IE 303 SİSTEM BENZETİMİ
|
|
|
- Onur Karabulut
- 9 yıl önce
- İzleme sayısı:
Transkript
1 IE 303 SİSTEM BENZETİMİ DERS 2 : S I M U L A S Y O N Ö R N E K L E R I...making simulations of what you're going to build is tremendously useful if you can get feedback from them that will tell you where you've gone wrong and what you can do about it, C. Alexander
2 İÇERİK Rassallığın Simulasyonu Yazı-Tura Simulasyonu Excel de Envanter Simulasyonu
3 Number of People Geçen Ders Sistem sınırı, sistem çevresi, algoritma, ve sistemin temel bileşenlerini inceledik: Obje: Özellik: Durum: 2 gişeli banka şubesi örneği Eğer gelişler ve servis zamanları ve müşterilerin hangi kuyruğu seçeceği biliniyorsa, sistemin yapay bir tarihçesini yaratabiliriz. Ama bu bilgileri bilmiyoruz, öyleyse Teller# SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 SP10
4 Rassallığın Simulasyonu Sistemin bilinmeyen özellikleri modellerdeki rassal değişkenler ile değerlendirilir, e.g. Müşteri gelişleri, servis zamanları, yazı-tura deneyinin sonuçları. Bakkal örneğinde bir sayı dizisi kullanarak rassal geliş ve servis zamanları ürettik. Benzer bir şekilde rassal rakamları kullanarak sistemlerdeki rassallığı simule ediyoruz.
5 Rassallığın Simulasyonu Rassal rakamlarda iki önemli özelliğin bulunması gerekir: Rakamlar [0,1] aralığında uniform (eşit) dağılmış olmalı Ardarda gelen rakamlar istatistiksel olarak birbirinden bağımsız olmalı.
6 Rassallığın Simulasyonu Eşit Dağılım (Uniformity) simule edilmiş [0,1] aralığındaki rassal rakam. Uniform demek:
7 Rassallığın Simulasyonu İstatistiksel Bağımsızlık Eğer rassal rakam bir kalıp (veya desen) izlese ne olurdu? İkinci grafikte verilen rassal rakamlar eşit dağıımlıdır diyebilir miyiz? Rassal rakamlar önceki değerlerinden istatistiksel olarak bağımsız olmalıdır. İstatistiksel bağımsızlık, önceki değerlerin gelecekteki değerleri tahmin etmek için kullanılamaz olması demektir.
8 Rassallığın Simulasyonu Histogram nedir??? Örneklem boyutu sonsuza gittikçe (N -> ) histogram teorik dağılıma yaklaşır. Excel de rassal rakamları biz RAND() ile elde ediyoruz...
9 Rassallığın Simulasyonu Her simulasyon çalışmasının başında geliştirici aşağıdaki öğeleri net bir biçimde tanımlamalıdır: girdiler ( rassal değişken ve dağılımlar), olaylar, Siste durumu, Model çıktıları (sistem performans ölçütleri). Bunun yanında simulasyon tablosu dizayn edilmelidir. Simulasyon tablosu, modellenen olayların yapısı ve akışı hakkında yardımcı olur. Her bir kolonda bir olay, rassal değişken, durum değişkeni veya model çıktısı bulunmalıdır.
10 Yazı-Tura Oyunu Charlie 100 kere para atar: Sonuçta Tura: Tom -> Harry $1 Yazı: Tom <- Harry $1 Muhtemel sorular: Harry veya Tom ne kadar sıklıkta oyunda öne geçer? Oyunun sonunda Harry nin kazanma olasılığı nedir?
11 Yazı-Tura Oyunu Nasıl Simule Edelim: 100 rassal rakam üretin bir kolonda (Kolon A) Rassal rakamları yazı-tura oyununun sonuçlarına aşağıdaki formülü kullanarak dönüştürün: =If(Ax<0.5, H, T ) for the cell Bx, x=1,2,3,... C kolonunda Harry nin kazancını her bir yazı-tura deneyi için hesaplayın Bu simulasyonu bir çok kez tekrarlayın ve 100 yazı-tura için toplam kazancı hesaplayın. Bu tarifi beraber uygulayalım...
12 Yazı-Tura Oyunu Deney# Rand. Yazı- Tura Harry'nin Kazancı T Y Y T T Y Y Y T T Y Y Y Y Y -5 C2 hücresinin formülü: =IF(B2<0.5,"H","T")
13 Harry's Winnings Harry's Winnings Yazı-Tura Oyunu Harry nin 11 kez oyunda önde... Bu benzetimi 20 kere yaparsak
14 Envanter Simulasyonu Simulasyon envanter yönetimi problemlerinde yaygın bir biçimde kullanılmaktadır: Talep bilinmezdir. Çoğu zaman değişken rassal terminler vardır. Yok-satmalar istenmeyen sonuçlar doğurmaktadır. Örnekler: Gazeteci, bakkal, uçak bakımı...
15 Envanter Simulasyonu Periyodik Değerlendirmeli Sistemler: Envanter sayımı periyodik yapılmakta dır. Süreklie Değerlendirmeli Sistemler: Envanter sayımı sürekli olarak yapılır... Her bir siparişte stok seviyesi M e kadar yükseltilir. Elde kalan envantere ne olacağı ve müşterinin yok satmalara tepkisi sistemin modellenmesi için oldukça önemlidir. Çıktı Ölçütleri: Toplam Kar Toplam Maliyet Yok satma maliyeti Hurda maliyeti
16 Envanter Simulasyonu Envanter sistemleri aşağıdaki girdileri kullanır: Talep dağılımı Termin süresi (ve dağılımı) Satın alma maliyeti Satış fiyatı Sabıt sipariş maliyeti Elde tutma ve yok satma maliyeti Envanter sistemleri aşağıdaki parameterleri kullanır: Maksimum envanter seviyesi Değerlendirme periyodu Sipariş miktar Termin zamanı
17 Envanter Simulasyonu Bir gazete bayiini ele alalım. Termin süresi 0. Satın alma maliyeti= 0.33 Satış fiyatı=0.5 Hurda değeri= 0.05 Gün tipi dağılımı İyi 0.35 Orta 0.45 Zayıf 0.2 Talebin farklı gün tipleri için dağılımı: Demand İyi Orta Zayıf Bunu Excel de nasıl simule ederiz?
18 Envanter Simulasyonu Excelde sistemi benzetmek için: Rassal rakam üret Talebi hesapla Gelir hesapla Toplam maliyet hesapla Günlük ve aylık kar hesapla Günlük Kar Replikasyon-1 Ort. Günlük Kar Ortalama Toplam Kar= Günlük Kar (10 Replik.)
19 Inventory Management Simulation Aylık Toplam Kar (500 Replik.) Ort.=16.56 Std. Sapma=35.43 Bu bilgi yeterli mi?? Aylık Profit Histogramı Histogram aylık karın dağılımını özetler Gazete bayiinin karlılığı hakkında ne söylenebilir??
20 Fırın Simulasyonu Bir fırıncı her gün ne kadar poğaça pişirmesi gerektiğini hesaplamaya çalışmaktadır. Her gün fırına gelen poğaça müşterilerinin dağılımı aşağıda verilmiştir: Müşteri Sayısı Olasılık Her müşterinin aldığı poğaça sayısının dağılımı ise şu şekildedir: Müşteri Başı Poğaça Olasılık Poğaçaların 10 tanesini 8.40$ iken maliyeti 5.80$. Satılmayan her poğaça gün sonunda süpermarkette yarı fiyatına satımaltadır. 5 günlük simulasyona dayanarak günde kaç poğaça üretmesi gerektiğini bulun...
21 Ders 2 Sonu Sonraki Ders: Chapter 3: General Principles of Simulation
IE 303T Sistem Benzetimi L E C T U R E 6 : R A S S A L R A K A M Ü R E T I M I
IE 303T Sistem Benzetimi L E C T U R E 6 : R A S S A L R A K A M Ü R E T I M I Geçen Ders Sürekli Dağılımlar Uniform dağılımlar Üssel dağılım ve hafızasızlık özelliği (memoryless property) Gamma Dağılımı
IE 303T Sistem Benzetimi
IE 303T Sistem Benzetimi 1 DERS 1 Simulasyona Giriş A very large part of space-time must be investigated, if reliable results are to be obtained, A. Turing Dersin İçeriği Geçen Dersin Tekrarı Banka Şubesi
IE 303T Sistem Benzetimi L E C T U R E 3 : O L A Y Ç I Z E L G E L E M E A L G O R I T M A S I
IE 303T Sistem Benzetimi L E C T U R E 3 : O L A Y Ç I Z E L G E L E M E A L G O R I T M A S I İçerik Olay Çizelgeleme Algoritması Tek Servis Sağlayıcılı Kuyruk (Tekrar) Maden Ocağı Kamyonları Liste İşlemleri
IE 303T Sistem Benzetimi
IE 303T Sistem Benzetimi 1 L E C T U R E 5 : O L A S I L I K T E K R A R 2 Review of the Last Lecture Random Variables Beklenen Değer ve Varyans Moment Kesikli Dağılımlar Bernoulli Dağılımı Binom Dağılımı
Sürekli Rastsal Değişkenler
Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım
IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R
IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık
SİSTEM SİMÜLASYONU BENZETIM 1 SİMÜLASYON MODEL TÜRLERİ 1. STATİK VEYA DİNAMİK. Simülasyon Modelleri
SİSTEM SİMÜLASYONU SİMÜLASYON MODELİ TÜRLERİ BİR SİMÜLASYON ÇALIŞMASINDA İZLENECEK ADIMLAR ve SİMÜLASYON MODEL TÜRLERİ Simülasyon Modelleri Üç ana grupta toplanabilir; 1. Statik (Static) veya Dinamik (Dynamic),
Dr. Mehmet AKSARAYLI
Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli
Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan
Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik
ENM-3105 Sistem Simulasyonu Kısa Sınav 1
ENM-3105 Sistem Simulasyonu Kısa Sınav 1 Sınav Tarihi ve Yeri: 06 Kasım 2014, Perşembe, İlk ders, B203 No lu Derslik) (Kısa Sınav 1 de aşağıda verilen sorulardan birinin benzeri sorulacaktır.) Soru 1)
Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01
Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin
Girişimcilikte Simülasyon: Eğitimcinin Eğitimi
Girişimcilikte Simülasyon: Eğitimcinin Eğitimi Giriş Modeller Uygulamalar Risk analizi Olası Analiz Simülasyon Yöntemi Envanter Simülasyonu Bekleme Hatları Avantajlar ve dezavantajlar Referanslar SUNUM
ENM 316 BENZETİM ÖDEV SETİ
ENM 316 BENZETİM ÖDEV SETİ ÖDEV 1: El ile Benzetim Bir depo ve 7 adet müşterisi olan bir taşımacılık sisteminde müşterilerden gelen siparişler araç ile taşınmaktadır. İki tür sipariş söz konusudur. Birincisi
9/22/2014 EME 3105 SİSTEM SİMÜLASYONU. Giriş. Tek Kanallı Kuyruk Sistemi. Kuyruk Sistemlerinin Simulasyonu. Simulasyon Örnekleri Ders 2
EME 3105 SİSTEM SİMÜLASYONU Simulasyon Örnekleri Ders Giriş Bu derste bilgisayar yardımı olmaksızın çalıştırılabilen birkaç simulasyon örneği verilmiştir. Bu örnekler size sistem simulasyonu metodolojisini
MONTE CARLO BENZETİMİ
MONTE CARLO BENZETİMİ U(0,1) rassal değişkenler kullanılarak (zamanın önemli bir rolü olmadığı) stokastik ya da deterministik problemlerin çözümünde kullanılan bir tekniktir. Monte Carlo simülasyonu, genellikle
KESİKLİ OLAY SİMÜLASYONU
KESİKLİ OLAY SİMÜLASYONU IE-303-2016, S I M Ü L A S Y O N A G İ R İ Ş BY D R. M U S T A F A H E K İ M O Ğ L U Ders İşlenişi Bu derste her bir sınıf birleşimine gelmeden önce ve sonra yapmanız gereken işler
YAPI İŞLETMESİ VE ŞANTİYE TEKNİĞİ 11 MONTE CARLO SİMÜLASYONU İLE İNŞAAT PROJELERİNDE SÜRE PLANLAMASI
MONTE CARLO SİMÜLASYONU İLE İNŞAAT PROJELERİNDE SÜRE PLANLAMASI Simülasyon gerçek yaşamı taklit etme sürecidir. Simülasyon Çeşitleri Fiziksel simülasyon Bilgisayarlı simülasyon Bilgisayarlı simülasyon
SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım
SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin
ÇIKTI ANALİZİ BENZETİM TÜRLERİ
ÇIKTI ANALİZİ BENZETİM TÜRLERİ Çıktı analizi benzetimden üretilen verilerin analizidir. Çıktı analizinde amaç, bir sistemin performansını tahmin etmek ya da iki veya daha fazla alternatif sistemlerin performansını
13. Olasılık Dağılımlar
13. Olasılık Dağılımlar Mühendislik alanında karşılaşılan fiziksel yada fiziksel olmayan rasgele değişken büyüklüklerin olasılık dağılımları için model alınabilecek çok sayıda sürekli ve kesikli fonksiyon
ENM 316 BENZETİM ÖDEV SETİ
ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki
ARALIK TAHMİNİ (INTERVAL ESTIMATION):
YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta
ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL
ANADOLU ÜNİVERSİTESİ ENM 317 Prof. Dr. Nihal ERGİNEL 2 ÖRNEKLEME Anakütleden n birimlik örnek alınması ve anakütle parametrelerinin örnekten tahmin edilmesidir. 3 ÖRNEKLEME ALMANIN NEDENLERİ Anakütleye
1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN. Ders No:2 Simülasyon Örnekleri
1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN Ders No:2 GIRIŞ Bu derste elle ya da bir çalışma sayfası yardımıyla oluşturulacak bir simülasyon tablosunun kullanımıyla yapılabilecek simülasyon
İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik
6.SUNUM İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik özellikleri (ortalama, varyans v.b. gibi) hakkında
EME 3117 SİSTEM SİMÜLASYONU. Rassal Sayı ve Rassal Değer. Üretimi. Rassal Sayı Üretimi
..4 EME 7 Rassal Sayı ve Rassal Değer Üretimi SİSTEM SİMÜLASYONU Rassal Sayı ve Rassal Değer Üretimi Ders Girdi Analizi bölümünde gözlemlerden elde edilen verilere en uygun dağılımı uydurmuştuk. Bu günkü
RASSAL SAYI ÜRETİLMESİ
Dr. Mehmet AKSARAYLI Ekonometri Böl. Simülasyon Ders Notları Rassal Sayı Üretilmesi RASSAL SAYI ÜRETİLMESİ Simülasyon analizinde kullanılacak az sayıda rassal sayı üretimi için ilkel yöntemler kullanılabilir.
Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)
ENM 316 BENZETİM ÖDEV SETİ Ödev 1. Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması
BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN
BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi
9/28/2016 EME 3117 SİSTEM SİMÜLASYONU. Giriş. Tek Kanallı Kuyruk Sistemi. Kuyruk Sistemlerinin Simulasyonu. Simulasyon Örnekleri Ders 2
EME 3117 SİSTEM SİMÜLASYONU Simulasyon Örnekleri Ders Giriş Bu derste bilgisayar yardımı olmaksızın çalıştırılabilen birkaç simulasyon örneği verilmiştir. Bu örnekler size sistem simulasyonu metodolojisini
OLASILIK ve KURAMSAL DAĞILIMLAR
OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine
Rassal Değişken Üretimi
Rassal Değişken Üretimi Doç. Dr. Mehmet AKSARAYLI GİRİŞ Yaşadığımız ya da karşılaştığımız olayların sonuçları farlılık göstermektedir. Sonuçları farklılık gösteren bu olaylar, tesadüfü olaylar olarak adlandırılır.
KLÜ İİBF-İŞLETME * KANTİTATİF KARAR VERME TEKNİKLERİ
SORU 1. ASMALI BAKKAL Asmalı Bakkal'ın sahibi Nuri Amca, bir hafta boyunca satacağı ekmeklere ilişkin olarak ekmek fırınına vereceği günlük sipariş miktarı için hafta başında karar vermek zorundadır. Bunun
ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ. Operasyon yönetiminde önemli bir alana sahiptir.
ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ Kuyruk sistemleri, Operasyon yönetiminde önemli bir alana sahiptir. Üretimde, atölye çevresi kuyruk şebekelerinin karmaşık bir ilişkisi olarak düşünülebilir. Bir
SÜREKLİ DÜZGÜN DAĞILIM
SÜREKLİ DÜZGÜN DAĞILIM X rassal değişkenin olasılık yoğunluk fonksiyonu; şeklinde ise x e düzgün dağılmış rassal değişken, f(x) e sürekli düzgün dağılım denir. a 0 olduğuna göre, f(x) >0 olur.
4. HİSTOGRAM. Tolerans Aralığı. Değişim Aralığı HEDEF. Üst Spesifikasyon Limiti. Alt Spesifikasyon Limiti
4. HİSTOGRAM Nedir? Sınıflandırılmış verilerin sütun grafiğidir. Sütunların (sınıfların) genişliği sabit olup, bir veri sınıfını temsil etmektedir. Sütunların yüksekliği ise her bir veri sınıfına düşen
EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler
EME 3105 1 Giriş Sistem Simülasyonu Önümüzdeki hafta simulasyon girdilerinin modellenmesinde kullanılan kesikli ve sürekli Simulasyonda İstatistiksel Modeller-I Ders 4 dağılımlar hatırlatılacaktır. Rassal
Eme Sistem simülasyonu. Giriş. Simulasyonun Kullanım Alanları (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş
Eme 3105 Giriş Sistem simülasyonu Gerçek Dünya Sureci Sistemin davranışıyla ilişkili varsayımlar seti Modelleme & Analiz Sistem Simülasyonuna Giriş Ders 1 Simülasyon, gerçek bir dünya sureci yada sistemindeki
NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,
NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına
ENM 316 Arena Uygulama Dersi Mayıs 2015
ENM 316 Arena Uygulama Dersi 3 15 Mayıs 2015 Tek bir replikasyon hiçbir zaman iyi bir seçim değildir. En az 5 replikasyonla başlayın 2 Örnek 3 Örnek Statistic modülü içerisinde her bir giremeyen müşterinin
1.58 arasındaki her bir değeri alabileceği için sürekli bir
7.SUNUM Hatırlanacağı gibi, kesikli rassal değişkenler sonlu (örneğin; 0, 1, 2,...,10) veya sayılabilir sonsuzlukta (örneğin; 0, 1, 2,...) değerler alabilmektedir. Fakat birçok uygulamada, rassal değişkenin
EME 3105 Giriş SISTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Simülasyon Ders 1 Simülasyon, Yrd.Doç.Dr.Beyazıt Ocaktan
EME 3105 Giriş SISTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Gerçek Dünya Sureci Sistemin davranışıyla ilişkili varsayımlar seti Modelleme & Analiz Ders 1 Yrd.Doç.Dr.Beyazıt Ocaktan Simülasyon, gerçek
YÖNEYLEM ARAŞTIRMASI-II Hafta 14
9.0.07 YÖNEYLEM ARAŞTIRMASI-II Hafta ERT ANALİZİ Olasılıksal roje Değerlendirme ve Gözden Geçirme Tekniği ERT (robabilistic Evaluation and Review Technique) Eğer projenin faaliyetlerinin tamamlanma süresi
ProModel ile Modelleme. Benzetim 14. Ders
ProModel ile Modelleme Benzetim 14. Ders ProModel Menüleri ProModel temel olarak iki ayrı alandan oluşur, bu alanlar Main Menüler ve Layout Window udur. File menüsü ProModel Menüleri ProModel Menüleri
Matematik Ders Notları. Doç. Dr. Murat Donduran
Matematik Ders Notları Doç. Dr. Murat Donduran Mart 18, 28 2 İçindekiler 1 Tanımlı Integral Uygulamaları 5 1.1 Olasılık.............................. 5 3 4 İÇINDEKILER Bölüm 1 Tanımlı Integral Uygulamaları
ENM 316 BENZETİM. Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)
ENM 316 BENZETİM ÖDEV 1: Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması için gereken
EME Sistem Simülasyonu. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme
EME 7 Giriş Sistem Simülasyonu Simülasyon problemlerinin önemli bir bölümü stok sistemlerini içerir. Bu derste basit bir stokastik stok Simulasyon Örnekleri Ders kontrol sistemi ele alınıp, sistemin isleyişi
İstatistik ve Olasılık
İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk
SİSTEM SİMULASYONU FİNAL ÇALIŞMA SORULARI-I
SİSTEM SİMULASYONU FİNAL ÇALIŞMA SORULARI-I Soru 1) Rassal Sayı üretme yöntemlerinden Doğrusal Eşlik Üretecinin parametrelerinin a=13, m=40 ve c=1; başlangıç değeri x 0 =3 olsun. Verilen başlangıç değerini
EME 3117 SİSTEM SİMULASYONU
EME 3117 SİSTEM SİMULASYONU Sonsuz Ufuk Simulasyon (Kararlı Hal Simulasyonu) Ders 14 Hatırlatma Gözleme ve Zamana Dayalı Performans Ölçümleri Gözleme Dayalı Ortalama sistem süresi Ortalama kuyruk süresi
rasgele değişkeninin olasılık yoğunluk fonksiyonu,
3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının
SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) İÇİN MODELLEME VE BENZETİM. Dr. Murat Günal
1 SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) İÇİN MODELLEME VE BENZETİM Dr. Murat Günal SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) Sekröte sunulacak Yeni Ürün (veya Teknoloji) Mevcut ve gelecekteki demografik durum
EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9
EME 3105 1 Girdi Analizi Prosedürü SİSTEM SİMÜLASYONU Modellenecek sistemi (prosesi) dokümante et Veri toplamak için bir plan geliştir Veri topla Verilerin grafiksel ve istatistiksel analizini yap Girdi
Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi
ENM 52 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 4 Minitab da İstatiksel Çıkarım-I (Ortalamalar ve Oranlar İçin ) İstatistiksel Hipotezler İstatistiksel hipotez testi ve parametrelerin güven aralığı tahmini,
EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME
EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME GİRİŞ Bu bölümde benzetim için excel örnekleri önerilmektedir. Örnekler excel ile yapılabileceği gibi el ile de yapılabilir. Benzetim örnekleri
EME SISTEM SİMÜLASYONU. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme
.. Giriş EME SISTEM SİMÜLASYONU Simülasyon problemlerinin önemli bir bölümü stok sistemlerini içerir. Bu derste basit bir stokastik stok kontrol sistemi ele alınıp, sistemin isleyişi elle simule Simulasyon
MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
İSTATİSTİĞE GİRİŞ VE OLASILIK
1. 52 iskambil kağıdı ile oynanan bir kağıt oyununda çekilen kart vale ya da kız ise 3$, papaz ya da as ise 5$ kazanılmaktadır. Başka herhangi bir kartın çekilmesi durumunda oyun kaybedilmektedir. Oyunun
BENZETİM. Prof.Dr.Berna Dengiz
Prof.Dr.Berna Dengiz 2. Ders Sistemin Performans.. Ölçütleri Sistem Türleri Benzetim Modelleri Statik veya Dinamik Deterministik ( belirli ) & Stokastik ( olasılıklı) Kesikli & Sürekli Sistemin Performans
SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN
SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.
EME Sistem Simülasyonu. Girdi Analizi Prosedürü. Olasılık Çizgesi. Dağılıma Uyumun Kontrol Edilmesi. Dağılıma İyi Uyum Testleri Ders 10
EME 35 Girdi Analizi Prosedürü Sistem Simülasyonu Modellenecek sistemi (prosesi) dokümante et Veri toplamak için bir plan geliştir Veri topla Verilerin grafiksel ve istatistiksel analizini yap Dağılıma
EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi. Özet İstatistikler ve Histogram (Minitab)(1) Örnek: Eczane İçin Servis Süreleri
EME 3117 1 2 Girdi Analizi SİSTEM SIMÜLASYONU Modellenecek sistemi (prosesi) dokümante et. Veri toplamak için bir plan geliştir. Veri topla. Verilerin grafiksel ve istatistiksel analizini yap. Girdi Analizi-I
1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi
1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 8: Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır. Bu anlamda, anakütleden çekilen
Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri
Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Mehmet YILMAZ [email protected] 10 KASIM 2017 5. HAFTA 2.7 M/M/1/ / sistemi için Bekleme zamanının dağılımı ( ) 1 T j rastgele değişkeni j. birimin
Depo-Stok Yönetimi İçin Bilgi Sistemi, Malzeme İzleme
Depo-Stok Yönetimi İçin Bilgi Sistemi, Malzeme İzleme Depo-Stok yönetimi için bilgi sisteminde olması gereken bilgiler aşağıda verilmiştir. Hammadde Deposu Ara Ürün Stoğu Bitmiş Ürün Deposu Ara Yüzler
Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )
İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.
ENM 316 BENZETİM GİRİŞ DERS 1 GİRİŞ GİRİŞ. Zaman içerisinde değişiklik gösteren bir sistemin tavrı, geliştirilen bir benzetim modeli ile incelenir.
GİRİŞ ENM 316 BENZETİM DERS 1 Zaman içerisinde değişiklik gösteren bir sistemin tavrı, geliştirilen bir benzetim modeli ile incelenir. Model, sistemin çalışması ile ilgili kabullerin bir setinden oluşur.
ENM 316 BENZETİM DERS 1 GİRİŞ. Benzetim, karmaşık sistemlerin tasarımı ve analizinde kullanılan en güçlü analiz araçlarından birisidir.
ENM 316 BENZETİM DERS 1 GİRİŞ Benzetim, karmaşık sistemlerin tasarımı ve analizinde kullanılan en güçlü analiz araçlarından birisidir. Genel anlamda benzetim, zaman içinde sistemin işleyişinin taklididir.
Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var :
Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir
Planlama Seviyelerine Bir Bakış
Kısa Vade Planlama Ufku Orta Vade Şimdi 2 ay 1 yıl Uzun vade Toplam planlama: Orta vadeli kapasite planlaması. Genellikle 2 ila 12 aylık dönemi kapsar. Planlama Seviyelerine Bir Bakış Kısa vadeli planlar
Merkezi Limit Teoremi
Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal
3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI
ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
EME 3105 SISTEM SIMÜLASYONU
1 EME 3105 SISTEM SIMÜLASYONU ARENA ya Giriş Lab-1 Dr.Beyazıt Ocaktan Giriş 2 Bu derste ARENA ortamında modelleme yeteneklerini genel olarak tanıtmak için basit bir model sunulacaktır. Simulasyon Dilleri
SİMULASYON MODELLEME VE ANALİZ. Giriş. Arena Ortamı. Simulasyon Dilleri HAFTA 2. Yrd.Doç.Dr.Beyazıt Ocaktan
SİMULASYON MODELLEME VE ANALİZ 1 2 Giriş Bu derste ARENA ortamında modelleme yeteneklerini genel olarak tanıtmak için basit bir model sunulacaktır. HAFTA 2 Yrd.Doç.Dr.Beyazıt Ocaktan Simulasyon Dilleri
EME 3117 SİSTEM SİMÜLASYONU. Üçgensel Dağılım. Sürekli Düzgün Dağılım. Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar
9.0.06 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar EME 7 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller (Sürekli Dağılımlar) Ders 5 Sürekli Düzgün Dağılım Sürekli Düzgün (Uniform)
Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi
Parametrik Olmayan Testler Ki-kare (Chi-Square) Testi Ki-kare (Chi-Square) Testi En iyi Uygunluk (Goodness of Fit) Ki-kare Dağılımı Bir çok önemli istatistik testi ki kare diye bilinen ihtimal dağılımı
Envanter Politikası Belirlemede Benzetim Uygulaması
Envanter Politikası Belirlemede Benzetim Uygulaması Hayrettin Kemal Sezen Prof.Dr. Uludağ Üniversitesi İİBF Yöneylem Anabilimdalı [email protected] Şenol Erdoğmuş Y.Doç.Dr. Osmangazi Üniversitesi İstatistik
TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ
TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ 1 İstatistik İstatistik, belirsizliğin veya eksik bilginin söz konusu olduğu durumlarda çıkarımlar yapmak ve karar vermek için sayısal verilerin
Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS IND 621 Stokastik Süreçler
İçerik Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS IND 621 Stokastik Süreçler 1 3 0 0 3 8 Ön Koşul Derse Kabul Koşulları Dersin Dili Türü Dersin Düzeyi Dersin Amacı İngilizce Zorunlu Doktora
ENDÜSTRİ MÜHENDİSLİĞİ
1. Bir işletmede mevcut sabit maliyetler kapsamında olmayan seçenek aşağıdakilerden hangisidir? a) Süreçte kullanılacak tezgah/tezgahların satın alma maliyeti b) Süreçte kullanılacak tezgah/tezgahların
ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI
SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,
Güvenlik Stoğu... Hesaplanması ve Kullanımı
Hazırlayan : Cengiz Pak Güvenlik Stoğu... Hesaplanması ve Kullanımı Problem Güvenlik stoğu beklenmedik durumlar ile bizim aramızda yastık görevini görmek üzere oluşturulur. Çünkü talep ile tedarik / üretim
Verilerin Düzenlenmesi
Verilerin Düzenlenmesi İstatistiksel verileri anlamlı hale getirmenin 5 ayrı yolu: 1. Sözel ifadelerle açıklama 2. Tablolar halinde düzenleme 3. Seriler halinde düzenleme 4. Grafiklerle gösterme 5. Bu
SÜREKLİ RASSAL DEĞİŞKENLER
SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.
Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma
2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal
BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH
BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Uygulamalı bilim
İstatistik ve Olasılık
İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde
3/6/2013. Ders 6: Kesikli Olasılık Dağılımları
Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı
Ders 6: Kesikli Olasılık Dağılımları
Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı
İSTATİSTİK EXCEL UYGULAMA
İSTATİSTİK EXCEL UYGULAMA EXCEL UYGULAMA Bu bölümde Excel ile ilgili temel bilgiler sunulacak ve daha sonra İstatistiksel Uygulamalar hakkında bilgi verilecektir. İşlenecek Konular: Merkezi eğilim Ölçüleri
9/14/2016 EME 3117 SİSTEM SIMÜLASYONU. Giriş. (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş. Hafta 1. Yrd.Doç.Dr.
EME 3117 SİSTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Hafta 1 Yrd.Doç.Dr.Beyazıt Ocaktan Giriş Simülasyon, gerçek bir dünya süreci yada sistemindeki işlemlerin zamana bağlı değişimlerinin taklit edilmesidir.
Sürelerine Göre Tahmin Tipleri
Girişimcilik Bölüm 5: Talep Tahmini [email protected] 5.1. Talep Tahmini Tahmin: Gelecek olayları önceden kestirme bilim ve sanatı. İstatistiksel Tahmin: Geçmiş verileri matematiksel modellerde kullanarak
SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI
SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI Yrd. Doç.Dr. İrfan Yolcubal Kocaeli Üni. Jeoloji Müh. Random Değişken: Nümerik olarak ifade edilen bir deneyin sonuçları Süreksiz(Discrete) Random Değişken: Randomdeğişken
Rasgele Sayıların Özellikleri
Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir
Ders 5: Kesikli Olasılık Dağılımları
Ders 5: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı
Ders 5: Kesikli Olasılık Dağılımları
Ders 5: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı
"Farklı?-Evrensel Dünyada Kendi Kimliğimizi Oluşturma" İsimli Comenius Projesi Kapsamında Yapılan Anket Çalışma Sonuçları.
"Farklı?-Evrensel Dünyada Kendi Kimliğimizi Oluşturma" İsimli Comenius Projesi Kapsamında Yapılan Anket Çalışma Sonuçları. Survey Results Which Were Done in Comenius Project named'' Different? Building
