1 i KARMAŞIK SAYININ KUTUPSAL (TRİGONOMETRİK) GÖSTERİMİ z = a + bi y karmaşık sayısının kartezyen bi koordinatları z=(a, b) dir. Ya da görüntüsü A noktasıdır. A Alıştırmalar Karmaş ık sa yıs ın ın kutupsal

Detaylı

a = b ifadesine kareköklü ifade denir.

a = b ifadesine kareköklü ifade denir. KAREKÖKLÜ SAYILAR Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır. Karesi

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER HEDEFLER İÇİNDEKİLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER Özdeşlikler Birinci Dereceden Bir Bilinmeyenli Denklemler İkinci Dereceden Bir Bilinmeyenli Denklemler Yüksek Dereceden Denklemler Eşitsizlikler

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

1.DERECEDEN DENKLEMLER.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) .DERECEDEN DENKLEMLER Rüstem YILMAZ 546 550 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları 8 Ağustos 07 0. Bir Bilinmeyenli

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 10. SINIF MATEMATİK DERSİ YILLIK PLANI

TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 10. SINIF MATEMATİK DERSİ YILLIK PLANI 9 Eylül- Eylül 0-07 TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 0. SINIF MATEMATİK DERSİ YILLIK PLANI Veri, Sayma ve Sayma. Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. Sıralama

Detaylı

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2 1. 1 =? Lys 1 7. x + y = (6k) (x k) + y = (k 5) olduğuna göre x y =?. 6 a.b = ise a + 1 b. b 1 a =? 1k 8. x ve y birbirinden farklı pozitif gerçel sayılar olmak üzere, x y y x. x.y = (x y) ise x y =?.

Detaylı

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. 1 DENKLEMLER: Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. Bir denklemde eşitliği sağlayan(doğrulayan) değerlere; verilen denklemin kökleri veya

Detaylı

DERS: MATEMATİK I MAT101(04)

DERS: MATEMATİK I MAT101(04) DERS: MATEMATİK I MAT0(0) ÜNİTE: FONKSİYONLAR KONU:. TRİGONOMETRİK FONKSİYONLAR Öncelikle açı ölçü birimlerine göz atalım: Bilindiği gibi bir tam açının ölçüsü 0 derecedir. Diğer bir açı ölçü birimi de

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak Akıl LYS MATEMATİK DENEME SINAVI 0505- Ortak Akıl Adem ÇİL Ali Can GÜLLÜ Ayhan YANAĞLIBAŞ Barbaros GÜR Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN

Detaylı

LYS MATEMATİK DENEME - 1

LYS MATEMATİK DENEME - 1 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 1.. Kutupsal Formda Gösterim z x + iy vektörünün pozitif reel eksenle yaptığı açıya θ diyelim. cos θ x, sin θ y ve buradan tan θ y θ arctan y olup θ ya z z

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

ÖRNEK LİSANS YERLEŞTİRME SINAVI - 1 GEOMETRİ TESTİ. Ad Soyad : T.C. Kimlik No:

ÖRNEK LİSANS YERLEŞTİRME SINAVI - 1 GEOMETRİ TESTİ. Ad Soyad : T.C. Kimlik No: LİSANS YERLEŞTİRME SINAVI - GEOMETRİ TESTİ ÖRNEK Ad Soyad : T.C. Kimlik No: Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının Metin Yayınları nın yazılı

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49

Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49 Ç NDEK LER Bölüm1: Say Sistemleri...1 Say Sistemi...2 Desimal (Onluk) Say Sistemi...2 Say Basamaklar ve Taban...4 Binary ( kilik) Say Sistemi...4 Oktal (Sekizlik) Say Sistemi...7 Heksadesimal (Onalt l

Detaylı

( 2x+1, 3y 1. Örnek...4 : A = {1, 2, 3} ve B = {a, b} kümeleri için, AxB ve BxA kümelerini liste biçimde yazınız.

( 2x+1, 3y 1. Örnek...4 : A = {1, 2, 3} ve B = {a, b} kümeleri için, AxB ve BxA kümelerini liste biçimde yazınız. SIRALI İKİLİ a ve b'nin (a,b) biçiminde tek bir eleman olarak yazılmasına sıralı ikili ya da kısaca ikili denir. Burada a' ya ikilinin birinci bileşeni, b' ye ise ikinci bileşeni denir. Örneğin ; (4, 3)

Detaylı

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ Örnek : Taksi ile yapılan yolculukların ücreti taksimetre ile belirlenir Bir taksimetrenin açılış ücreti 2 TL, sonraki her kilometre başına 1 TL ücret ödendiğine

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif tamsayılar

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10 LİSNS YRLŞTİRM SINVI- MTMTİK-GOMTRİ SINVI MTMTİK TSTİ SORU KİTPÇIĞI 0 U SORU KİTPÇIĞI LYS- MTMTİK TSTİ SORULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN E Y L Ü L ÜNİTE SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN 9.09.06/.09.06 6.09.06/0.09.06 Çarpanlar ve Katlar Çarpanlar ve Katlar 8... Verilen

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ 1 SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif

Detaylı

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Đşlem ĐŞLEM A ve A x A nın bir alt kümesinden A ya her fonksiyona ikili işlem denir. Örneğin toplama, çıkarma, çarpma birer işlemdir. Đşlemler

Detaylı

DOĞRUNUN ANALİTİK İNCELEMESİ

DOĞRUNUN ANALİTİK İNCELEMESİ Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen

Detaylı

Trigonometrik Fonksiyonlar

Trigonometrik Fonksiyonlar Trigonometrik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 6 Amaçlar Bu üniteyi çalıştıktan sonra; açı kavramını hatırlayacak, açıların derece ölçümünü radyan ölçümüne ve tersine çevirebilecek, trigonometrik

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. abba dört basamaklı, ab iki basamaklı doğal saıları için, abba ab. a b eşitliğini sağlaan kaç farklı (a, b) doğal saı ikilisi vardır? 7 olduğuna göre, a b toplamı kaçtır? 9.,,

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. Üç basamaklı doğal saılardan kaç tanesi, 8 ve ile tam bölünür? 8 9. ile in geometrik ortası z dir. ( z). ( z ). z aşağıdakilerden hangisidir?. 9 ifadesinin cinsinden değeri

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

: Matematik. : 9. Sınıf. : Sayılar. : (6) Ders Saati

: Matematik. : 9. Sınıf. : Sayılar. : (6) Ders Saati MATEMATİK DERS PLÂNI Dersin adı Sınıf Öğrenme Alanı : Matematik : 9. Sınıf : Sayılar Başlangıç Tarihi :.. /../. Alt Öğrenme Alanı : Mutlak Değer Önerilen Süre : (6) Ders Saati Öğrenci Kazanımları /Hedef

Detaylı

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur?

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur? 3.1 Koordinat sistemleri 3.2 Kartezyen koordinatlar 3.3 Vektörler 3.4 Vektörlerin bileşenleri 3.5 Vektörlerin toplanması 3.6 Vektörlerin çıkarılması 37Bii 3.7 Birim vektör 3 VEKTÖRLER Pilot uçağın kokpit

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar.

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar. 7. SINIF KAZANIM VE AÇIKLAMALARI M.7.1. SAYILAR VE İŞLEMLER M.7.1.1. Tam Sayılarla Toplama, Çıkarma, Çarpma ve Bölme İşlemleri M.7.1.1.1. Tam sayılarla toplama ve çıkarma işlemlerini yapar; ilgili problemleri

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 22. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 22. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 22. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ SORU-1.

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir?

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir? MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir3@ahoo.com.tr. Dereceden Denklem ve Eşitsizlikler- TEST I A) 1 B) C) 3 D) 4 E) 5 1. 1/ = 0 denkleminin köklerinin toplamı aşağıdakilerden

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN ÜNİTE ÖĞRENME ALANI ALT ÖĞRENME ALANI Ders Saati 9.09.06/.09.06 Tam Sayılarla Çarpma ve Bölme i 7...

Detaylı

1989 ÖYS. olduğuna göre a-b kaçtır? A) 2 B) 2 C) 2 2 D) 2 2 E) 4

1989 ÖYS. olduğuna göre a-b kaçtır? A) 2 B) 2 C) 2 2 D) 2 2 E) 4 989 ÖYS. a a a b 8 olduğuna göre a-b kaçtır? C). a ile b nin aritmetik ortalaması 5 tir. a ile geometrik ortalaması 0, b ile geometrik ortalaması 0 olan sayı nedir? 0 C) 8 ise a+b+d toplamı ne-. a+b+c=d

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ 1. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için

Detaylı

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)

Detaylı

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi ÜNE: AM AYIAR N: am ayılar ümesinde Çıkarma şlemi ÖRNE RAR VE ÇÖZÜMER 1. [(+17) (+25)] + [( 12) (+21)] işleminin sonucu A) 41 B) 25 C) 25 D) 41 Çıkarma işlemi yapılırken çıkanın işareti değişir ve eksilen

Detaylı

;] u Y hb* p(a/ > V aaa!a!a!a!!!!!a! BASIN KİTAPÇIĞI

;] u Y hb* p(a/ > V aaa!a!a!a!!!!!a! BASIN KİTAPÇIĞI BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Matematik Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 75 dakikadır. 3. Bu kitapç ktaki testlerde

Detaylı

Sayfa No. Test No İÇİNDEKİLER TRİGONOMETRİ

Sayfa No. Test No İÇİNDEKİLER TRİGONOMETRİ TRİGONOMETRİ İÇİNDEKİLER Sayfa No Test No YÖNLÜ AÇI VE YÖNLÜ YAY KAVRAMI -AÇI ÖLÇÜ BİRİMLERİ...00-00.... BİRİM ÇEMBER...00-00.... BİR AÇININ ESAS ÖLÇÜSÜ...00-00.... BİR AÇININ TRİGONOMETRİK ORANLARININ

Detaylı

TRİGONOMETRİ Test -1

TRİGONOMETRİ Test -1 TRİGONOMETRİ Test -. y. y K O O. nalitik düzlemde verilen O merkezli birim çemberde hangi noktanın koordinatları (0, ) dir? (O noktası orijindir.) O y [OK] açıortay olmak üzere, nalitik düzlemde verilen

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4)

1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4) HAZİNE-1 Düzlemde sabit M(a,b) noktasından eşit uzaklıkta bulunan noktaların geometrik yeri, M merkezli R yarıçaplı çemberdir. HAZİNE-2 O(0,0) merkezli, R yarıçaplı çemberin denklemi; x 2 +y 2 =R 2 dir.

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MTEMTİK TESTİ. Bu testte soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. d + n - d + n d - + n- d + + n işleminin sonucu kaçtır?., R olmak üzere, + +

Detaylı

BASIN KİTAPÇIĞI ÖSYM

BASIN KİTAPÇIĞI ÖSYM BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Matematik Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 75 dakikadır. 3. Bu kitapç ktaki testlerde

Detaylı