ARALIK TAHMİNİ (INTERVAL ESTIMATION):
|
|
- Ekin Çelik
- 7 ay önce
- İzleme sayısı:
Transkript
1 YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta tahmini çoğunlukla bilinmeyen parametreye ilişkin oluşturacağımız en iyi bahis olarak düşünülebilir. Ancak bir nokta tahmini, bu tahminin bilinmeyen gerçek populasyon parametresine ne kadar yakın olabileceğine, başka bir deyişle, doğru parametre değerine hangi olasılıkla ve ne kadar yakın olduğuna ilişkin bir şey söylemez. Örneğin büyük bir parti maldan rassal çekilmiş parçaların %1 unun kusurlu olduğu tahmini yapılmış olsun. Aralık tahmininde gerçek kusurlu oranının %5 ile %15 ya da %8 ile %12 gibi iki değer arasında olmasından ne kadar emin olabiliriz sorusuna cevap aranır. Aralık tahmini bilinmeyen parametreye ilişkin belirsizliği açık olarak yansıtır. YTÜ-İktisat İstatistik II Aralık Tahmini I 2 ARALIK TAHMİNİ: Bir anakütle katsayısının aralık tahmin edicisi, o anakütle katsayısının içine düşebileceği bir aralığı örneklem bilgisine dayanarak belirlemenin kuralıdır. Buna karşılık gelen tahmine de aralık tahmini denir. θ bilinmeyen populasyon parametresi olsun. θ nın aralık tahmin edicisi PA < θ < B) = 1 α, B > A Burada A ve B örneklem bilgisine bağlıdır ve rassal değişkendir. A: alt güven sınırı, B: üst güven sınırı 1 α: güven düzeyi ya da olasılık içeriği A ve B nin belli örneklem gerçekleşmelerini a ve b ile gösterirsek, bu a,b) aralığına θ nın %11 α) güven aralığı denir: a < θ < b
2 YTÜ-İktisat İstatistik II Aralık Tahmini I 3 ARALIK TAHMİNİ: Güven Aralığının Anlamı: Olasılığın göreli sıklık relative frequency) yorumu X 1,X 2,...,X n rassal değişkenlerinin belli gerçekleşmeleri x 1,x 2,...,x n örneklem değerlerinden hareketle θ için güven aralığını oluşturduğumuzu düşünelim. Bu aralığa [a 1, b 1 ] diyelim. Anakütleden yeniden aynı kurallarla başka bir örneklem çekilsin. Bu örneklemden hareketle oluşturulan güven aralığına da [a 2, b 2 ] diyelim. Bu işlemi çok sayıda, diyelim ki N kere tekrarlamış olalım. Elimizde N tane güven aralığı olacaktır: {[a 1, b 1 ], [a 2, b 2 ],...,[a N, b N ]} Güven katsayısı 1 α nın anlamı şudur: Bu N güven aralığından %11 α) kadarı doğru anakütle parametresi θ yı içerecektir. YTÜ-İktisat İstatistik II Aralık Tahmini I 4 Bir Normal Dağılım Ortalamasının µ Güven Aralıkları: Populasyon Varyansı σ 2 Biliniyor Varsayım: X 1,X 2,...,X n rassal değişkenlerinin her biri ortalaması µ varyansı σ 2 olan bir NORMAL dağılımdan çekilmiş ve bağımsızdır. Anakütle varyansı σ 2 biliniyor. µ için güven aralığı oluşturmak istiyoruz. σ 2 bilindiğine göre güven aralıklarını aşağıdaki büyüklüğe dayandırabiliriz: Z = X µ σ/ N,1) Standart Normal Dağılımın birikimli dağılım fonksiyonundan PZ < 1.645) = F Z 1.645) =.95, PZ > 1.645) = ve PZ < 1.645) = Öyleyse bir standart normal r.d. nin %9 olasılıkla içinde kalacağı aralık: P < Z < 1.645) = 1 PZ > 1.645) PZ < 1.645) = 1 =.9
3 YTÜ-İktisat İstatistik II Aralık Tahmini I 5 Bir Normal Dağılım Ortalamasının µ Güven Aralıkları: Populasyon Varyansı σ 2 Biliniyor µ için %9 güven aralığı tahmin edicisi:.9 = P < Z < 1.645) = P < X µ ) σ/ < σ = P < X µ < 1.645σ ) n = P X 1.645σ < µ < X σ ) n Belli bir örneklem gerçekleşmesine dayanan güven aralığı şöyle olur: x 1.645σ < µ < x σ YTÜ-İktisat İstatistik II Aralık Tahmini I 6 Bir Normal Dağılım Ortalamasının µ Güven Aralıkları: Populasyon Varyansı σ 2 Biliniyor Basit Bir Simulasyon: N5,1) dağılımından çekilmiş n = 15 büyüklüğündeki örneklemden hareketle µ için %9 güven aralığı oluşturmak istediğimizi düşünelim. Bu deneyi N = 1 kere tekrarladığımızda oluşturulan güven aralıkları:
4 YTÜ-İktisat İstatistik II Aralık Tahmini I 7 Simulasyon No X a b µ = 5 içeriliyor mu? evet evet evet evet evet evet evet hayır evet evet YTÜ-İktisat İstatistik II Aralık Tahmini I 8 µ icin GUVEN ARALIKLARI, N=
5 YTÜ-İktisat İstatistik II Aralık Tahmini I 9 µ icin GUVEN ARALIKLARI, N= N = 1 için Güven Aralıkları. Bu 1 simulasyondan 91 tanesi gerçek µ değerini içeriyor. YTÜ-İktisat İstatistik II Aralık Tahmini I 1 µ icin GUVEN ARALIKLARI, N= N = 1 için Güven Aralıkları. Bu 1 simulasyondan 98 tanesi gerçek µ değerini içeriyor.
6 YTÜ-İktisat İstatistik II Aralık Tahmini I 11 Bir Normal Dağılım Ortalamasının µ Güven Aralıkları: Populasyon Varyansı σ 2 Biliniyor µ için %11 α) güven aralığı tahmin edicisi: 1 α = P z α/2 < Z < z α/2 ) = P z α/2 < X µ ) σ/ < z α/2 zα/2 σ = P = P < X µ < z ) α/2σ X z α/2σ < µ < X + z ) α/2σ n Burada z α/2, PZ > z α/2 ) = α/2 olmasını sağlayan sayıdır. Belli bir örneklem gerçekleşmesine dayanan güven aralığı şöyle olur: x z α/2σ < µ < x + z α/2σ YTÜ-İktisat İstatistik II Aralık Tahmini I 12 Bir Normal Dağılım Ortalamasının µ Güven Aralıkları: Populasyon Varyansı σ 2 Biliniyor Güven Aralıklarının Özellikleri 1 α) ve n verilmişken, anakütle standart sapması σ büyüdükçe µ nun güven aralığı genişler. 1 α) ve σ verilmişken, n büyüdükçe µ nun güven aralığı daralır. n ve σ verilmişken, olasılık içeriği güven düzeyi) 1 α) yükseldikçe µ nun güven aralığı genişler.
7 YTÜ-İktisat İstatistik II Aralık Tahmini I 13 Bir Anakütle Ortalamasının µ Güven Aralıkları: BÜYÜK ÖRNEKLEMLERDE Örneklem yeterince büyükse gevşek kural n 3, sıkı kural n 1) MLT den hareketle µ için %11 α) güven aralığı tahmin edicisi: 1 α = P z α/2 < Z < z α/2 ) = P z α/2 < X µ ) s x / < z α/2 zα/2 s x = P = P X z α/2s x < X µ < z ) α/2s x < µ < X + z ) α/2s x Burada s x örneklem standart sapmasıdır. Anakütle normal dağılmasa da yukarıdaki g.a.t.e. yaklaşık olarak doğrudur. Belli bir örneklem gerçekleşmesine dayanan güven aralığı şöyle olur: x z α/2s x < µ < x + z α/2s x YTÜ-İktisat İstatistik II Aralık Tahmini I 14 STUDENT t DAĞILIMI: TANIM: Z ve Y şu şekilde dağılan birbirinden bağımsız iki r.d. olsun: Z N,1), ve Y χ 2 ν. Aşağıda tanımlanan r.d. ν serbestlik derecesi ile Student t Dağılımına uyar. = Z Y/ν rassal değişkeni ν s.d. ile Student t dağılımına uyar. Buradaki ν s.d. paydada yer alan ki-kare r.d. nin serbestlik derecesidir. ν serbestlik derecesine sahip Student t Dağılımının o.y.f.: ft) = Γ ) ν+1 2 Γν/2) 1, < t < πν 1 + t 2 ν+1)/2 /ν)) Tek parametreli ν) ve simetrik bir dağılımdır. E ) = ve ν 3 için V ar ) = ν/ν 2) ν, N,1) İzleyen grafikler çeşitli s.d.ne sahip t yoğunluklarını std normal ile karşılaştırmalı olarak göstermektedir.
8 YTÜ-İktisat İstatistik II Aralık Tahmini I 15.4 Standart Normal ν= YTÜ-İktisat İstatistik II Aralık Tahmini I 16.4 Standart Normal ν=1 ν=
9 YTÜ-İktisat İstatistik II Aralık Tahmini I 17.4 Standart Normal ν=1 ν=2 ν= YTÜ-İktisat İstatistik II Aralık Tahmini I 18.4 Standart Normal ν=1 ν=2 ν=3 ν=
10 YTÜ-İktisat İstatistik II Aralık Tahmini I 19.4 Standart Normal ν=1 ν=2 ν=3 ν=4 ν= YTÜ-İktisat İstatistik II Aralık Tahmini I 2.4 Standart Normal ν=1 ν=2 ν=3 ν=4 ν=5 ν=
11 YTÜ-İktisat İstatistik II Aralık Tahmini I 21.4 Standart Normal ν=1 ν=2 ν=3 ν=4 ν=5 ν=1 ν= YTÜ-İktisat İstatistik II Aralık Tahmini I 22.4 Standart Normal ν=1 ν=2 ν=3 ν=4 ν=5 ν=1 ν=2 ν=
12 YTÜ-İktisat İstatistik II Aralık Tahmini I 23 STUDENT t DAĞILIMI Olasılıkların hesaplanması Ek Çizelge 6, s.941):, ν s.d. ile Student t dağılımına uyan bir rassal değikeni ifade etsin.,α aşağıdaki eşitliği sağlayan sayı olarak tanımlanır: P >,α ) = α Örneğin ν = 5 ve α = için yukarıdaki eşitliği sağlayan sayı,α = 2.15 dir: Pt 5 > 2.15) = Standart Normal dağılımla karşılaştırırsak: Ya da eşik değerlerini karşılaştırırsak: PZ > 2.15) =.219 PZ > 1.645) = Burada 2.15 > olduğuna dikkat edin. Genel olarak,α z α yazılabilir. PZ > z α ) = α olduğunu hatırlayın. YTÜ-İktisat İstatistik II Aralık Tahmini I s.d. Student t dagilimi α Pt 5 >2.15)=α= α t 5
13 YTÜ-İktisat İstatistik II Aralık Tahmini I 25 STUDENT t DAĞILIMI Olasılıkların hesaplanması Ek Çizelge 6, s.941): Küçük örneklemlerde Student t dağılımı Normal Dağılıma göre daha yayvandır. Bu nedenle kuyruk olasılıkları daha büyüktür. ν büyüdükçe bu olasılıklar birbirine yaklaşır. Örneğin ν = 6 için Pt 6 > 1.671) =, ve PZ > 1.671) = =.475 Yani, ν,,α z α Ek Çizelge 6 nın son satırına baktığımızda eşik değerlerinin standart normal dağılımla aynı olduğu görülebilir. YTÜ-İktisat İstatistik II Aralık Tahmini I s.d. t dagilimi ve standard normal dagilim Std Normal t 5
14 YTÜ-İktisat İstatistik II Aralık Tahmini I 27 STUDENT t DAĞILIMI Olasılıkların hesaplanması Ek Çizelge 6, s.941): ν serbestlik derecesine sahip bir t rassal değişkeninin %11 α) olasılıkla içinde yer alacağı iki değer bulmak istiyoruz. t eşik değerleri tablosundan ve simetri özelliğinden hareketle P ) α >,α/2 = 2, ve P ) α <,α/2 = 2 Olasılık parantezi içinde yer alan olaylar birbiriyle bağdaşmaz ve bütünü kapsayıcı olduğuna göre: P,α/2 < <,α/2 ) = 1 P >,α/2 ) P <,α/2 ) = 1 α 2 α 2 = 1 α Örneğin ν = 1 ve 1 α =.95 için t 1,.25 = 2.228, P t 1 > 2.228) =.25 ve P t 1 < 2.228) =.25, buradan P < t 1 < 2.228) = =.95 YTÜ-İktisat İstatistik II Aralık Tahmini I s.d. Student t dagilimi P 2.228<t 1 <2.228) = 1 α α =.25 1 α =.95 α =
15 YTÜ-İktisat İstatistik II Aralık Tahmini I 29 Bir Normal Dağılım Ortalamasının Güven Aralıkları: Anakütle Varyansı Bilinmiyor: Ortalaması µ bilinmeyen varyansı σ 2 olan normal bir anakütleden n boyutlu rassal bir örneklem çekildiğini ve örneklem bilgisinden hareketle µ nun %11 α) güven aralığının istendiğini düşünelim. Varyansın bilinmediği durumda, daha önce yaptığımız gibi standart normal dağılımı kullanamayız. Bilinmeyen varyansı örneklem bilgisinden hareketle tahmin etmemiz gerekir. σ 2 nin sapmasız bir t.e. nin s 2 x olduğunu daha önce görmüştük. Kullanacağımız örnekleme dağılımı varyansa ilişkin belirsizliği de gözönünde bulundurmalıdır. YTÜ-İktisat İstatistik II Aralık Tahmini I 3 Bir Normal Dağılım Ortalamasının Güven Aralıkları: Anakütle Varyansı Bilinmiyor: Bu varsayımlar altında aşağıdaki iki büyüklük birbirinden istatistik bakımından bağımsızdır. X µ σ/ N,1), ve n 1)s 2 x σ 2 = n i=1 X i X) 2 σ 2 χ 2 n 1 olduğunu hatırlarsak t dağılımının tanımından hareketle X µ σ/ n 1)s 2 x σ 2 /n 1) = X µ s x / Bu rassal değişken n 1 serbestlik derecesi ile Student t dağılımına uyar. t n 1 = X µ s x / t n 1
16 YTÜ-İktisat İstatistik II Aralık Tahmini I 31 Bir Normal Dağılım Ortalamasının Güven Aralıkları: Anakütle Varyansı Bilinmiyor: µ nun %11 α) güven aralığı şöyle oluşturulabilir: 1 α = P ) t n 1,α/2 < t n 1 < t n 1,α/2 = P t n 1,α/2 < X µ ) = P = P tn 1,α/2 s x X t n 1,α/2s x s x / < t n 1,α/2 < X µ < t ) n 1,α/2s x < µ < X + t ) n 1,α/2s x x ve s x belli örneklem tahminleriyse %11 α) güven aralığı x t n 1,α/2s x < µ < x + t n 1,α/2s x ÖRNEK 8.4, s.316, 8.5, s. 317
H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0
YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye
altında ilerde ele alınacaktır.
YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini
Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ
YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.
OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler
1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge
1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi
1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri
İki Değişkenli Bağlanım Çıkarsama Sorunu
İki Değişkenli Bağlanım Çıkarsama Sorunu Aralık Tahmini Ekonometri 1 Konu 15 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported
İstatistiksel Yorumlama
İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız
NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,
NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına
3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI
ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6
BÖLÜM 12 STUDENT T DAĞILIMI
1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir
Hipotez Testlerine Giriş. Hipotez Testlerine Giriş
Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel
Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5
Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın
rasgele değişkeninin olasılık yoğunluk fonksiyonu,
3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının
ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI
SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,
Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş
Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini
10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08
1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel
Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi
ENM 52 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 4 Minitab da İstatiksel Çıkarım-I (Ortalamalar ve Oranlar İçin ) İstatistiksel Hipotezler İstatistiksel hipotez testi ve parametrelerin güven aralığı tahmini,
İstatistiksel Tahmin ÜNİTE. Amaçlar. İçindekiler. Yazar Doç.Dr. Ahmet ÖZMEN
İstatistiksel Tahmin Yazar Doç.Dr. Ahmet ÖZMEN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; evren parametreleri hakkında yorum yapmayla ilgili iki yöntemden birisi olan evren parametrelerinin tahmin edilmesine
SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım
SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin
3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1
3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki
PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8
PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan
SIRADAN EN KÜÇÜK KARELER (OLS)
SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge
Hipotez Testleri. Mühendislikte İstatistik Yöntemler
Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ
Popülasyon Ortalamasının Tahmin Edilmesi
Güven Aralıkları Popülasyon Ortalamasının Tahmin Edilmesi Tanımlar: Nokta Tahmini Popülasyon parametresi hakkında tek bir rakamdan oluşan tahmindir. Popülasyon ortalaması ile ilgili en iyi nokta tahmini
DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci
DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri
HİPOTEZ TESTLERİ HİPOTEZ NEDİR?
HİPOTEZ TESTLERİ HİPOTEZ NEDİR? Örnekleme ile test edilmeye çalışılan bir popülasyonun ilgili parametresi hakkında ortaya sunulan iddiadır. Örneğin; A dersi için vize ortalaması 50 nin altındadır Firestone
Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.
Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,
İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37
İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar
12. Hafta Ders Notları GENEL TEKRAR
12. Hafta Ders Notları GENEL TEKRAR A Veri Türleri Anakütle bir bütünü temsil ederken; örneklem, bir bütünün sadece bir kısmını temsil etmektedir. Anakütledeki gözlem sayısı N ile temsil edilirken; örneklemdeki
RİSK ANALİZİ VE AKTÜERYAL MODELLEME
SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla
0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart
Mühendislikte İstatistik Yöntemler
.0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0
İstatistik I Ders Notları
İstatistik I Ders Notları Sürekli Rassal Değişkenler Hüseyin Taştan Kasım 2, 26 İçindekiler Sürekli Rassal Değişkenlerin Özellikleri 2 2 Olasılık Yoğunluk Fonksiyonu 2 Birikimli Olasılık Fonksiyonu 6 4
Parametrik Olmayan İstatistik
Parametrik Olmayan İstatistik 2 Anakütlenin Karşılaştırılması İki Anakütlenin Karşılaştırılması Bağımsız Örnekler Eşleştirilmiş Örnekler Wilcoxon Mertebe Toplam Testi İşaret Testi Wilcoxon İşaretli Mertebe
26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?
26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup
SÜREKLİ RASSAL DEĞİŞKENLER
SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.
BÖLÜM 9 NORMAL DAĞILIM
1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi
İSTATİSTİK I KAVRAMLARININ
YTÜ-İktisat İstatistik II İstatistik I Gözden Geçirme İSTATİSTİK I KAVRAMLARININ GÖZDEN GEÇİRİLMESİ Hüseyin Taştan Yıldız Teknik Üniversitesi, İktisat Bölümü, email: tastan@yildiz.edu.tr YTÜ-İktisat İstatistik
Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır.
Hipotez testleri-oran testi Oran Testi Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır Örnek: Yüz defa atılan bir para 34 defa yazı gelmiştir Paranın yazı gelme olasılığının
K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.
İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin
Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,
14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.
14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi
ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri
Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir.
BÖLÜM 4. HİPOTEZ TESTİ VE GÜVEN ARALIĞI 4.1. Hipotez Testi Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir. Örneklem dağılımlarından
Örneklem Dağılımları ve Merkezi Limit Teoremi
Örneklem Dağılımları ve Merkezi Limit Teoremi Çıkarımsal İstatistik (Inferential Statistics) : Örneklemden yola çıkarak ana kütleyle (popülasyonla) ilgili çıkarımlarda bulunmak (Smidt, 2001) İstatistiksel
MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
İstatistik ve Olasılık
İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk
2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK
Soru 1 X rassal değişkeninin olasılık yoğunluk fonksiyonu x x, x> f ( x) = 0, dy. 1 werilmiş ve Y = rassal değişkeni tanımlamış ise, Y değişkenin 0< 1 X 1 y için olasılık yoğunluk fonksiyonu aşağıdaki
ÖĞRENCİNİN ADI SOYADI:. NO:
ÖĞRENCİNİN ADI SOYADI:. NO: İMZA: 2011-2012 ÖĞRETİM YILI TIP 1. SINIF TEMEL BİYOİSTATİSTİK DERSİ ARA SINAVI (04.11.2011) Biyoistatistik ve Tıp Bilişimi Anabilim Dalı Başarılar Temel Biyoistatistik dersi
Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri
Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini
Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN
Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,
Dr. Mehmet AKSARAYLI
Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli
Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma
2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal
Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01
Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin
SÜREKLĠ OLASILIK DAĞILIMLARI
SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
TANIMLAYICI İSTATİSTİKLER
TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin
Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ
I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA
BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN
BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi
İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr
İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık
Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir.
3.5. Bazı Kesikli Dağılımlar 3.5.1. Bernoulli Dağılımı Bir deneyde başarı ve başarısızlık diye nitelendirilen iki sonuçla ilgilenildiğinde bu deneye (iki sonuçlu) Bernoulli deneyi ya da Bernoulli denemesi
MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
Kalitatif Veri. 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız)
Kalitatif Veri 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız). Ölçüm kategorideki veri sayısını yansıtır 3. Nominal yada Ordinal ölçek Multinomial Deneyler
Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL
ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli
RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015
RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 SORU 2: Motosiklet sigortası pazarlamak isteyen bir şirket, motosiklet kaza istatistiklerine bakarak, poliçe başına yılda ortalama 0,095 kaza olacağını tahmin
ÖRNEKLEME HATALARI EK C. A. Sinan Türkyılmaz
ÖNEKLEME HATALAI EK C A. Sinan Türkyılmaz Örneklem araştırmalarından elde edilen kestirimler (estimates) iki tip dan etkilenirler: (1) örneklem dışı lar ve (2) örneklem ları. Örneklem dışı lar, veri toplama
İstatistiksel Karar Verme
İstatistiksel Karar Verme Yazar Doç.Dr. Ahmet ÖZMEN ÜNİTE 8 Amaçlar Bu üniteyi çalıştıktan sonra; istatistiksel hipotezlerin kurulmasında ve test edilmesinde kullanılan kavramların tanıtımı istatistiksel
Simülasyonda İstatiksel Modeller
Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun
İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...
İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler
OLASILIK ve İSTATİSTİK Hipotez Testleri
OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait
BÖLÜM 13 HİPOTEZ TESTİ
1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
Mühendislikte İstatistiksel Yöntemler
Mühendislikte İstatistiksel Yöntemler BÖLÜM 9 VARYANS ANALİZİ Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi
Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları
Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER
PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 ANAKÜTLE Anakütle kavramı insan, yer ve şeyler toplulugunu ifade etmek için kullanır. İlgi alanına gore, araştırmacı hangi topluluk üzerinde
15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar
15.433 YATIRIM Ders 7: CAPM ve APT Bölüm 2: Uygulamalar ve Sınamalar Bahar 2003 Öngörüler ve Uygulamalar Öngörüler: - CAPM: Piyasa dengesinde yatırımcılar sadece piyasa riski taşıdıklarında ödüllendirilir.
YAPIM YÖNETİMİ 10 = 6 = 6 TEI
Performans Değerlendirme ve Gözden Geçirme Tekniği - PERT 1. Performans Değerlendirme ve Gözden Geçirme Tekniği (PERT) projelerinin planlaması, eylemlerin ve proje sürelerinin tahmini için olasılık kavramlarının
19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.
9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)
TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı
TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 4 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların
5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri
Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı
TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı
TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklama ve uyarılar: Bu sınav toplam 100 puan değerinde 6 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm
A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir.
. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. Buna göre, n C r + n C r toplamı aşağıdakilerden hangisine eşittir? A) n + C r B)
MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?
9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? Ardışık bağımlılık sorunu, hata terimleri arasında ilişki olmadığı (E(u i,u j ) = 0, i j) varsayımının geçerli olmamasıdır.
Güven Aralığı Hesaplamaları ÖRNEKLER
Güven Aralığı Healamaları ÖRNEKLER Standart normal dağılım ile olaılık healamaları Standart normal dağılım ile olaılık healamaları 1 1 2 2 3 3 f ( x) dx P(( 1 ) x ( 1 )) 0.6826 f ( x) dx P(( 2 ) x ( 2
BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ
SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 7 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan
Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014
Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?
Ders 1 Minitab da Grafiksel Analiz-I
ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya
istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi
2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel
ÜSTEL DÜZLEŞTİRME YÖNTEMİ
ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik
Bölüm 6. Çıkarsama Sorunu. 6.1 Aralık Tahmini Bazı Temel Noktalar
Bölüm 6 İki Değişkenli Bağlanım Modeli - Çıkarsama Sorunu 6.1 Aralık Tahmini 6.1.1 Bazı Temel Noktalar Yansız SEK tahmincilerinin ürettiği tahminlerin anakütle değerlerine eşit olması beklenir. Ancak,
Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;
Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : İSTATİSTİK II Ders No : 0020050027 Teorik : 3 Pratik : 0 Kredi : 3 ECTS : 4 Ders Bilgileri Ders Türü Öğretim Dili Öğretim
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen
Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:
OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani
1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...
1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar
MATE211 BİYOİSTATİSTİK
MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: 180 230 190 186 220 191
GÜVEN ARALIĞI KESTİRİM
GÜVEN ARALIĞI KESTİRİM GÜVEN ARALIĞI Herhangi bir parametre için güven aralığı iki istatistikle verilir: U ve L. Öyle ki, eğer parametrenin doğru değeri θ ise, o zaman P(L θ U) = 1 - α Burada θ parametrenin