MATEMATİK ÖĞRETMENLİĞİ



Benzer belgeler
ANALİTİK GEOMETRİ KARMA / TEST-1

Vektör Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr.Grv.Dr.Nevin ORHUN

Cebir Notları. Bağıntı. 1. (9 x-3, 2) = (27, 3 y ) olduğuna göre x + y toplamı kaçtır? 2. (x 2 y 2, 2) = (8, x y) olduğuna göre x y çarpımı kaçtır?

2014 LYS MATEMATİK. P(x) x 2 x 3 polinomunda. 2b a ifade- x lü terimin. olduğuna göre, katsayısı kaçtır? değeri kaçtır? ifadesinin değeri kaçtır? 4.

DERS 1. ki De i kenli Do rusal Denklem Sistemleri ve Matrisler

8. ÜNİTE TRİGONOMETRİK FONKSİYONLAR

2013 YGS MATEMATİK Soruları

EĞİTİM VE ÖĞRETİM YILI TED KDZ EREĞLİ KOLEJİ ORTAOKULU MATEMATİK 8.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANDIR.

Proje konularından istediğiniz bir konuyu seçip, hazırlamalısınız.

7. SINIF ÖĞRETİM PROGRAMI

Bilardo: Simetri ve Pisagor Teoremi

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

Kümenin özellikleri. KÜMELER Burada x : ifadesi öyle x lerden oluşur ki diye okunur. Örnek: Kilis in ilçeleri

KILAVUZ SORU ÇÖZÜMLERİ Matematik

4. ÜNİTE GEOMETRİK ÇİZİMLER

Uzayın Analitik Geometrisi

DÜZLEM AYNALAR ÇÖZÜMLER . 60 N N 45. N 75 N N I


Görsel Tasarım İlkelerinin BÖTE Bölümü Öğrencileri Tarafından Değerlendirilmesi

DENEY NO: 9 ÜÇ EKSENLİ BASMA DAYANIMI DENEYİ (TRIAXIAL COMPRESSIVE STRENGTH TEST)

ÜN TE III. ÇEMBER N ANAL T K NCELENMES

Elemanların yerlerinin değiştirilmesi kümeyi değiştirmez. A kümesinin eleman sayısı s(a) ya da n(a) ile gösterilir.

FOTOGRAMETRİK DEĞERLENDİRME - ÇİFT FOT. DEĞ. Analog ve Analitik Stereodeğerlendirme. Yrd. Doç. Dr. Aycan M. MARANGOZ

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ

KAZANIMLAR, ETKİNLİK ÖRNEKLERİ VE AÇIKLAMALAR I. DÖNEM

OPERATÖRLER BÖLÜM Giriş Aritmetik Operatörler

Origami. Bu kitapç n sahibi. Haz rlayan: Asl Zülal Foto raflar: Burak Murat Bayram Tasar m: Ay egül Do an Bircan Çizimler: Bengi Gencer

Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon

[ 1 i 6 2i. [ a b. Örnek...3 : Örnek...4 : Örnek...5 : Örnek...6 : i sanal sayı birimi olmak üzere, i. Örnek...1 : =?

4 ab sayısı 26 ile tam bölünebildiğine göre, kalanı 0 dır.

KATEGORİSEL VERİ ANALİZİ (χ 2 testi)

Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu Öğretim Yılı Güz Dönemi

14-18 EKİM KURBAN BAYRAMI TATİLİ VE ARA TATİL

ALES / İLKBAHAR 2008 DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ

Harita Projeksiyonları

TG 12 ÖABT İLKÖĞRETİM MATEMATİK

Türev Kavramı ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 22 Nisan Matematik Soruları ve Çözümleri

1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER

Faktöryel:

Işık hızının ölçümü

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Görünüşler - 1

Page 1. Page 3. Not: Doğrusal ölçüde uzunlukların ölçülendirilmesi şekildeki gibidir.

AÖĞRENCİLERİN DİKKATİNE!

Fizik ve Ölçme. Fizik deneysel gözlemler ve nicel ölçümlere dayanır

uzman yaklaşımı Branş Analizi öğretim teknolojileri ve materyal tasarımı Dr. Levent VEZNEDAROĞLU

MATEMATİK (haftalık ders sayısı 5, yıllık toplam 90 ders saati)

TOPOĞRAFYA Takeometri

f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2

MAT223 AYRIK MATEMATİK

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ

SÜREÇ YÖNETİMİ VE SÜREÇ İYİLEŞTİRME H.Ömer Gülseren > ogulseren@gmail.com

2. SINIFLAR HAYAT BİLGİSİ DERSİ TEMALARI ve KAVRAMLAR

MESS ALTIN ELDİVEN İSG YARIŞMASI BAŞVURU VE DEĞERLENDİRME PROSEDÜRÜ

Örnek...6 : Yandaki bölme işleminde A ve n birer doğal sayıdır. A nın alabileceği en küçük ve en bü yük değerleri bulunu z.

FIRTINA SERİSİ MATEMATİK SORU BANKASI 5

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik I Soruları ve Çözümleri

FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

a) 6x6x6x6 b) 13x13x13 c) 9x9x9x9x9x9x9 tane küp olması için kaç tane daha küpe ihtiyaç vardır?

a) Birim sorumluları: Merkez çalışmalarının programlanmasından ve uygulanmasından sorumlu öğretim elemanlarını,

ÜNİTE ÖĞRENME ALANI/ ALT ÖĞRENME ALANI SAYILAR Sayılar KAZANIMLAR 1. Deste ve düzineyi örneklerle açıklar. 2. Nesne sayısı 100 den az olan bir çokluğu

Öğrenci Seçme Sınavı (Öss) / 14 Haziran Matematik I Soruları ve Çözümleri E) 6 ). 6 5 = 25 6 =


VECTOR MECHANICS FOR ENGINEERS: STATICS

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ

İKİ BOYUTLU GÖRSEL ARAÇLAR HARİTALAR

Mimari Anlatım Teknikleri I (MMR 103) Ders Detayları

MATEMATİK 2+2 UYGULAMALI ÖĞRENME SETİ. Her Haftaya Bir Bölüm ÇEK KOPAR SINIF

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

AÖĞRENCİLERİN DİKKATİNE!

Kesirler. Yrd.Doç. Dr. Güney HACIÖMEROĞLU BAHAR 2011

6. x ve y birer tam sayıdır. 7. a, b, c doğal sayılar olmak üzere, 8. a, b, c doğal sayılar olmak üzere, 9. x, y ve z birer tam sayı olmak üzere,

2. KUVVETLERİN VEKTÖREL TOPLANMASI. Hazırlayan Arş. Grv. A. E. IRMAK

DENEY 2: PROTOBOARD TANITIMI VE DEVRE KURMA

ç) Yönetim Kurulu: Ağrı İbrahim Çeçen Üniversitesi Yönetim Kurulunu,

Foton Kutuplanma durumlarının Dirac yazılımı

SÜRE BİLİŞİM TEKNOLOJİLERİ ÜNİTE 1: : BİLGİ VE TEKNOLOJİ DERS SAATİ: 7

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Yazma Becerileri 2 YDA

Örnekler: Koltuk Modelleme (Model-Evren Çavuşoğlu)

İhtiyacınız, tüm sisteminizin kurumsallaşmasını sağlayacak bir kalite modeli ise

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI.

ORTAÖĞRETİM MATEMATİK 11. SINIF DERS KİTABI YAZARLAR. Metin ŞİŞMAN Muslu LÖKÇÜ Turgut OĞUZ Özcan ATAK

6. SINIF MATEMATİK (Yarışma tarihine kadar işlenmesi gereken konular) DOĞAL SAYILARLA İŞLEMLER

Faaliyet Alanları. 22 Aralık Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü

Çılgın Yıldızlar. Soru:

ATAKÖY CUMHURİYET ANADOLU LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI

Şekil İki girişli kod çözücünün blok şeması. Tablo İki girişli kod çözücünün doğruluk tablosu. Şekil İki girişli kod çözücü devre

DENEY 7 ELASTİK YAY AMAÇ: TEORİ:

İstatistiksel Kavramların Gözden Geçirilmesi

Üşenme, Erteleme, Vazgeçme.

İSTANBUL KEMERBURGAZ ÜNİVERSİTESİ. ÇİFT ANADAL ve YANDAL PROGRAMI YÖNERGESİ

Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49

YÜKSEKÖĞRETİM KURUMLARI ENGELLİLER DANIŞMA VE KOORDİNASYON YÖNETMELİĞİ (1) BİRİNCİ BÖLÜM. Amaç, Kapsam, Dayanak ve Tanımlar

Bu konuda cevap verilecek sorular?

EĞİTİM-ÖĞRETİM DÖNEMİ KURUMSAL KURS SETİ

İYON DEĞİŞİMİ AMAÇ : TEORİK BİLGİLER :

T.C. Cumhuriyet Üniversitesi Fen Bilimler Enstitüsü

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)

Veri Toplama Yöntemleri. Prof.Dr.Besti Üstün

Transkript:

T.C. ANADOLU ÜNİVERSİTESİ AINLARI NO: 177 AÇIKÖĞRETİM FAKÜLTESİ AINLARI NO: 597 MATEMATİK ÖĞRETMENLİĞİ Analitik Geometri azar: rd.doç.dr. Nevin MAHİR Editör: Doç.Dr. Hüseyin AZCAN

Bu kitabın basım, yayım ve satış hakları Anadolu Üniversitesine aittir. "Uzaktan öğretim" tekniğine uygun olarak hazırlanan bu kitabın bütün hakları saklıdır. İlgili kuruluştan izin almadan kitabın tümü ya da bölümleri mekanik, elektronik, fotokopi, manyetik kayıt veya başka şekillerde çoğaltılamaz, basılamaz ve dağıtılamaz. Copyright 1999 by Anadolu University All rights reserved No part of this book may be reproduced or stored in a retrieval system, or transmitted in any form or by any means mechanical, electronic, photocopy, magnetic tape or otherwise, without permission in writing from the University. Tasarım: rd.doç.dr. Kazım SEZGİN ISBN 975-49 - 835-5

Başlarken Kaba bir yaklaşımla geometriye başlamanın temelde iki yolu vardır. Bu yollardan birincisi oldukça soyut bir şekilde aksiyomatik bir sistemden elde edilebilen mantıksal sonuçları berrak bir biçimde ortaya koyup, bu aksiyonların kendi aralarındaki ilişkilerin sistematik şekilde incelenmesidir. Öğrencinin matematiksel şıklık ve güzellikte ilk tanıştığı bu yol, kaba biçimleriyle lise yıllarında sentetik geometri derslerinin konusunu oluşturur. Fakat bu yolun kolay hesap yapabilmeye olanak vermeyişi çok önemli bir dezavantajını oluşturur. Bunun nedeni ise bu yöntemin temel motivasyonunun mantıksal tutarlılık oluşudur. Öklid ile başlayan bu yaklaşım tamamen doğal olması gereken geometriyi (en azından yeni başlayanlar için) çok zor duruma getirmektedir. Diğer bir yaklaşım ise başlangıçda soyut bir aksiyomatik sistemin kendi içindeki ilişkilerini ve bu ilişkilerin sonuçlarını incelemek yerine, bu aksiyomatik sistemi sağlayan bir modeli alıp, bu modeli uygun bir biçimde işleyip, sonuçları bu modelden elde etmektir. Birinci yöntemin dezanvantajını oluşturan nokta, doğru ve düzlem gibi nesnelerin tanımsız oluşları, bu ikinci yöntem sayesinde giderilebilir. Bu yöntem ise bu kitabın konusunu oluşturan analitik geometridir. Sizin lise yıllarından tanıdığınız gibi düzlemin Öklidyen analitik geometrisinde nokta bir (x, y) sıralı ikilisi, doğru a, b, c gerçel sayılar olmak üzere düzlemde ax + by + c = denklemini sağlayan (x, y) sıralı ikililerin kümesi olarak tanımlanır. Bu alışıldık ve evrensel hale gelmiş olan bu tanımlarla Öklid tarafından düzlem geometri için verilen aksiyomları sağlayan bir model oluşturulur. Bu şekilde bir model kullanmanın tek yararı soyut aksiyomları yukarıda verilen örnekteki gibi somutlaştırmak değil, denklemler ve sıralı ikililer sayesinde bir geometri problemini bir cebir ya da analiz problemine çevirmektir. Tersine cebirdeki ya da analizdeki gelişmeler de geometriye yansıyabilir duruma gelmektedir. En önemlisi de bu hesap yapabilme olanağı, ortalama bir öğrenci için, geometriye başlamanın en kestirme yoludur. Başka bir deyişle analitik geometri belki de, bir zamanlar kral Ptolemy'nin Öklid'den umutsuzca istediği geometrinin krallara mahsus kolay bir yoludur. Adına koordinatlama diyeceğimiz bu (x, y) sıralı ikililerinin kullanımına eski Mısırlılarda, Romalılarda ve unanlalarda rastlanır. Sıralı ikililerin arasındaki ilişkileri geometrik olarak ilk defa yorumlayan ise Apollonius'dur. Fakat bugünküne yakın anlamda ilk analitik geometri çalışmaları Nicole Orseme'de görülmektedir. Örneğin, doğru ve düzlem denklemleri Orseme tarafından yazılmıştır. Bugün bilinen anlamda analitik geometrinin temelleri ise Fransız metamatikçileri Rene Descartes ve Pierre de Fermat tarafından atılmıştır. Doç.Dr. Hüseyin AZCAN Editör

Düzlem ve Düzlemin Koordinatlanması azar rd.doç.dr. Nevin MAHİR ÜNİTE 1 Amaçlar Bu üniteyi çalıştıktan sonra; Doğrunun ve düzlemin koordinatlanmasını öğrenecek, Dik koordinatlarla, paralel koordinatlarla ve kutupsal koordinatlar ile düzlemin koordinatlanmasını kavrayacaksınız. İçindekiler Giriş 3 Bir Doğrunun Koordinatlanması 3 Düzlemin Koordinatlanması 3 İki Nokta Arasındaki Uzaklık 5 İki Noktadan Geçen Doğru Denklemi 6 İki Doğru Arasındaki Açı 9 Bir Doğru Parçasının Orta Noktası 11 Bir Doğru Parçasını Belli Bir Oranda Bölen Nokta 1 Bir Noktanın Bir Doğruya Uzaklığı 13 Bir Noktanın Bir Doğruya Göre Simetriği 15 Paralel Koordinatlar 17 Kutupsal Koordinatlar 18

Çözümlü Problemler Değerlendirme Soruları 4 Çalışma Önerileri Bu üniteyi kavrayabilmek için konuyla ilgili lisedeki geometri bilgilerinizi hatırlayınız. ANADOLU ÜNİ VERSİ TESİ

DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI 3 1. Giriş Sizlerinde daha önceki bilgilerinizden anımsayacağınız gibi geometride nokta, doğru, düzlem gibi kavramlar tanımsızdır. Fakat bu kitapta kavramları somutlaştırabilmek amacıyla bu tanımsız kavramları genel geçer anlamda sezgilendiği gibi kullanacağız. ani, noktayı sivri bir kalemin tam ucu gibi, doğruyu düz kırılmayan, bükülmeyen bir eğri ve düzlemi ise düz bir yüzey olarak algılayacağız. Bu algılama biçimi, en azından lise yıllarının Öklid geometrisinden tanıdık olduğu için kulağı tırmalayıcı değildir.. Bir Doğrunun Koordinatlanması Bir doğruyu koordinatlamak, lise yıllarından iyi bilinen düşünsel bir sayı doğrusundan başka bir şey değildir. Anımsayacak olursak, bir l doğrusu alıp, gerçel sayıları bu doğru üzerine yerleştirelim. Öncelikle sıfırı yerleştirilmesiyle doğruyu iki parçaya ayırmış oluruz. Bir sayısını yerleştirdiğimiz yarı doğruya, pozitif yarı doğru, diğerine negatif yarı doğru diyelim. 1 negatif yarı yar do ru doğru pozitif yarı yar do ru doğru Şekil 1.1: Diğer gerçel sayılarıda doğru üzerine bire-bir ve doğruyu tamamen dolduracak şekilde yerleştirelim. Öyleki, bu yerleştirme esnasında sıralanma korunsun. ani, x 1, x R için x 1 > x ise sayı doğrusu üzerinde x 1, x nin sağında olsun. İnşadan dolayı bu yerleştirme işlemi bire-bir ve örtendir. Şimdi, doğru üzerindeki iki nokta arasındaki uzaklığı da, bu noktalara karşılık getirilen gerçel sayıların farklarının mutlak değeri olarak tanımlayalım. Bu sayı doğrusu koordinatlamasını kullanarak tümel bir şekilde yüksek boyutlu uzayların koordinatlaması da yapılabilir. 3. Düzlemin Koordinatlanması Düzlemde birbirine dik durumlu iki doğru alalım. Bu doğrulardan birini -ekseni (yatay doğru), diğerini -ekseni (dikey doğru), arakesit noktasını da başlangıç noktası olarak adlandıralım. ve (sayı) eksenlerini başlangıç noktası her iki eksende de sıfırı temsil edecek şekilde koordinatlayalım. Bu durumda, düzlemde alınan bir P noktasına, bir (a, b) sıralı ikilisi karşılık getirebilir. Burada a ise P noktasında -eksenine çizilen paralelin -sayı doğrusunu kestiği noktaya karşılık getirilen ger- AÇIKÖĞ RETİ M FAKÜLTESİ

4 DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI çel sayının değeri, benzer şekilde, b ise P noktasında -eksenine çizilen paralelin - sayı doğrusunu kestiği noktaya karşılık getirilen gerçel sayının değeridir. b P = (a, b) a Şekil 1.: Bu a gerçel sayına P noktasının apsisi, b gerçel sayısına P noktasının ordinatı denir. Tutarlılığı sağlamak için -ekseni üzerindeki x gerçel sayısına (x, ) sıralı ikilisi ile -ekseni üzerindeki y gerçel sayısına (, y) sıralı ikilisini karşılık getirelim. Kolayca görebiliriz ki her sıralı ikiliye düzlemde bir nokta karşılık getirilir. C= (-, 4) (, 4) (, 3) A= (1, 3) (1, ) (-, ) (-, ) (, -) B= (-, -) Şekil 1.3: Son olarak gerçel sayılardaki gibi burada da yön kavramı tanımlanabilir. Bu konuya daha sonra değinilecektir. Fakat, tersi belirtilmedikçe düzlemin yönlendirilmesi sayı doğruların yukarıdaki örneklerde görülen yönlendirilmeleri sonucu oluşacak yönlendirmeyi kullanacağız (standart yönlendirme). 4. İki Nokta Arasındaki Uzaklık A ve B noktaları için, AB doğru parçasının uzunluğuna, A ve B noktaları arasındaki uzaklık denir. Koordinatları A= (x 1, y 1 ) ve B= (x, y ) olan iki nokta arasındaki uzaklığı Şekil 1.4. den yararlanarak bulalım. ANADOLU ÜNİ VERSİ TESİ

DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI 5 (, y ) B = (x, y ) y - y 1 (, y 1 ) x - x 1 A = ( x 1, y 1 ). C ( x 1, ) ( x, ) Şekil 1.4: A ve B noktalarının koordinatları gözönüne alınırsa, oluşan ABC dik üçgeninde, AC = x - x 1, BC = y - y 1 ve Pisagor teoremi kullanılarak, AB = AC + BC = x - x 1 + y - y 1 dir. Her iki tarafın karekökü alınarak, AB = x - x 1 + y - y 1 elde edilir. 4.1. Örnek Düzlemde dik koordinatları A= (1, -3) ve B= (3, 5) olarak verilen noktaların arasındaki uzaklığı bulunuz. Çözüm İki nokta arasındaki uzaklık AB = x - x 1 + y - y 1 formülünde, koordinatlar yerine konularak, AB = 3-1 + 5 - -3 = 68 = 17 bulunur 5. İki Noktadan Geçen Doğru Denklemi A= (x 1, y 1 ) ve B= (x, y ) noktalarının koordinatlarına göre, üç farklı durum vardır. 1. Durum x 1 x y 1 y olması durumunda, AÇIKÖĞ RETİ M FAKÜLTESİ

6 DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI B B=( x, y ) K = (x, y) A=( x 1, y 1 ) B' K' Şekil 1.5: Şekil 1.5. den görüldüğü gibi ABB', AKK' üçgenlerinin benzerliğinden, KK' K'A = BB' B'A dır. Buna göre, y - y 1 x - x 1 = y - y 1 x - x 1 elde edilir.. Durum x 1 = x ve y 1 y olması durumunda, B = ( x 1, y ) A = ( x 1, y 1 ) Şekil 1.6: Şekil 1.6. den görüldüğü gibi bu iki noktadan geçen doğru -eksenine paralel doğrudur. Bu doğru üzerindeki bütün noktaların apsisi x 1 e eşittir. O halde bu doğrunun denklemi ANADOLU ÜNİ VERSİ TESİ

DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI 7 x = x 1 olur. 3. Durum denk- x 1 x ve y 1 = y olması durumunda, birinci durumdan leminde y 1 = y yazılırsa, y - y 1 x - x 1 = y - y 1 x - x 1 B = ( x, y ) A = ( x 1, y 1 ) Şekil 1.7: y = y 1 denklemi bulunur. 5.1. Örnek A= (-1, 3) ve B= (4, -) noktalarından geçen doğrunun denklemini bulunuz. Çözüm Düzlemde farklı iki noktadan geçen doğru denklemi: y - y 1 x - x 1 = y - y 1 x - x 1 olduğundan, A ve B noktalarının koordinatları yerine konulursa, y - 3 x - -1 = - - 3 4 - - 1 y - 3 x + 1 = - 5 4 + 1 y - 3 x + 1 = - 1 y = - x + 1 + 3 y = - x + bulunur. AÇIKÖĞ RETİ M FAKÜLTESİ

8 DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI Tanım Bir doğrunun üst yarı düzlemde -ekseni ile pozitif yönde yaptığı açının tanjantına o doğrunun eğimi denir. B= ( x, y ) A=( x 1 y 1 ) x - x 1. y - y 1 d θ (x 1, ) (x, ) Şekil 1.8: Şekil 1.8. den görüldüğü gibi A= (x 1, y 1 ) ve B = (x, y ) noktalarından geçen d doğrusun eğimi için, m = tan θ = y - y 1 x - x 1 formülü elde edilir. A= (x 1, y 1 ) noktasından geçen ve eğimi m olan bir doğrunun denklemi: y - y 1 x - x 1 = y - y 1 x - x 1 formülünde m = y - y 1 x - x 1 kullanılarak y - y 1 = m x - x 1 elde edilir. 5.. Örnek A = (1, ) noktasından geçen ve eğimi 3 olan doğrunun denklemini bulunu Çözüm Verilen bir noktadan geçen ve eğimi belli olan doğru denklemine göre y - = 3 x - 1 y - = 3 x - 3 y = 3 x + 1 bulunur. Aşağıda grafiği verilmiştir. ANADOLU ÜNİ VERSİ TESİ

DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI 9 y = 3 x + 1 1 1/ -1-1/3 1 Şekil 1.9: 6. İki Doğru Arasındaki Açı doğruları verilsin. Keşi- Eğimleri m 1 = tanθ 1 ve m = tanθ olan d 1 ve d şen bu iki doğru arasındaki açının tanjantı d d 1 A C θ θ θ 1 B Şekil 1.1: Şekil 1.1. dan tanθ = tan (π - (θ 1 + π - θ )) = tan (θ - θ 1 ) bulunur. Böylece, tanθ = tan θ - θ 1 = tan θ - tan θ 1 1 + tan θ. tan θ 1 = m - m 1 1 + m. m 1 d 1 ve d doğruları arasındaki açının tanjantını verir. AÇIKÖĞ RETİ M FAKÜLTESİ

1 DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI Herhangi iki doğrunun birbirine göre durumları, yani birbirine göre paralel olma, dik olma veya herhangi bir açıyla kesiştiklerine, bu iki doğrunun eğimlerinden karar verilebilir. Özel olarak, 1) m 1 = m ise, tan θ= dır. θ < π olduğundan θ = dir. Bu durumda, verilen iki doğru ya paralel ya da çakışıktır. ) m 1. m = -1 ise, tanθ tanımsız ve θ= π/ dir. Bu durumda, iki doğru birbirine diktir. 6.1. Örnek x - y + 3 = ve 3y + 3x -9 = doğruları arasındaki açıyı bulunuz. Çözüm Verilen doğrular, y = x+3 ve y = -x +3 şeklinde yazılırsa, bu doğruların eğimlerinin m 1 = 1 ve m = -1 olduğu görülür. m 1. m = 1.(-1) = -1 den bu iki doğru arasındaki açı 9 dir. ani bu doğrular birbirine diktir (Şekil 1.11).. 3 y = x + 3 y = -x + 3-3 3 Şekil 1.11 7. Bir Doğru Parçasının Orta Noktası A= (x 1, y 1 ), B= (x, y ) olmak üzere AB doğru parçasının orta noktası, AC = CB koşuluna uyan C= (x, y ) noktasıdır. ANADOLU ÜNİ VERSİ TESİ

DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI 11 y - y (, y ) (, y ) C = ( x, y ) B = ( x, y ) y - y 1 (, y 1) A = ( x 1, y 1 ) C ' B' ( x 1, ) ( x, ) ( x, ) x - x 1 x - x Şekil 1.1 Şekil 1.1. de ACC' ve ABB' üçgenlerinin benzerliğinden yararlanarak; AC ' AB ' = CC' BB ' = AC AB = 1 yani x - x 1 x - x 1 = y - y 1 y - y 1 = 1 den C = x, y = x 1 + x, y 1 + y elde edilir. 7.1 Örnek Uç noktaları A= (-1, ) ve B= (4, 3) olan AB doğru parçasının orta noktasını bulunuz. Çözüm C = x, y = x 1 + x, y 1 + y = - 1 + 4, + 3 = 3, 5 8. Bir Doğru Parçasını Belli Bir Oranda Bölen Nokta A= (x 1, y 1 ), B= (x, y ) noktalarından geçen AB doğru parçasını alalım. AC = λ CB eşitliğini sağlayan C noktasına, AB doğru parçasını λ oranında bö-len nokta denir. Şimdi bu noktanın koordinatlarını araştıralım. AÇIKÖĞ RETİ M FAKÜLTESİ

1 DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI B = ( x, y ) K A = ( x 1, y 1 ) C = ( x, y ) M Şekil 1.13: AC = λ CB AC CB = λ dir. Üçgen benzerliğinden yararlanarak Şekil 1.13. den AC CB = AK KM ve AC CB = KC MB den x - x 1 x - x = λ ve y - y 1 y - y = λ yazabiliriz. x - x 1 x - x = λ eşitliğinden x - x 1 = λ x - x x 1 + λ = x 1 + λx x = x 1 + λx 1 + λ Benzer şekilde y - y 1 y - y = λ eşitliğinden y = y 1 + λy 1 + λ elde edilir. Böylece, C = x, y = x 1 + λx 1 + λ, y 1 + λy 1 + λ dır. 8.1. Örnek A= (4, -) ve B= (-1, -4) noktaları verilsin. AB doğru parçasını oranında bölen C noktasının koordinatlarını bulunuz. AC = 1 4 CB ANADOLU ÜNİ VERSİ TESİ

DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI 13 Çözüm x = x 1 + λx 1 +λ 4 + 1 = 4-1 1 + 1 4 = 15 4. 4 5 = 3 y = y 1 + λy 1 + λ - + 1 = 4-4 1 + 1 4 = -3 5 4 = - 1 5 C = x, y = 3, - 1 5 9. Bir Noktanın Bir Doğruya Uzaklığı Bir A= (x, y ) noktasının d : ax + by + c = doğrusuna olan uzaklığı bu A noktasından d doğrusuna inilen dikmenin uzunluğu olarak tanımlanır. A = ( x, y ) d P Şekil 1.14: Bu uzaklık Şekil 1.14. den görüldüğü gibi, PA dır. A ile P noktaları arasındaki uzaklığı bulmak için önce P noktasının koordinatlarını bulalım. ax + by + c = doğrusunun eğimi m = - a b dir. Bu doğruya dik olan PA doğrusunun eğimi ise m = b a dır. PA doğrusunun eğimi ve bir noktası bilindiğinden bu doğrunun denklemi, y - y = b a x - x dır. AP doğrusu ile ax + by + c = doğrusunun ortak noktası, ax + by + c = bx - ay + ay - bx = AÇIKÖĞ RETİ M FAKÜLTESİ

14 DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI iki bilinmeyenli doğrusal denklemlerin çözümü olan dır. P = x, y = b x - aby - ac a + b, a y - abx - bc a + b Buradan A ve P noktaları arasındaki uzaklık hesaplanırsa d = PA = ax + by + c a + b elde edilir. 9.1. Örnek A= (, -1) noktasının 3x - 4y + 5 = doğrusuna olan uzaklığı bulunuz. Çözüm d = 3. - 4-1 + 5 3 + - 4 = 15 5 = 3 birimdir. 3x - 4y + 5 = A = (, -1) Şekil 1.15: 1. Bir Noktanın Bir Doğruya Göre Simetriği Düzlemde A ve B noktaları verilsin. B l C A Şekil 1.16: ANADOLU ÜNİ VERSİ TESİ

DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI 15 A ve B noktalarından geçen doğru parçası ile verilen l doğrusunun dik olarak kesiştikleri C noktası, AB doğru parçasının orta noktası ise A ve B noktalarına l doğrusuna göre simetriktir denir. Şimdi, bazı özel doğrulara göre verilen noktanın simetriğini bulalım. a) A= (x, y) noktasının, -eksenine göre simetriği B= (x, -y) dir. b) A= (x, y) noktasının, -eksenine göre simetriği C= (-x, y) dir. C = (-x, y) A = (x, y) B = (x, -y) Şekil 1.17: c) A= (x, y) noktasının açıortay doğrularına göre simetriği L A = (x, y) y = x M C B K y = -x Şekil 1.18: Şekil 1.18. den OCM, OKB, OAL üçgenleri benzerdir. Buna göre, A= (x, y) noktasının noktasının y = x doğrusuna göre simetriği B= (y, x), y = -x doğrusuna göre simetriği C= (-y, -x) noktalarıdır. d) x = a doğrusuna göre simetri: AÇIKÖĞ RETİ M FAKÜLTESİ

16 DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI B = (m, n) A = (x, y) K = (a, y) x = a Şekil 1.19 Şekil 1.19. da K noktası bir orta nokta olduğundan, bu noktanın koordinatlarını kullanarak, a = x + m y = y + n a = x + m m = a - x y = y + n n = y A= (x, y) noktasının x = a doğrusuna göre simetriğini B= (m, n) = (a - x, y) elde ederiz. e) y = b doğrusuna göre simetri: A = (x, y) S = (x, b) y = b B = (m, n) Şekil 1. d şıkkında olduğu gibi S noktası AB nin orta noktasıdır (Şekil 1.). x = x + m y + n m = x, b = n = b - y ani B = (m, n) = (x, b - y) bulunur. ANADOLU ÜNİ VERSİ TESİ

DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI 17 11. Paralel Koordinatlar Düzlemde, bir başlangıç noktasında, herhangi bir açı ile kesişen iki doğru alalım. Bu doğrulardan birinin pozitif yönü sağa doğru, diğerinin pozitif yönü ise yukarıya doğru olsun. b P = (a, b) a Şekil 1.1: Sırasıyla birinci doğruya -ekseni, ikinci doğruya ise -ekseni diyelim. Düzlemde bir P noktası verilsin. Bu P noktasından eksenlere paralel doğrular çizelim. Paralel doğruların ve eksenleri kestiği noktalardan orijine olan uzaklıklara karşı gelen sayılar sırasıyla a ve b olsun. Böylece, P noktasına (a, b) sıralı ikilisi karşılık getirilmiş olur. Buna göre, dik koordinatlardaki gibi paralel koordinatlarla, düzlemin noktalarıyla, R kümesinin elemanları birebir örten bir biçimde eşlenmiş olur. 11.1. Örnek Koordinat eksenleri arasındaki açı 6 olan bir paralel koordinat sisteminde (1, 3) noktasının, aynı başlangıç noktasına sahip ve eksenleri çakışan bir dik koordinat sistemindeki koordinatları bulunuz. Çözüm (1, 3) y 1 6 6 x 1 Şekil 1.: Paralel koordinatları (1, 3) olan noktanın dik koordinatları (a, b) olsun. (a, b) dik koornidatlarını bulmak için, Şekil 1.. de görüldüğü gibi dik üçgenden yararlanacağız. Bu dik üçgenin dik kenarları AÇIKÖĞ RETİ M FAKÜLTESİ

18 DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI cos 6 = x 1 3 sin 6 = y 1 3 1 = x 1 3 3 = y 1 3 x 1 = 3 y 1 = 33 olarak bulunur. O halde, a = 1 + x 1 = 1 + 3 a = 5 b = y 1 b = 33 a, b = 5, 3 3 dir. 1. Kutupsal Koordinatlar Dik koordinat ve paralel koordinatlarda olduğu gibi, burada da düzlemin noktaları ile sıralı gerçel sayı ikilileri arasında bir eşleme yapacağız. Düzlemde kutup adını vereceğimiz ve ile göstereceğimiz herhangi bir başlangıç noktası seçelim. Kutup noktasında yatay sağa doğru ve kutupsal eksen adını vereceğimiz yarı doğrusunu çizelim. (Şekil 1.3) r P θ Şekil 1.3: P olmak üzere, P nin başlangıç noktasına olan uzaklığı r ve saatin dönme yönünün tersine yönlendirilmiş P açısını θ ile gösterelim. Böylece θ açısı ve r yardımıyla P noktasına (r, θ) ikilisi karşılık getirmiş oluruz. Bu (r, θ) ikilisine, P noktasının kutupsal koordinatları denir. Buna göre, düzlemdeki bir noktaya, k herhangi bir tam sayı olmak üzere (r, θ + kπ) ikilileri kutupsal koordinat olarak karşılık getirilir. Bu tanımdan, bir noktanın birden fazla sayıda kutupsal koordinatı vardır. Örneğin, 4, π, 4, 7 π, 4, - 5 π aynı noktanın kutupsal koordinatlarıdır. Eğer, r > 6 6 6 θ < π olacak şekilde r ve θ nın değişim aralığı sınırlı alınırsa, başlangıç noktasından farklı P noktasına tek türlü (r, θ) ikilisi karşılık getirilmiş olur. Özel olarak başlangıç noktasını (, ) olarak koordinatlayalım. ANADOLU ÜNİ VERSİ TESİ

DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI 19 1.1. Örnek 3, π, 4, π 4, 1, π kutupsal koordinatlarıyla verilen noktaları düzlemde işaretleyiniz. (1, ) (4, 4 ) 4 (3, ) 1 /4 3 Şekil 1.4: Bir dik koordinat sisteminde, başlangıç noktasını kutup, -eksenini ise kutupsal eksen olarak alınabilir. Buna göre, bir noktanın dik koordinatlarıyla, kutupsal koordinatları arasında, P r r sinθ θ r cosθ R Şekil 1.5: Şekil1.5. de görüldüğü gibi ORP dik üçgeninde x = r cosθ y = r sinθ r = x + y θ = arc tan y x bağıntıları vardır. 1.. Örnek Kutupsal koordinatları A =, π 3 olan noktanın, dik koordinatlarını bulunuz. AÇIKÖĞ RETİ M FAKÜLTESİ

DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI Çözüm r = ve θ = π 3 x = r cosθ = cos π 3 = 1 y = r sinθ = sin π 3 = 3 Kutupsal koordinatları, π 3 olan noktanın dik koordinatları 1, 3 dür 13. Çözümlü Problemler 13.1. A= (-, 4) noktasından 3 birim uzaklıkta bulunan noktaların geometrik yerinin denklemini bulunuz. Çözüm Geometrik yere ait bir nokta B = (x, y) olsun. Bu durumda, AB = x + + y - 4 = 3 bulunur. x + + y - 4 = 9 x + 4x + 4 + y - 8y + 16 = 9 13.. Köşeleri A= (x 1, y 1 ) B= (x, y ) ve C= (x 3, y 3 ) olan ABC üçgeninin alanını bulunuz. C = ( x 3, y 3 ) B = ( x, y ) A = ( x 1, y 1 ) K L M Şekil 1.6: Çözüm AKLC yamuğu ile CLMB yamuğunun alanlarının toplamından AKMB yamuğun alanı çıkarılırsa, ABC üçgeninin alanı elde edilir. ANADOLU ÜNİ VERSİ TESİ

DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI 1 AKLC yamuğun alanı = 1 (y 1 + y 3 ) (x 3 - x 1 ) CLMB " " = 1 (y 3 + y ) (x - x 3 ) AKMB " " = 1 (y 1 + y ) (x - x 1 ) Böylece, ABC üçgeninin alanı S = 1 y 1 + y 3 x 3 - x 1 + 1 y 3 + y x - x 3-1 y 1 + y x - x 1 = 1 y 1 x 3 - y 3 x 1 + y 3 x - y x 3 + y x 1 - y 1 x = 1 x 1 y - y 3 + x y 3 - y 1 + x 3 y 1 - y bulunur. 13.3. Eksenler arasındaki açı 6 olan paralel koordinat sistemiyle donatılan bir düzlemde A= (x 1, y 1 ) ve B= (x, y ) noktalarından geçen doğrunun denklemini bulunuz. Çözüm A = ( x 1, y 1 ) C = (x, y) d B = ( x, y ) C ' B' şekil 1.7: Şekil 1.7. da görüldüğü gibi A ve B noktalarından geçen d doğrusu üzerinde C= (x, y) temsilci nokta alalım. Buna göre, AC' CC' = AB' BB' x - x 1 y - y 1 = x - x 1 y - y 1 doğru denklemini elde ederiz. 13.4. Kutupsal koordinat sisteminde r = denklemiyle verilen eğriyi dik koordinat sisteminde yazınız. AÇIKÖĞ RETİ M FAKÜLTESİ

DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI Aynı başlangıç noktasına sahip olan ve -ekseni ile kutupsal ekseni çakışan dik ve kutupsal koordinatlar arasında, x = r cos θ y = r sin θ bağlantılarından elde edilen r = x + y ifadesini kullanarak x + y = dir. Her iki tarafın karesi alınırsa x + y = 4 denklemi bulunur. 13.5. Kutupsal koordinatlardan A= (r 1, θ 1 ), B= (r, θ ) noktaları arasındaki nokta- uzaklık formülünü bulup, sonuç olarak ları arasındaki uzaklığı hesaplayınız. N =, π 3 M = 4, π 6 Çözüm A = ( r 1, θ 1 ) r 1 d θ 1 - θ B = ( r, θ ) θ 1 θ şekil 1.8: A ve B noktaları arasındaki uzaklığa d diyelim. Şekil 1.8. da AOB üçgenine kosinüs teoremini uygulayacak olursak, d = r 1 + r - r1. r cos θ 1 - θ AB = d = r 1 + r - r1. r cos θ 1 - θ formülünü elde ederiz. Buradan, NM = + 4 -.. 4 cos π 3 - π 6 = - 8 3 birim bulunur. ANADOLU ÜNİ VERSİ TESİ

DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI 3 Değerlendirme Soruları Aşağıdaki soruların yanıtlarını seçenekler arasından bulunuz. 1. A = (3, ), B = (-, 5) noktalarından geçen doğrunun denklemi aşağıdakilerden hangisidir? A. 3x - y - 7 = B. 5y + 3x - 19 = C. y + 3x - 11 = D. 3x + y - 7 = E. 3x + 5y + 1 =. Düzlemde, A = (-4, -1) B = (3, 5) noktaları arasındaki uzaklık aşağıdakilerdenhangisidir? A. B. C. D. E. 17 7 37 65 85 3. Düzlemde A = (, 3) noktası veriliyor. -eksenine uzaklığı A noktasına olan uzaklığının karesine eşit olan noktaların geometrik yerinin denklemi aşağıdakilerden hangisidir? A. x + y - 4x + 7y + 13 = B. x + y - 5x - 6y + 13 = C. x + y + 4x - 7y + 13 = D. x + y - 4x - 7y + 13 = E. x + y - 3x - 6y + 13 = 4. Kutupsal koordinatlarda r = sinθ - cosθ eğrisinin dik koordinat sistemindeki denklemi aşağıdakilerden hangisidir? A. x + y - x + y = B. x + y - x + y = C. x + y + x - y = D. E. x + y - y + x = x + y - y + x = 5. x - y = 9 eğrisinin kutupsal koordinat sistemindeki denklemi nedir? A. r cos θ = 9 B. r sin θ = 9 C. 4r cos θ = 9 D. 4r sin θ = 9 E. r = 9 AÇIKÖĞ RETİ M FAKÜLTESİ

4 DÜZLEM VE DÜZLEMİ N KOORDİ NATLANMASI 6. Kutuptan geçen ve merkezi kutupsal eksen üzerinde bulunan 3 birim yarıçaplı çemberin denklemi aşağıdakilerden hangisidir? A. r = 6 sinθ B. r = 6 (sinθ + cosθ) C. r = 6 cosθ D. r = 6 cosθ E. r = 6 sinθ 7. A = (-3, 4) noktasının kutupsal koordinatları nedir? A. (5, tan -1 (- 4/3)) B. (5, tan (- 4/3)) C. (, tan -1 (- 3/4)) D. (5, tan -1 (- 3/4)) E. (5, tan (- 3/4) 8. Aşağıda verilen doğru çiftlerinden hangisi paralel iki doğru değildir? A. x = x = 3 B. x - y =5 x + y = - 5 C. y = x - x = y + D. 3y = x + 5 y = x 3 E. - x + y = - 5 - y = - x - 1 9. Dik koordinatları A = (3, 4) olan bir nokta veriliyor. Eksenler arasındaki açı 45 olan bir paralel koordinat sisteminde A noktasının koordinatları aşağıdakilerden hangisidir? A. 6, 1 B. (1, 6) C. (- 1, 6) D. 1, 3 E. - 1, 3 1. A = (1, c) noktasının 3x + 4y - 3 = doğrusuna olan uzaklığı 1 birim ise c nin değerlerinden biri aşağıdakilerden hangisidir? 5 A. B. - 1 C. D. - 3 E. 4 Değerlendirme Sorularının anıtları 1. B. E 3. D 4. C 5. A 6. C 7. A 8. B 9. E 1. D ANADOLU ÜNİ VERSİ TESİ