Sürekli Rastsal Değişkenler
|
|
- Irmak Emel Toker
- 2 yıl önce
- İzleme sayısı:
Transkript
1 Sürekli Rastsal Değişkenler
2 Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım denir. Örnek: uzunluk, ağırlık, vb.
3 Uzunluk dağılımı için oluşturulan histogram a b c d a) 100 bayandan oluşan rastsal bir örneklem b) Örneklem büyüklüğü arttı, sınıf genişliği azaldı. c) Örneklem büyüklüğü daha da arttı, sınıf genişliği daha da azaldı. d) Popülasyonun normal dağılımı
4 Normal dağılımın özellikleri: 1. Simetrik ve çan eğrisi biçimindedir. 2. Tamamen ortalaması,, ve standart sapması,, ile tanımlanmaktadır. 3. Normal dağılım eğrisi altında kalan alan 1 e eşittir. 4. x-eksenine yatay asimtotiktir (x-eksenine yaklaşmakta fakat dokunmamaktadır).
5 Simetrik ve çan eğrisi şeklinde: Simetrik ve çan şeklinde. Normal dağılım eğrisidir. Simetrik, ama çan şeklinde değil. Normal dağılım eğrisi değildir. Normal dağılıma uygun olan veri setlerinde ortalama, medyan ve mod aynı değerdir.
6 Tamamen ortalaması ve standart sapması ile tanımlanmaktadır. Bükülme noktası eğrinin yön değiştirdiği noktalardır. - ve + bükülme noktalarıdır. Standart sapma eğrinin şeklini belirlemektedir. Standart sapma ne kadar büyük olursa, normal dağılım eğrisinin kuyruk kısmında kalan alan daha büyük olmaktadır (eğri daha yassıdır).
7 Eğrinin altında kalan alan = 1: Belli bir rastsal değişkenin (x) aldığı herhangi bir değerin solunda kalan alan, rastsal olarak seçilen bir değerin x değerinden daha az olma olasılığına eşittir [P(X < x)].
8 x-eksenine yatay asimtotiktir: Doğru Yanlış
9 Kaç tane normal dağılım eğrisi vardır? ve için sonsuz ihtimal olduğu için sonsuz sayıda normal dağılım eğrisi bulunmaktadır.
10 Standart Normal Dağılım: Standart normal dağılım normal dağılımla aynı özellikleri taşımakla birlikte, standart sapması 1 ve ortalaması 0 dır. Standart Normal Dağılımın Özellikleri: 1. Standard normal normal dağılım eğrisi simetrik ve çan şeklindedir. 2. Tamamen ortalaması,, ve standart sapması,, ile tanımlanmaktadır, = 0 and = Eğrinin altındaki alan 1 e eşittir. 4. x-eksenine yatay asimtotiktir.
11 Standart Normal Dağılıma Dönüştürme: Standard Skor Formülü (z-değeri):
12 Normal dağılım eğrisini çiziniz: = 40 ve = 5 ise, ortalama değerini, bükülme noktalarını ve her bir x değerinin nerede olacağını belirtiniz. Çözüm: x 1 = 33 ve x 2 =
13 Standart Normal Dağılıma Dönüştürünüz: = 40 ve = 5, ise her bir x değeri için standart skoru hesaplayınız ve standart normal dağılım eğrisindeki yerini belirtiniz. Çözüm: x 1 = 33 and x 2 =
14 Standart Normal Dağılıma Dönüştürünüz: = 48 ve = 5, ise x = 45 değerini standart normal dağılım eğrisi üzerinde gösteriniz. Çözüm:
15 Örnek Her bir soru için normal dağılım eğrisi çiziniz. Ortalama, bükülme noktaları ve verilen x değerlerinin nerede olması gerektiğini gösteriniz. Standart normal dağılım eğrisini çiziniz. Verilen x değeri için standart skoru hesaplayınız. z-değerini gösteriniz. μ=65, σ=20, x=40 μ=5, σ=0.25, x=4.8 μ=15, σ=2, x=19 μ=0.023, σ=0.001, x=0.02 μ=12000, σ=2000, x=10750
16 Normal Dağılım Tablosunun Okunması Normal Dağılımın Olasılığı: Belirli bir aralıkta değerler alan rastsal bir değişkenin olasılığı, ilgili bölgedeki eğrinin altında kalan alana eşittir. P(X > 80) = P(X 80)
17 Standart Normal Dağılım Tablosu: Standart Normal Dağılım Tablosu ( z) z
18 z-değerinin sol tarafındaki alan:
19 z-değerinin sol tarafındaki alanı bulunuz: a. z = 1.69 b. z = c. z = 0 d. z = 4.2 e. z = - 4.2
20 z-değerinin sağ tarafındaki alan: z-değerinin sağ tarafındaki alan= 1 z-değerinin sol tarafındaki alan
21 z-değerinin sağ tarafındaki alanı bulunuz: a. z = 3.02 b. z = c. z = 0 d. z = 5.1 e. z = - 5.1
22 z 1 ve z 2 arasındaki alan:
23 z 1 ve z 2 arasındaki alanı bulunuz: a. z 1 = 1.16, z 2 = 2.31 b. z 1 = -2.76, z 2 = 0.31 c. z 1 = -3.01, z 2 = -1.33
24 Kuyruklardaki alan:
25 Kuyruklardaki alanı bulunuz: a. z 1 = 1.25, z 2 = 2.31 b. z 1 = -2.50, z 2 = 3.00 c. z 1 = -1.23, z 2 = 1.23
26 Örnek Verilen z değerleri arasındaki alanı bulunuz. 1) z = 0.35 and z = ) z = and z = 2.16 z 1 in solundaki ve z 2 nin sağındaki alanı bulunuz. 1) z 1 = -2.31, z 2 = ) z 1 = 1.31, z 2 = 1.93 Verilen olasılıkları bulunuz. 1) P(z < -3.14) 2) P(-1.86 < z < 3.14) 3) P(z < or z > 1.26)
27 Normal Dağılım Kullanılarak Olasılıkların Bulunması Standart olmayan normal dağılım eğrisinin altındaki alanı bulurken; x değerleri standart skorlara dönüştürülür ve standart normal dağılım kullanılır.
28 Olasılığı hesaplayınız: ABD de yaşayanların IQ skorlarının ortalaması 100, standart sapması ise 15 olduğu bilinmektedir. Popülasyonun yüzde kaçının IQ skorları 92 den daha azdır? Çözüm: = 100, = 15, x = 92 P(z < -0.53) = = 29.81%
29 Olasılığı hesaplayınız: ABD de yaşayanların IQ skorlarının ortalaması 100, standart sapması ise 15 olduğu bilinmektedir. Popülasyonun yüzde kaçının IQ skorları 130 dan daha fazladır? Çözüm: = 100, = 15, x = 130 P(z > 2.00) = = 2.28%
30 Olasılığı hesaplayınız: ABD de yaşayanların IQ skorlarının ortalaması 100, standart sapması ise 15 olduğu bilinmektedir. Popülasyonun yüzde kaçının IQ skorları 90 ve 110 arasındadır? Çözüm: = 100, = 15, x 1 = 90 ve x 2 = 110 P(-0.67 < z < 0.67) = = 49.72%
31 Olasılığı hesaplayınız: ABD de yaşayanların IQ skorlarının ortalaması 100, standart sapması ise 15 olduğu bilinmektedir. Popülasyonun yüzde kaçının IQ skorları 80 den daha az veya 120 den daha fazladır? Çözüm: = 100, = 15, x 1 = 80 ve x 2 = 120 P(z < veya z > 1.33) = = 18.35%
32 Örnek Buffalo Ticaret Odası ndan alınan verilere göre, çalışanların haftalık maaşlarının normal dağılım özelliği gösterdiği, ortalamanın 700$ ve standart sapmanın 50$ olduğu tespit edilmiştir. Buffalo dan rastsal olarak seçilen bir çalışanın; a) 600$ ın altında haftalık maaş alma olasılığı nedir? b) 810$ ın üzerinde haftalık maaş alma olasılığı nedir? c) 620$ ve 770$ arasında haftalık maaş alma olasılığı nedir? d) 620 den daha az veya 780$ den daha fazla haftalık maaş alma olasılığı nedir?
33 t-dağılımı ve t-değerleri t-dağılımı: Şekli normal dağılım eğrisine benzemekle birlikte, kuyruklarda daha fazla alanı bulunan ve serbestlik derecesi ile tanımlanan dağılımdır.
34 t-dağılımının özellikleri: 1. t-dağılım eğrisi simetrik ve çan şeklindedir ve merkezi 0 civarında bulunmaktadır. 2. Tamamen serbestlik derecesi, yada s.d. (bir parametrenin tahmin edilmesinde kullanılan bağımsız bilgi sayısı) ile tanımlanmaktadır 3. t-dağılım eğrisinin altında kalan alan 1 e eşittir. 4. x-eksenine yatay asimtotiktir.
35 Normal dağılım ve t-dağılımının karşılaştırılması:
36 t-dağılımı tablosu: t-dağılımı tablosu s.d
37 t-dağılımı tablosu: 1. Üst satırdaki sayılar, t-değerinin sağındaki alanı ( ) ifade etmektedir. 2. Sol sütundaki sayılar serbestlik derecesini ifade etmektedir (s.d. = n 1). 3. İlgili sütun ve satırın kesiştiği hücredeki değer t- değeridir.
38 t ve s.d.= 25 ise t-değerini bulunuz. Student t-dağılımı t-distribution tablosu Table d.f t = 2.060
39 Kaç serbestlik derecesi t = sonucunu vermektedir? Student t-dağılımı t-distribution tablosu Table d.f d.f. = 4
40 s.d.=17 ve sağındaki alan 0.1 e eşit olan t-değerini bulunuz. Student t-dağılımı t-distribution tablosu Table d.f t = 1.333
Merkezi Limit Teoremi
Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal
13. Olasılık Dağılımlar
13. Olasılık Dağılımlar Mühendislik alanında karşılaşılan fiziksel yada fiziksel olmayan rasgele değişken büyüklüklerin olasılık dağılımları için model alınabilecek çok sayıda sürekli ve kesikli fonksiyon
SÜREKLİ OLASILIK DAĞILIŞLARI
SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla
SÜREKLĠ OLASILIK DAĞILIMLARI
SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde
SÜREKLİ RASSAL DEĞİŞKENLER
SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.
BÖLÜM 12 STUDENT T DAĞILIMI
1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir
1.58 arasındaki her bir değeri alabileceği için sürekli bir
7.SUNUM Hatırlanacağı gibi, kesikli rassal değişkenler sonlu (örneğin; 0, 1, 2,...,10) veya sayılabilir sonsuzlukta (örneğin; 0, 1, 2,...) değerler alabilmektedir. Fakat birçok uygulamada, rassal değişkenin
Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma
2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 8: Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır. Bu anlamda, anakütleden çekilen
İstatistik ve Olasılık
İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen
SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım
SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin
LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ TELAFĐ SINAVI SORULARI
LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ TELAFĐ SINAVI SORULARI Tarih/Saat/Yer: 20.06.16/15:00-16:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz Öğrenci
ARALIK TAHMİNİ (INTERVAL ESTIMATION):
YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta
Mühendislikte İstatistiksel Yöntemler
Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.
Normal Dağılım ve Puan Dönüşümleri (z ve T puanı)
Normal Dağılım ve Puan Dönüşümleri (z ve T puanı) Normal Dağılım Normal Dağılımın Özellikleri Normal Dağılım Eğrisi Altında Kalan Alan ve Olasılıklar Standart Normal Dağılım Standart Puanlar Z ve T puanları
BÖLÜM 9 NORMAL DAĞILIM
1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi
OLASILIK ve KURAMSAL DAĞILIMLAR
OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine
ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL
ANADOLU ÜNİVERSİTESİ ENM 317 Prof. Dr. Nihal ERGİNEL 2 ÖRNEKLEME Anakütleden n birimlik örnek alınması ve anakütle parametrelerinin örnekten tahmin edilmesidir. 3 ÖRNEKLEME ALMANIN NEDENLERİ Anakütleye
LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ DÖNEM SONU SINAV SORULARI
LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ DÖNEM SONU SINAV SORULARI Tarih/Saat/Yer: 15.06.16/09:00-10:30/AS115-116-117 Instructor: Prof. Dr. Hüseyin
LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI
LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI Tarih/Saat/Yer: 24.06.16/11:00-12:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz
Copyright 2004 Pearson Education, Inc. Slide 1
Slide 1 Bölüm 2 Verileri Betimleme, Keşfetme, ve Karşılaştırma 2-1 Genel Bakış 2-2 Sıklık Dağılımları 2-3 Verilerin Görselleştirilmesi 2-4 Merkezi Eğilim Ölçüleri 2-5 Değişimin Ölçülmesi 2-6 Nispi Sabitlerin
Bölüm 2 Verileri Betimleme, Keşfetme, ve Karşılaştırma
Slide 1 1 Bölüm 2 Verileri Betimleme, Keşfetme, ve Karşılaştırma 2-1 Genel Bakış 2-2 Sıklık Dağılımları 2-3 Verilerin Görselleştirilmesi 2-4 Merkezi Eğilim Ölçüleri 2-5 Değişimin Ölçülmesi 2-6 Nispi Sabitlerin
İstatistiksel Yorumlama
İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız
11. Hafta Ders Notları BİR İSTATİSTİĞE DAİR FARKLI ÖRNEKLEMLERDEN ELDE EDİLEN DEĞERLERİN DAĞILIMI (SAMPLING DISTRIBUTION OF A STATISTIC)
11. Hafta Ders Notları BİR İSTATİSTİĞE DAİR FARKLI ÖRNEKLEMLERDEN ELDE EDİLEN DEĞERLERİN DAĞILIMI (SAMPLING DISTRIBUTION OF A STATISTIC) Hatırlanacağı üzere, bir anakütleye ait olan sayısal değerlere (örneğin
Olasılık ve Normal Dağılım
Olasılık ve Normal Dağılım P = 0 İmkansız P =.5 Yarı yarıya P = 1 Kesin Yazı-Tura 1.5 2 1.5 2.5.5.25 Para atışı 10 kere tekrarlandığında Yazı Sayısı f % 0 3 30 1 6 60 2 1 10 Toplam 10 100 Atış 1000 kere
ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006
ĐŞLE 5 ĐSTATĐSTĐK ARA SINAV Mayıs 00 Adı Soyadı: No: [0 puan] -Bir Üniversitede okutulan derslerin öğrenciler tarafından değerlendirilmesi amacı ile hazırlanan bir anket formundaki sorulardan biri: Aldığınız
Popülasyon Ortalamasının Tahmin Edilmesi
Güven Aralıkları Popülasyon Ortalamasının Tahmin Edilmesi Tanımlar: Nokta Tahmini Popülasyon parametresi hakkında tek bir rakamdan oluşan tahmindir. Popülasyon ortalaması ile ilgili en iyi nokta tahmini
Ders 9: Kitle Ortalaması ve Varyansı için Tahmin
Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Kitle ve Örneklem Örneklem Dağılımı Nokta Tahmini Tahmin Edicilerin Özellikleri Kitle ortalaması için Aralık Tahmini Kitle Standart Sapması için Aralık
rasgele değişkeninin olasılık yoğunluk fonksiyonu,
3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının
İstatistik ve Olasılık
İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde
Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.
Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,
Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.
.4. Merkezi Eğilim ve Dağılım Ölçüleri Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin
MATE211 BİYOİSTATİSTİK
MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: 180 230 190 186 220 191
Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.
4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans
ASTROİSTATİSTİK 11. KONU
ASTROİSTATİSTİK 11. KONU Hazırlayan: Doç. Dr. Tolgahan KILIÇOĞLU 11. NORMAL DAĞILIM Önceki konularda da değindiğimiz gibi doğada karşımıza çıkan birçok olgu bir normal dağılım (Gauss eğrisi veya çan eğrisi)
Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5
Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın
Mühendislikte İstatistik Yöntemler
.0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0
SÜREKLİ OLASILIK DAĞILIMI
SÜREKLİ OLASILIK DAĞILIMI Normal Olasılık Dağılımı Akülerin dayanma süresi, araçların belli bir zamanda aldığı yol, bir koşuya katılanların bitirme süresi gibi sayılamayacak kadar çok değer alabilen sürekli
Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH
BİYOİSTATİSTİK Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Olasılık Hatırlatma Olasılık teorisi,
Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler
Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki
8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,
İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2
BİYOİSTATİSTİK. Genel Uygulama 1. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH
BİYOİSTATİSTİK Genel Uygulama 1 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Soru 1 Ege Üniversitesi Diş
JEODEZİK VERİLERİN İSTATİSTİK ANALİZİ. Prof. Dr. Mualla YALÇINKAYA
JEODEZİK VERİLERİN İSTATİSTİK ANALİZİ Prof. Dr. Mualla YALÇINKAYA Karadeniz Teknik Üniversitesi, Harita Mühendisliği Bölümü Trabzon, 2018 VERİLERİN İRDELENMESİ Örnek: İki nokta arasındaki uzunluk 80 kere
Doç.Dr.İstem Köymen KESER
Doç.Dr.İstem Köymen KESER Güven Aralıkları Ortalama yada iki ortalama farkı için biliniyor bilinmiyor n30 n
BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH
BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Uygulamalı bilim
BİYOİSTATİSTİK HİPOTEZ TESTLERİ
BİYOİSTATİSTİK HİPOTEZ TESTLERİ Doç. Dr. Mahmut AKBOLAT *Bir ana kütlenin herhangi bir özelliği hakkında karar vermek için ana kütledeki bütün elemanların ölçüme tabi tutulması en iyi yoldur. *Ana kütlenin
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki
009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL
Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek
T testi Kazanımlar Z puanları yerine T istatistiğini ne 1 zaman kullanacağını bilmek 2 t istatistiği ile hipotez test etmek 3 Cohen ind sini ve etki büyüklüğünü hesaplamak 1 9.1 T İstatistiği: zalternatifi
Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN
Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,
Bir torbada 6 kırmızı, 3 yeşil ve 2 mavi top bulunmaktadır. 4 top rastgele çekilirse çekilen topların hiç birinin mavi olmama ihtimali nedir?
Örnek Sorular Bir torbada 6 kırmızı, 3 yeşil ve 2 mavi top bulunmaktadır. 4 top rastgele çekilirse çekilen topların hiç birinin mavi olmama ihtimali nedir? Toplam top sayısı: 11 Mavi olmama ihtimali :
NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER
NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği
SÜREKLİ( CONTINUOUS) OLASILIK
SÜREKLİ( CONTINUOUS) OLASILIK DAĞILIMLARI Sürekli bir random değişken (a,b) aralığındaki her değeri alabiliyorsa bu değişkene ait olasılık dağılım fonksiyonunun grafiğinde eğri altında kalan alan bize
VERİ MADENCİLİĞİ (Veri Ön İşleme-2)
VERİ MADENCİLİĞİ (Veri Ön İşleme-2) Veri Dönüşümü Veri, veri madenciliği uygulamaları için uygun olmayabilir Seçilen algoritmaya uygun olmayabilir Çözüm Veri belirleyici değil Veri düzeltme Normalizasyon
EVREN ORTALAMASI HİPOTEZ TESTİ VE EVREN ORANI HİPOTEZ TESTİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı
EVREN ORTALAMASI HİPOTEZ TESTİ VE EVREN ORANI HİPOTEZ TESTİ Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı EVREN ORTALAMASI İÇİN TEK ÖRNEKLEM T-TESTİ Tek örneklem t-testi, örneklemin çekildiği
Ders 8: Verilerin Düzenlenmesi ve Analizi
Ders 8: Verilerin Düzenlenmesi ve Analizi Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Bir kitlenin tamamını, ya da kitleden alınan bir örneklemi özetlemekle (betimlemekle)
İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37
İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar
BİYOİSTATİSTİK. Uygulama 4. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH
BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Güven Aralıkları 2 Güven Aralıkları
Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri
Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini
İstatistik 1 Bölüm 12 Tahmin: Hipotez Testleri 2
İstatistik 1 Bölüm 12 Tahmin: Hipotez Testleri 2 Notları Prof. Dr. Onur Özsoy Hipotez Testleri Yapılırken İzlenecek Aşamalar 1. H 0 ve H a nın belirlenmesi 2. Test İstatistiğinin belirlenmesi 3. Anlamlılık
istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi
2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel
Örneklem Dağılımları & Hipotez Testleri Örneklem Dağılımı
Örneklem Dağılımları & Hipotez Testleri Örneklem Dağılımı Ortalama veya korelasyon gibi istatistiklerin dağılımıdır Çıkarımsal istatistikte örneklem dağılımı temel fikirlerden biridir. Çıkarımsal istatistik
Ders 4: Rastgele Değişkenler ve Dağılımları
Ders 4: Rastgele Değişkenler ve Dağılımları Rastgele değişken kavramı Kesikli ve sürekli rastgele değişkenler İki boyutlu rastgele değişkenler Beklenen değer Varyans Örnek uzaydaki her elemanı bir sayıyla
0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart
WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ
ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ SÜREKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 WEIBULL DAĞILIMI Weibull dağılımı, pek çok farklı sistemlerin bozulana kadar geçen süreleri ile ilgilenir. Dağılımın
İstatistik 1 BÖLÜM 3 VERİ SETLERİNİN ÖZETLENMESİNDE KULLANILAN SAYISAL YÖNTEMLER
İstatistik 1 BÖLÜM 3 VERİ SETLERİNİN ÖZETLENMESİNDE KULLANILAN SAYISAL YÖNTEMLER 2017-2018 Ankara Üniversitesi, SBF SBF Onur Onur Özsoy 1 İşlenecek Konular Merkezi Eğilim Ölçüleri Ortalama, medyan, mod,
BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ
BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.
Konum ve Dağılım Ölçüleri. BBY606 Araştırma Yöntemleri Güleda Doğan
Konum ve Dağılım Ölçüleri BBY606 Araştırma Yöntemleri Güleda Doğan Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl? Yakın, uzak? Sıklık dağılımlarının karşılaştırılması
Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I
Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I S1. Cep telefonu üreten bir fabrikada toplam üretimin % 30 u A, % 30 u B ve % 40 ı C makineleri tarafından yapılmaktadır. Bu makinelerin
İÇİNDEKİLER ÖN SÖZ...
İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN
ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI
SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,
Istatistik ( IKT 253) Normal Da¼g l m Çal şma Metni
TO-ETÜ, Iktisat ölümü Istatistik ( IKT 253) Normal Da¼g l m Çal şma Metni Ortalamas 0, standart sapmas 1 olan normal da¼g l ma standart normal da¼g l m denir ve bu da¼g l m n de¼gerleri z ile gösterilir.
Istatistik ( IKT 253) 4. Çal şma Sorular - Cevaplar 7. CHAPTER (DISTRIBUTION OF SAM- PLE STATISTICS) 1 Ozan Eksi, TOBB-ETU
TOBB-ETÜ, Iktisat Bölümü Istatistik ( IKT 253) 4. Çal şma Sorular - Cevaplar 7. CHAPTER (DISTRIBUTION OF SAM- PLE STATISTICS) 1 Soru 1-(Sampling Distribution of Sample Means): Bir bölgedeki evlerin ortalama
HİPOTEZ TESTLERİ HİPOTEZ NEDİR?
HİPOTEZ TESTLERİ HİPOTEZ NEDİR? Örnekleme ile test edilmeye çalışılan bir popülasyonun ilgili parametresi hakkında ortaya sunulan iddiadır. Örneğin; A dersi için vize ortalaması 50 nin altındadır Firestone
NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,
NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına
Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,
14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.
TANIMLAYICI İSTATİSTİKLER
TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin
SÜREKLİ DÜZGÜN DAĞILIM
SÜREKLİ DÜZGÜN DAĞILIM X rassal değişkenin olasılık yoğunluk fonksiyonu; şeklinde ise x e düzgün dağılmış rassal değişken, f(x) e sürekli düzgün dağılım denir. a 0 olduğuna göre, f(x) >0 olur.
TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ
TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ 1 İstatistik İstatistik, belirsizliğin veya eksik bilginin söz konusu olduğu durumlarda çıkarımlar yapmak ve karar vermek için sayısal verilerin
Dr. Mehmet AKSARAYLI
Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli
İstatistik ve Olasılık
İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk
istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A
2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır
Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi
Parametrik Olmayan Testler Ki-kare (Chi-Square) Testi Ki-kare (Chi-Square) Testi En iyi Uygunluk (Goodness of Fit) Ki-kare Dağılımı Bir çok önemli istatistik testi ki kare diye bilinen ihtimal dağılımı
Tesadüfi Değişken. w ( )
1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere
BİYOİSTATİSTİK PARAMETRİK TESTLER
BİYOİSTATİSTİK PARAMETRİK TESTLER Doç. Dr. Mahmut AKBOLAT *Bir testin kullanılabilmesi için belirli şartların sağlanması gerekir. *Bir testin, uygulanabilmesi için gerekli şartlar; ne kadar çok veya güçlü
BÖLÜM 11 Z DAĞILIMI. Şekil 1. Z Dağılımı
1 BÖLÜM 11 Z DAĞILIMI Z dağılımı; ortalaması µ=0 ve standart sapması σ=1 olan Z puanlarının evren dağılımı olarak tanımlanabilmektedir. Z dağılımı olasılıklı bir normal dağılımdır. Yani Z dağılımının genel
10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08
1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel
Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü
Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu
IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R
IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık
Hipotez Testleri. Mühendislikte İstatistik Yöntemler
Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ
Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir.
3.SUNUM Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. Günlük hayatta sıklıkla kullanılmakta olan olasılık bir olayın ortaya
Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi
ENM 52 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 4 Minitab da İstatiksel Çıkarım-I (Ortalamalar ve Oranlar İçin ) İstatistiksel Hipotezler İstatistiksel hipotez testi ve parametrelerin güven aralığı tahmini,
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte
İSTATİSTİK II. Hipotez Testleri 1
İSTATİSTİK II Hipotez Testleri 1 1 Hipotez Testleri 1 1. Hipotez Testlerinin Esasları 2. Ortalama ile ilgili bir iddianın testi: Büyük örnekler 3. Ortalama ile ilgili bir iddianın testi: Küçük örnekler
T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN
T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ Yrd. Doç. Dr. C. Deha DOĞAN Gruplara ait ortalamalar elde edildiğinde, farklı olup olmadıkları ilk bakışta belirlenemez. Ortalamalar arsında bulunan
BİYOİSTATİSTİK. Ödev Çözümleri. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH
BİYOİSTATİSTİK Ödev Çözümleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Ödev 1 Çözümleri 2 1. Bir sonucun
ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR
ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR 1- İlaçla tedavi edilen 7 hastanın ortalama iyileşme süresi 22.6 gün ve standart sapması.360 gündür. Ameliyatla tedavi edilen 9 hasta için
Olasılık Kuramı ve Bazı Olasılık Dağılımları
KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 5: Rastgele Değişkenlerin Dağılımları II Prof. Dr. İrfan KAYMAZ Sık Kullanılan Dağılımlar Frekans tablolarına dayalı histogram ve frekans poligonları, verilerin dağılımı hakkında