BİYOİSTATİSTİK. Uygulama 4. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BİYOİSTATİSTİK. Uygulama 4. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH"

Transkript

1 BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: 1

2 Güven Aralıkları 2

3 Güven Aralıkları 3 biliniyorsa bilinmiyorsa Normal dağılım varsayımı altında 1 ) ( 2 / 2 / n Z X n Z X P 1 ) ( 2 / 2 / n S Z X n S Z X P 1 ) ( 1 2, / 1 2, / n S t X n S t X P n n

4 Soru 1 Ege Üniversitesi Hastanesi, hastaneye gelen hastaların ortalama hastanede yatış süresini tahmin etmek istemektedir. Hastane kayıtlarından 100 birimlik bir örneklem çekilmiş ve bu hastalara ilişkin hastanede yatış süresi ortalaması 4,5 gün, standart sapması s=4 gün olarak bulunmuştur. Kitle ortalaması için %90, %95 ve %99 güven düzeylerinde güven aralıklarını oluşturunuz. 4

5 %90 0,10 0,05 1,645 %95 0,05 0,025 1,96 %99 0,01 0,005 2,575 5

6 P S S Z / 2 X Z / ) 1 n n ( X 2 X 4,5 S 4 Z 1, 645 0,05 Yorum: Kitle ortalaması %90 güven düzeyinde [3,84;5,16] sınırları arasındadır. 6

7 P X S S Z X Z ) 1 / 2 / n n ( 2 X 4,5 Z 1, 96 0 S 4,025 Yorum: Kitle ortalaması %95 güven düzeyinde [3,72;5,28] sınırları arasındadır. 7

8 P X S S Z X Z ) 1 / 2 / n n ( 2 X 4,5 Z 2, S 4,025 Yorum: Kitle ortalaması %99 güven düzeyinde [3,47;5,53] sınırları arasındadır. 8

9 Güven aralığı %90 [3,84;5,16] %95 [3,72;5,28] %99 [3,47;5,53] 9

10 Soru 2 BİR ÖNCEKİ SORUDAKİ AYNI ÖRNEK İÇİN! Ege Üniversitesi Hastanesi, hastaneye gelen hastaların ortalama hastanede yatış süresini tahmin etmek istemektedir. Hastane kayıtlarından 20 birimlik bir örneklem çekilmiş ve bu hastalara ilişkin hastanede yatış süresi ortalaması 4,5 gün, standart sapması s=4 gün olarak bulunmuştur. Kitle ortalaması için %95 güven düzeyinde güven aralığını oluşturunuz. =

11 P X t S S X t ) 1 1 / 2, n n n ( / 2, n 1 X 4,5 t 0 2, 093 S 4,025,19 Yorum: Kitle ortalaması %95 güven düzeyinde [2,63; 6,37] sınırları arasındadır. 11

12 100 birim %95 güven düzeyinde güven aralığı; [3,72;5,28] 20 birim %95 güven düzeyinde güven aralığı; [2,63; 6,37] Daha geniş

13 Soru 3 BİR ÖNCEKİ SORUDAKİ AYNI ÖRNEK İÇİN! n=20 birimlik örnek için Kitle standart sapması olarak bilinseydi, %95 Kitle ortalaması için %95 güven düzeyinde güven aralığını oluşturunuz. 13

14 Normal dağılım varsayımı altında ve biliniyor. P X Z X Z ) 1 / 2 / n n ( 2 X 4,5 Z 1, ,025 Yorum: Kitle ortalaması %95 güven düzeyinde [2,30; 6,69] sınırları arasındadır. 14

15 Hipotez testleri 15

16 Hipotez Testleri Bir deneme ya da gözlem sonucu elde edilmiş bilgilerin rastlantıya bağlı olup olmadığının araştırılması için kullanılan istatistiksel yöntemlerdir. 16

17 Örnek Senaryo İmplant üreten İMPLANTDENT isimli şirkette üretilen yeni bir ürün için kullanılan malzemenin sertliğinin ortalama 72 birim olması istenmektedir. Geçmiş deneyimler bu malzemenin sertliğinin 72 birimden küçük olması durumunda üretilen ürünününün pek çoğunun kusurlu olduğunu, sertliğin 72 birimden büyük olması durumunda ise malzemeyi işlemenin çok zor olduğunu göstermektedir. Yeni üretim dönemi için sipariş verilen bir parti malzemenin, istenen özellikte olup olmadığını saptamak için araştırma laboratuvarında çalışma başlatılmıştır. 17

18 1. Buradaki sorunu tanımlayınız. Malzemenin sertliğinin istenen ölçüde olup olmadığının tespit edilmesi. 2. Burada sözü edilen malzeme sertliği nasıl bir rassal değişkendir? 0 dan büyük değerler almalıdır. Sürekli bir rassal değişkendir. 18

19 3. Siz araştırma laboratuvarında çalışan uzman olsaydınız sorunun çözümü için nasıl bir yol izlerdiniz? Örneklem alınıp, hipotez testi yapılması önerilebilir. Hipotez testinin içinde olduğu bir takım öneriler getirilebilir. 19

20 Malzemenin sertlik ölçümünün özel makinelerde yapılan pahalı bir işlem olduğunu, bir parti malzemenin ortalama sertlik derecesi konusunda karar verebilmek için çeşitli yöntemler kullanabildiklerini ve bu yöntemlerden bazılarının şunlar olduğunu açıklamışlardır: 20

21 Yöntem1: Üretilen parti içinden rasgele 9 parça alınır, örneklem ortalaması olan hesaplanır X 73.3 olursa ortalama sertliğinin 72 olduğuna karar verilecektir. X bu aralık içinde değilse ortalama sertliğinin 72 olmadığına karar verilecektir. X 21

22 Yöntem2: Üretilen parti içinden rasgele 9 parça alınır, örneklem ortancası X ~ hesaplanır. 70 X ~ 74 olursa ortalama sertliğinin 72 olduğuna karar verilecektir. X ~ bu aralık içinde değilse ortalama sertliğinin 72 olmadığına karar verilecektir. 22

23 Yöntem3: Üretilen parti içinden rasgele 5 parça alınır, olarak Eğer X maks en büyük gözlem değeri bulunur. 70 Xmaks 74 ise ortalama sertliğinin 72 olduğuna karar verilir. Aksi halde 72 olmadığına karar verilir. 23

24 4. Burada verilen karar yöntemlerini değerlendiriniz. - Alt ve üst sınır değerleri neye göre bulundu? - Birinci yöntemin güvenilirliğinin derecesini bilmiyoruz. Bu aralık güven aralığı değildir. - Medyanın (ortancanın) aralığı daha büyük, bu dağılımın simetrik olmamasının bir sonucu olabilir. - Hiçbir yöntemin istatistiksel dayanağı yoktur. 24

25 5. Önerilen bu yöntemlerde sözü edilen rassal değişkenler nelerdir? 25

26 Laboratuvar yetkilileri bu zamana kadar kullandıkları üç yöntemin uygun olduğu konusunda kuşkuları olduğunu, çünkü uygulamada hatalı üretilen malzeme sayısının kabul edilebilir sınırı aştığını gözlediklerini söyleyerek sorunun çözümü için Biyoistatistik ve Tıbbi Bilişim AD na başvururlar. 6. Bu durumda nasıl bir yol izlerdiniz? Deney düzenleyip hipotez testi yapmalıdır. 26

27 Biyoistatistik ve Tıbbi Bilişim AD. öğretim üyeleri tarafından sorunun çözümü için yapılan incelemelerde, daha önce işyerinde yapılan sertlik ölçme sonuçları olduğunu öğrenilir. Bu bilgileri de kullanarak sorunun çözümüne ilişkin hipotez testi yapılmasına ve gerekli bilgilerin de bir deney düzenlenerek elde edilmesine karar verilir. 27

28 7. Burada nasıl bir deney düzenlenebilir? Üretilen parçalarda, belirlenen miktarda, rasgele örneklem almalı ve ölçüm yapıp test etmeli. 28

29 8. Test edilecek hipotez nasıl kurulabilir? 72 birimden az yada çok olması istenmediğinden, hipotez tek yönlü değil çift yönlü kurulmadır. 29

30 9. Kurulan hipotezin test edilmesi için gereken adımlar nelerdir? Hipotez kur. yı belirle. Varsayımlar. Test istatistiğini belirle. Red bölgesi. Hesaplama. Sonuç. Yorum. 30

31 Geçmiş bilgilere dayanarak parçalarının sertliğinin standart sapması yaklaşık 2 olan normal dağılıma uygun olduğunu saptanmış, eldeki malzeme partisi içinden rasgele n=15 olan bir örneklem seçerek H 0 H 1 : μ 72.0 : μ 72.0 hipotezlerini için z-testi ile test etmeye karar verilmiştir. 10. Analizlerde t-testi yerine neden z-testi kullanmıştır? Normal dağılım varsayımı vardır, bilinmektedir. 31

32 Özetle 32

33 Hipotez Testi Aşamaları Verinin ölçeği Birey Sayısı Bağımlı/ Bağımsız Varsayımlar 0. Adım 1. Adım 2. Adım 3. Adım 4. Adım 5. Adım

34 HİPOTEZ TEST İSTATİSTİĞİ TABLO DEĞERİ KARAR 34

35 Normal dağılım varsayımı altında Parametrik Hipotez Testleri Tek Örneklem İkiden Çok Örneklem Z n 30: Z n<30: t testi x x z hesap z hesap / n S / n x t hesap S / n İki Örneklem bağımlı bağımsız Varyans Analizi (ANOVA) Varyanslar bilinmiyor ama eşit varsayımı altında ve 30: Z veya <30: t testi

36 Önemli Not! x z hesap / n x z hesap S / n x t hesap S / n Hipotezler parametreler üzerinden kurulur! 36

37 Soru 4 Bir ilacın sinir sistemi üzerindeki etkisini araştıran bir nörolog, 100 sıçana uygun miktarda ilacı enjekte ederek, her sıçanı bir nörolojik uyarıcıya maruz bırakmış ve tepki süresini kaydetmiştir. Nöroloğun, ilaç enjekte edilen sıçanlar için ortalama tepki süresinin 1,2 saniyeden küçük olup olmadığını test etmek istemektedir. Bu deney için hipotezleri kurunuz. 37

38 ortalama tepki süresinin 1,2 saniyeye eşittir. ortalama tepki süresinin 1,2 saniyeden küçüktür. : popülasyona ait tepki süresinin ortalaması 38

39 Soru 5 Haftanın belirli bir gününde, Ağız ve Diş Sağlığı Merkezi ne giden hastaların, bilgi işleme kayıt süresinin ortalama 3 dakika olduğu iddia edilmektedir. Çalışmanın hipotezlerini kurunuz. 39

40 ortalama bilgi işleme kayıt süresi 3 dk dır. ortalama bilgi işleme kayıt süresi 3 dk dan farklıdır : popülasyona ait bilgi işleme kayıt süresinin ortalaması 40

41 Soru 6 Bir ilaç firması geliştirdiği yeni ilacı 6 gönüllüde test etmiş ve gönüllülerdeki ortalama kan basıncı artışını tahmin etmek istemektedir. Aşağıdaki tabloda bu 6 kişiye ait kan basıncındaki artış değerleri verilmiştir. Tablodaki bilgileri kullanarak kan basıncı artışının 2 birimden fazla olup olmadığını 0,05 güven düzeyinde test ediniz. Gönüllü 1 Gönüllü 2 Gönüllü 3 Gönüllü 4 Gönüllü 5 Gönüllü 6 1,7 3,0 0,8 3,4 2,7 2,1 41

42 0. Adım : Tek örneklem t testi bilinmiyor 1. Adım : Hipotez (Tek Yönlü) 2. Adım : Test İstatistiği t hesap x S / n 2,28 0,95/ 2 6 0,72 42

43 Adım 2: nasıl hesapladık? 2,28 ve 1,7-0,58 0, ,72 0,5184 0,8-1,48 2,1904 3,4 1,12 1,2544 2,7 0,42 0,1764 2,1-0,18 0, ,7 Toplam 4,5 13,7/6=2,28 Ortalama Varyans 4,5/5=0,90 t hesap x S / n 2,28 0,95/ 2 6 0,72 43

44 3. Adım : Tablo Değeri? ( tek yönlü hipotez) 44

45 45 Serbestlik derecesi 0,05 0,025 0,01 0, T test tablosu (Tek Yönlü) T tablo değeri

46 3. Adım : Tablo Değeri 4. Adım : Karar Bölgesi Ho reddedilemez > 46

47 5. Adım : Yorum Kan basıncı artışının ortalamasının 2 birimden fazla olduğu % 95 güven düzeyinde iddia edilemez. 47

48 ALIŞTIRMALAR 1. H 0 hipotezi doğruyken reddedilmesi I. tip hata () olasılığına. denir. 48

49 ALIŞTIRMALAR (devam) 2. P (H 0 red edilemez H 0 yanlış) olasılığı II.tip hata ().. ya eşittir. Karar H 0 Red H 0 Kabul H 0 Hipotezi Doğru Yanlış 1.Tip hata () Doğru Karar (1-) Anlamlılık Düzeyi Doğru Karar (1-) Testin Gücü 2.Tip hata () 49

50 ALIŞTIRMALAR (devam) 3. iken, H 0 red edilmişse, hesaplanan %95 lik güven aralığı 10 u içermemelidir. Doğru 50

51 ALIŞTIRMALAR (devam) 4. H :, H hipotezinin testinde : örneklem genişliği n = 12 ise ve kitle varyansı bilinmiyorsa z istatistiğini kullanmak daha doğru olur. 0 Yanlış 51

52 ALIŞTIRMALAR (devam) 5. Aşağıdakilerden hangisi hipotez testi aşamalarını sırası ile vermektedir? I. Test istatistiği hesaplanır. II. Red bölgesi belirlenir. III. H 0 hipotezi kurulur. IV. Karar verilir. V. Alternatif hipotez kurulur. a. I-II-III-V-IV b. III-V-I-II-IV c. V-III-II-I-IV d. IV-III-V-I-II 52

53 6. Ortaöğretimde sekizinci sınıflara yapılan bir okuduğunu anlama testinde, kurallara göre öğrencilerin not ortalaması en az 84.3, standart sapması da 8.6 olmalıdır. İzmir deki 8. sınıf öğrencilerinin standartları sağlayıp sağlamadığı test edilmek istenmektedir. İzmir ilindeki okullardan rassal olarak seçilen 45 sekizinci sınıf öğrencisine bu test uygulanmış ve öğrencilerin aldığı puanlar kaydedilmiştir. Verilenlere göre, aşağıdakilerden hangisi doğrudur? a.hipotez H 0 : =84.3 H 1 : 84.3 biçiminde kurulmalı ve z-testi kullanılmalıdır. b.hipotez H 0 : 84.3 H 1 : 84.3 biçiminde kurulmalı ve z-testi kullanılmalıdır. c.hipotez H 0 : 84.3 H 1 : 84.3 biçiminde kurulmalı ve t-testi kullanılmalıdır. d.hipotez H 0 : =84.3 H 1 : 84.3 biçiminde kurulmalı ve t-testi kullanılmalıdır. 53

54 Haftaya derste anlatılacak konular Tek Örneklem-İki Örneklem Hipotez Testleri

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Örnek Senaryo İmplant üreten İMPLANTDENT

Detaylı

BİYOİSTATİSTİK. Ödev Çözümleri. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK. Ödev Çözümleri. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Ödev Çözümleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Ödev 1 Çözümleri 2 1. Bir sonucun

Detaylı

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

BİYOİSTATİSTİK Tek Örneklem ve İki Örneklem Hipotez Testleri Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Tek Örneklem ve İki Örneklem Hipotez Testleri Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Tek Örneklem ve İki Örneklem Hipotez Testleri Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

BİYOİSTATİSTİK. Uygulama 6. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK. Uygulama 6. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 6 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Soru 1 İlaç malzemelerinin kalitesini

Detaylı

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 ANADOLU ÜNİVERSİTESİ Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 HİPOTEZ TESTLERİ Pek çok problemde bazı parametrelere bağlı bir ifadeyi kabul yada red etmek için karar

Detaylı

BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Uygulamalı bilim

Detaylı

Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir.

Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir. BÖLÜM 4. HİPOTEZ TESTİ VE GÜVEN ARALIĞI 4.1. Hipotez Testi Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir. Örneklem dağılımlarından

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir.

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir. ÇIKARSAMALI İSTATİSTİKLER Çıkarsamalı istatistikler, örneklemden elde edilen değerler üzerinde kitleyi tanımlamak için uygulanan istatistiksel yöntemlerdir. Çıkarsamalı istatistikler; Tahmin Hipotez Testleri

Detaylı

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 )

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 ) 4. SUNUM 1 Gözlem ya da deneme sonucu elde edilmiş sonuçların, rastlantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HİPOTEZ TESTLERİ denir. Sonuçların rastlantıya bağlı

Detaylı

İSTATİSTİK II. Hipotez Testleri 1

İSTATİSTİK II. Hipotez Testleri 1 İSTATİSTİK II Hipotez Testleri 1 1 Hipotez Testleri 1 1. Hipotez Testlerinin Esasları 2. Ortalama ile ilgili bir iddianın testi: Büyük örnekler 3. Ortalama ile ilgili bir iddianın testi: Küçük örnekler

Detaylı

BİYOİSTATİSTİK Tablo Hazırlama Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Tablo Hazırlama Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Tablo Hazırlama Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Bir çalışmada elde edilen

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Bir değişkenin değerinin,

Detaylı

ANADOLU ÜNİVERSİTESİ. Hipotez Testleri. ENM317 Mühendislik İstatistiği Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. Hipotez Testleri. ENM317 Mühendislik İstatistiği Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ Hipotez Testleri ENM317 Mühendislik İstatistiği Prof. Dr. Nihal ERGİNEL HİPOTEZ TESTLERİ Pek çok problemde bazı parametrelere bağlı bir ifadeyi kabul yada red etmek için karar vermek

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

BİYOİSTATİSTİK. Genel Uygulama 1. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK. Genel Uygulama 1. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Genel Uygulama 1 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Soru 1 Ege Üniversitesi Diş

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Olasılık Hatırlatma Olasılık teorisi,

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 9: Prof. Dr. İrfan KAYMAZ Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten

Detaylı

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I S1. Cep telefonu üreten bir fabrikada toplam üretimin % 30 u A, % 30 u B ve % 40 ı C makineleri tarafından yapılmaktadır. Bu makinelerin

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI aysecagli@beykent.edu.tr 1 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır. Bu anlamda, anakütleden çekilen

Detaylı

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Hipotez Testleri Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Nedir? Gözlemlenebilir (araştırılabilir) bir olay, olgu veya fikri mantıklı ve bilimsel olarak açıklamaya yönelik yapılan tahminlerdir.

Detaylı

Biyoistatistik. Uygulama 1

Biyoistatistik. Uygulama 1 Biyoistatistik Uygulama 1 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi,Tıp Fakültesi,Biyoistatistik ve Tıbbi Bilişim A.D. Web: www.biyoistatistik.med.ege.edu.tr 1 DİŞ MACUNU-TEMDİŞ TEMPA Temizlik

Detaylı

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ Yrd. Doç. Dr. C. Deha DOĞAN Gruplara ait ortalamalar elde edildiğinde, farklı olup olmadıkları ilk bakışta belirlenemez. Ortalamalar arsında bulunan

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL İSTATİSTİKSEL TAHMİN Örnekten anakütle parametrelerinin tahmin edilmesidir. İki tür tahminleme yöntemi vardır:

Detaylı

BİYOİSTATİSTİK PARAMETRİK TESTLER

BİYOİSTATİSTİK PARAMETRİK TESTLER BİYOİSTATİSTİK PARAMETRİK TESTLER Doç. Dr. Mahmut AKBOLAT *Bir testin kullanılabilmesi için belirli şartların sağlanması gerekir. *Bir testin, uygulanabilmesi için gerekli şartlar; ne kadar çok veya güçlü

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ TELAFĐ SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ TELAFĐ SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ TELAFĐ SINAVI SORULARI Tarih/Saat/Yer: 20.06.16/15:00-16:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz Öğrenci

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 9 VARYANS ANALİZİ Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi

Detaylı

Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Kitle ve Örneklem Örneklem Dağılımı Nokta Tahmini Tahmin Edicilerin Özellikleri Kitle ortalaması için Aralık Tahmini Kitle Standart Sapması için Aralık

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTTİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. slı SUNER KRKÜLH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim D. Web: www.biyoistatistik.med.ege.edu.tr 1 OLSILIK Olasılık; Tablo

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ DÖNEM SONU SINAV SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ DÖNEM SONU SINAV SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ DÖNEM SONU SINAV SORULARI Tarih/Saat/Yer: 15.06.16/09:00-10:30/AS115-116-117 Instructor: Prof. Dr. Hüseyin

Detaylı

HİPOTEZ TESTLERİ HİPOTEZ NEDİR?

HİPOTEZ TESTLERİ HİPOTEZ NEDİR? HİPOTEZ TESTLERİ HİPOTEZ NEDİR? Örnekleme ile test edilmeye çalışılan bir popülasyonun ilgili parametresi hakkında ortaya sunulan iddiadır. Örneğin; A dersi için vize ortalaması 50 nin altındadır Firestone

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ İKİ ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI Tarih/Saat/Yer: 24.06.16/11:00-12:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 10: Prof. Dr. İrfan KAYMAZ Tanım Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi ile yapılabilir. Ancak karşılaştırılacak

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t test) Ölçümle

Detaylı

GÜVEN ARALIKLARI ve İSTATİSTİKSEL ANLAMLILIK. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

GÜVEN ARALIKLARI ve İSTATİSTİKSEL ANLAMLILIK. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı GÜVEN ARALIKLARI ve İSTATİSTİKSEL ANLAMLILIK Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Kestirim Pratikte kitle parametrelerinin doğrudan hesaplamak olanaklı değildir. Bunun yerine

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye

Detaylı

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 1. Pearson Korelasyon Katsayısı

Detaylı

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız. .4. Merkezi Eğilim ve Dağılım Ölçüleri Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin

Detaylı

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A 2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

Parametrik Olmayan İstatistiksel Yöntemler IST

Parametrik Olmayan İstatistiksel Yöntemler IST Parametrik Olmayan İstatistiksel Yöntemler IST-4035-6- EÜ İstatistik Bölümü 08 Güz Non-Parametric Statistics Nominal Ordinal Interval One Sample Tests Binomial test Run test Kolmogrov-Smirnov test X test

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Tek yönlü varyans analizi kısaltılmış olarak ANOVA (Analysis of Variance) bilinen

Tek yönlü varyans analizi kısaltılmış olarak ANOVA (Analysis of Variance) bilinen DÖNEM II ENDOKRİN SİSTEMİ Ders Kurulu Başkanı : Doç. Dr. Osman EVLİYAOĞLU VARYANS ANALİZİ (14.03.014 Cuma Y.ÇELİK Tek Yönlü Varyans Analizi Tek yönlü varyans analizi kısaltılmış olarak ANOVA (Analysis

Detaylı

Bir Normal Dağılım Ortalaması İçin Testler

Bir Normal Dağılım Ortalaması İçin Testler Bir Normal Dağılım Ortalaması İçin Testler İÇERİK o Giriş ovaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Örnekleme Büyüklüğü

Detaylı

UYGUN HİPOTEZ TESTİNİN SEÇİMİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

UYGUN HİPOTEZ TESTİNİN SEÇİMİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı UYGUN HİPOTEZ TESTİNİN SEÇİMİ Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı ÖNEMLİLİK (Hipotez) TESTLERİ ü Önemlilik testleri, araştırma sonucunda elde edilen değerlerin ya da varılan

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

Olasılık ve Normal Dağılım

Olasılık ve Normal Dağılım Olasılık ve Normal Dağılım P = 0 İmkansız P =.5 Yarı yarıya P = 1 Kesin Yazı-Tura 1.5 2 1.5 2.5.5.25 Para atışı 10 kere tekrarlandığında Yazı Sayısı f % 0 3 30 1 6 60 2 1 10 Toplam 10 100 Atış 1000 kere

Detaylı

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI 1. Doğum sırasının çocuğun zeka düzeyini etkileyip etkilemediğini araştıran bir araştırmacı çocuklar

Detaylı

Sık kullanılan istatistiksel yöntemler ve yorumlama. Doç. Dr. Seval KUL Gaziantep Üniversitesi Tıp Fakültesi

Sık kullanılan istatistiksel yöntemler ve yorumlama. Doç. Dr. Seval KUL Gaziantep Üniversitesi Tıp Fakültesi Sık kullanılan istatistiksel yöntemler ve yorumlama Doç. Dr. Seval KUL Gaziantep Üniversitesi Tıp Fakültesi Biyoistatistik AD Bşk. 1 Hakkımda 2 Hedef: Katılımcılar modülün sonunda temel istatistiksel yöntemler

Detaylı

Araş.Gör. Efe SARIBAY

Araş.Gör. Efe SARIBAY GÜVEN ARALIKLARI (ARALIK TAHMİNİ) ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY 1) Bir hisse senedinin $ bazında fiyatının ortalamasını incelemek için yapılan bir araştırmada 18 gün boyunca hisse senedinin

Detaylı

K BAĞIMSIZ ÖRNEKLEM HİPOTEZ TESTLERİ

K BAĞIMSIZ ÖRNEKLEM HİPOTEZ TESTLERİ K BAĞIMSIZ ÖRNEKLEM HİPOTEZ TESTLERİ Yrd.Doç.Dr. Selçuk Korkmaz Trakya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Turcosa Analitik Çözümlemeler selcukorkmaz@gmail.com TÜRKİYE EKMUD BİYOİSTATİSTİK

Detaylı

13. Olasılık Dağılımlar

13. Olasılık Dağılımlar 13. Olasılık Dağılımlar Mühendislik alanında karşılaşılan fiziksel yada fiziksel olmayan rasgele değişken büyüklüklerin olasılık dağılımları için model alınabilecek çok sayıda sürekli ve kesikli fonksiyon

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

Ortalamaların karşılaştırılması

Ortalamaların karşılaştırılması Parametrik ve Parametrik Olmayan Testler Ortalamaların karşılaştırılması t testleri, ANOVA Mann-Whitney U Testi Wilcoxon İşaretli Sıra Testi Kruskal Wallis Testi BBY606 Araştırma Yöntemleri Güleda Doğan

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır.

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır. Hipotez testleri-oran testi Oran Testi Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır Örnek: Yüz defa atılan bir para 34 defa yazı gelmiştir Paranın yazı gelme olasılığının

Detaylı

Önemlilik Testleri. Prof.Dr.İhsan HALİFEOĞLU

Önemlilik Testleri. Prof.Dr.İhsan HALİFEOĞLU Önemlilik Testleri Prof.Dr.İhsan HALİFEOĞLU ÖNEMLİLİK TESTLERİ Önemlilik testleri elde edilen değerlerin ya da varılan sonuçların istatistiksel olarak önem taşıyıp taşımadığını ya da anlamlı olup olmadığını

Detaylı

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006 ĐŞLE 5 ĐSTATĐSTĐK ARA SINAV Mayıs 00 Adı Soyadı: No: [0 puan] -Bir Üniversitede okutulan derslerin öğrenciler tarafından değerlendirilmesi amacı ile hazırlanan bir anket formundaki sorulardan biri: Aldığınız

Detaylı

İstatistik. Temel Kavramlar Dr. Seher Yalçın 1

İstatistik. Temel Kavramlar Dr. Seher Yalçın 1 İstatistik Temel Kavramlar 26.12.2016 Dr. Seher Yalçın 1 Evren (Kitle/Yığın/Popülasyon) Herhangi bir gözlem ya da inceleme kapsamına giren obje ya da bireylerin oluşturduğu bütüne ya da gruba Evren veya

Detaylı

Non-Parametrik İstatistiksel Yöntemler

Non-Parametrik İstatistiksel Yöntemler Non-Parametrik İstatistiksel Yöntemler Dr. Seher Yalçın 27.12.2016 1 1. Tek Örneklem Kay Kare Testi 2. İki Değişken İçin Kay Kare Testi 3. Mann Whitney U Testi 4. Kruskal Wallis H Testi ortanca testine

Detaylı

BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Hangi Grafik?Neden? 1. Veri çeşidine

Detaylı

HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY

HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI 2012 Araş.Gör. Efe SARIBAY 1) Bir kafede yaz aylarında satılan limonataların satış miktarının ortalamasının 24 lt. den az olduğu iddia edilmektedir. İddiayı test etmek

Detaylı

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

ARALIK TAHMİNİ (INTERVAL ESTIMATION): YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta

Detaylı

KRUSKAL WALLIS VARYANS ANALİZİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

KRUSKAL WALLIS VARYANS ANALİZİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı KRUSKAL WALLIS VARYANS ANALİZİ Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı ükruskal Wallis varyans analizi, tek yönlü varyans analizinin parametrik olmayan karşılığıdır. üveriler ölçümle

Detaylı

ANLAM ÇIKARICI İSTATİSTİK ve İLGİLİ KAVRAMLAR. Yrd. Doç. Dr. C. Deha DOĞAN

ANLAM ÇIKARICI İSTATİSTİK ve İLGİLİ KAVRAMLAR. Yrd. Doç. Dr. C. Deha DOĞAN ANLAM ÇIKARICI İSTATİSTİK ve İLGİLİ KAVRAMLAR Yrd. Doç. Dr. C. Deha DOĞAN Anlam Çıkarıcı İstatistik Anlam çıkarıcı istatistiğin amacı örneklemin karakterlerinden evrenin karakterlerini tanımak, kestirmek,

Detaylı

BİYOİSTATİSTİK. Ödev Çözümleri. Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK. Ödev Çözümleri. Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Ödev Çözümleri Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Ödev 2 Çözümleri 2 Ödev 2 Bu

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı