7.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "7.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1"

Transkript

1 7.Sunum Yrd. Doç. Dr. Sedat ŞEN 1

2 Bağımlı Değ. Bağımsız Değ. Analiz Sürekli İki kategorili t-testi, Wilcoxon testi Sürekli Kategorik ANOVA, linear regresyon Sürekli Sürekli Korelasyon, doğrusal regresyon İki kategorili Sürekli Lojistic regresyon İki kategorili İki kategorili Ki-Kare testi Yrd. Doç. Dr. Sedat ŞEN 2

3 Buraya kadar olan konularda (t-testi, ANOVA vb.) bağımlı değişkenin gruplar arasında anlamlı bir fark gösterip göstermediğini test ettik. Bu sunumumuzda farklı bir araştırma sorusunu cevaplamak yeni bir yöntem kullanacağız. Bu sunumda fark yerine ilişki durumuna korelasyon yöntemi ile bakacağız. Korelasyon temel anlamda iki değişken arasındaki ilişkiyi göstermek için kullanılır. Yrd. Doç. Dr. Sedat ŞEN 3

4 Aşağıdaki formül vasıtasıyla iki değişkene ait değerler kullanılarak hesaplanan değere «Pearson Momentler Çarpımı Korelasyon Katsayısı» denir. Karl Pearson tarafından geliştirildiği için Pearson korelasyonu adını almıştır. Yrd. Doç. Dr. Sedat ŞEN 4

5 Tablodaki iki değişkene ait kovaryans değerinin 4.25 olarak hesaplandığını biliyorsak. Bu değeri iki değişkenin standart sapmasına bölersek korelasyon katsayısını (r) hesaplayabiliriz. Korelasyon değeri r harfi ile gösterilmektedir. Katılımcı Ar. Ortalama İzlenen Reklam Sayısı St. Sapma Varyan s Alınan Ürün r = 4.25/(1.67x2.92) r = İki değişken arasında pozitif yönde yüksek bir ilişki olduğunu söyleyebiliriz. Yrd. Doç. Dr. Sedat ŞEN 5

6 Korelasyon (ilişki), iki değişkenin birlikte değişiminin bir ölçüsüdür. Boy uzunluğu ile kilo arasındaki ilişki, yaş ile boy arasındaki ilişki, çalışma saati ve sınav puanı arasındaki ilişki, hava sıcaklığı ve doğalgaz tüketimi arasındaki ilişki eğer sayısal veriler varsa korelasyon katsayısı cinsinden gösterilebilir. Korelasyon katsayısı matematiksel olarak -1 ile +1 arasında değerler alır. Yrd. Doç. Dr. Sedat ŞEN 6

7 Korelasyonun büyüklüğü (0-1) iki değişken arasındaki ilişkinin gücünü gösterirken işareti (+,-) değişkenlerin aynı yönde (+) artıp azaldığını ya da zıt yönlerde (-) artış ve azalış gösterdiğini belirtir. Hava sıcaklığı ve doğalgaz tüketimi arasındaki ilişki NEGATİF Çalışma saati ve sınav puanı arasındaki ilişki POZİTİF olabilir. Eğer iki değişken arasında hiç ilişki yoksa korelasyon katsayısı sıfır ya da sıfıra yakın bulunur. Eğer iki değişken birbiriyle yüzde yüz oranında ilişkili ise korelasyon maksimum (1) değeri (mükemmel ilişki) alır. Yrd. Doç. Dr. Sedat ŞEN 7

8 İki değişken arasında hesaplanan korelasyon (r) değeri: r<0.20 ve sıfıra yakın değerler ilişkinin olmadığı ya da çok zayıf ilişkiyi işaret eder arasında ise zayıf ilişki arasında ise orta düzeyde ilişki arasında ise yüksek düzeyde ilişki ise çok yüksek ilişki olduğu yorumu yapılır. Yrd. Doç. Dr. Sedat ŞEN 8

9 Korelasyon katsayısını yorumlarken neden-sonuç ilişkisinden bahsetmek doğru değildir. Çünkü korelasyon bize iki değişken arasındaki ilişkinin büyüklüğünü gösterirken neden-sonuç ilişkisine dair bir şey söylememektedir. A değişkeni B değişkeni etkiliyor olabilir ya da B değişkeni A değişkenini etkiliyor olabilir. Başka bir alternatif de iki A ile B değişkenleri arasında neden-sonuç ilişkisi olmayabilir. Korelasyon değeri nedensonuç ilişkisinin yönünü vermemektedir. Korelasyon değerine bakarak neden-sonuç ilişkisinden bahsedemememizin başka sebebi de üçüncü bir değişkenin etkisidir. İki değişkenin arasındaki neden-sonuç ilişkisini diğer değişkenlerin etkisinden bağımsız düşünemeyiz. Yrd. Doç. Dr. Sedat ŞEN 9

10 T-testi ve ANOVA analizlerinde gördüğümüz gibi araştırmacılar bu analizleri kullanarak bir hipotezi test edebilmektedir. Korelasyonu kullanarak bir sıfır hipotez test edilebilmektedir. Korelasyonda test edilen sıfır hipotezi iki değişken arasında bir ilişki olmadığını (r = 0) belirtmektedir(ilişki YOK). Alternatif hipotez ise iki değişken arasında bir ilişki olduğunu belirtir (İLİŞKİ VAR). Burada da elde edilen p-değerine bakarak sıfır hipotezini reddedip edemeyeceğimizi söyleyebiliriz. Örneğin p-değeri 0.05 ten küçük bulunduğunda sıfır hipotezini reddedip alternatif hipotezi kabul edebiliriz. Yani iki değişken arasında anlamlı bir ilişki bulunmaktadır diyebiliriz. Yrd. Doç. Dr. Sedat ŞEN 10

11 Pearson korelasyonu hesaplaması için değişkenlerin sürekli olması yani en azında eşit aralıklı ölçek düzeyinde olması gerekmektedir. Eğer Pearson korelasyon katsayısının anlamlılığından bahsetmek istiyorsak örneklem dağılımının normal olması varsayımının yerine getirilmesi gerekmektedir. Normalliğin nasıl kontrol edileceğine önceki sunumlardan bakabilirsiniz. Değişkenlerin normal dağılıma sahip olmadığı durumlarda Spearman Sıra korelasyon katsayısı tercih edilir. Yrd. Doç. Dr. Sedat ŞEN 11

12 Açılan SPSS ekranında bivariate (ikili) ve Partial (kısmi) olmak üzere iki korelasyon türü karşımıza çıkmaktadır. İkili (bivariate) korelasyon iki değişken arasındaki korelasyonu gösterirken kısmi (partial) korelasyon iki değişken arasındaki ilişkiyi gösterirken diğer değişkenlerine etkisini kontrol etmek için kullanılır. Pearson korelasyon ve Spearman korelasyon katsayıları ikili korelasyonlar arasındadır. Yrd. Doç. Dr. Sedat ŞEN 12

13 Açılan SPSS ekranında bivariate (ikili) Pearson korelasyon ve Spearman korelasyon katsayıları ikili korelasyonlar arasındadır. Yrd. Doç. Dr. Sedat ŞEN 13

14 Sunumun başında önce varyans ve kovaryans sonra da korelasyon değerlerini hesapladığımız veriyi SPSS ile korelasyon değeri hesaplamada kullanacağız. Veride katılımcıların izledikleri reklam sayıları ile aldıkları ürün sayıları içeren iki değişken verilmektedir. Yrd. Doç. Dr. Sedat ŞEN 14

15 Yan taraftaki ekranda aralarında ilişki olup olmadığını merak ettiğimiz iki değişkeni ekraın sağ tarafına attıktan sonra Pearson kutucuğunu işaretledikten sonra OK tuşuna basabiliriz. Burada iki yönlü hipotez için iki kuyruklu (two-tailed) seçilir. Yrd. Doç. Dr. Sedat ŞEN 15

16 Options menüsünde ortalama ve standart sapma gibi betimleyici istatistiklerin yanında kovaryans istatistiği de elde edebiliriz. Eğer verimizde kayıp veri var ise nasıl müdahale edilmesi gerektiğini (pairwise ya da listwise) de seçebiliriz. Yrd. Doç. Dr. Sedat ŞEN 16

17 Options Menüsünde işaretlememize göre betimleyici istatistik değerleri elde edebiliriz. Bu tablodaki değerler sunumun başındaki hesaplamalarımız ile aynıdır. Yrd. Doç. Dr. Sedat ŞEN 17

18 Korelasyon analizi sonucunda elde ettiğimiz yandaki tabloda korelasyon değerinin yanında, bu değerin anlamlılığı (pdeğeri), çapraz çarpımlar, kovaryans ve örneklem büyüklüğü (N) değerleri elde edilir. Yrd. Doç. Dr. Sedat ŞEN 18

19 Yandaki tabloda dikkat etmemiz gereken şey ise aynı değerlerin 2 kez rapor edilmesidir. Bunun sebebi A-B arasındaki her hesaplamanın B-A arasındaki hesaplamalara eşit olmasıdır. Burada tablonun alt ya da üst kısımlarından birine odaklanmak yeterlidir. Yrd. Doç. Dr. Sedat ŞEN 19

20 Yandaki tabloya göre 5 değere sahip reklam ve 5 değere sahip ürün değişkenleri arasındaki korelasyon değeri olarak hesaplanmıştır. Sıfır hipotezini reddedemeyeceğimizi söyleyen p-değerine göre anlamlı bir ilişki bulunmamaktadır. Ayrıca kovaryans değeri 4.25 olarak bulunmuştur. Bu değerleri sunumun başında SPSS kullanmadan hesaplamıştık. Burada bir değişkenin kendi ile olan kovaryansı varyanstır ve daha önce hesapladığımız (2.8 ve 8.5) varyans değerleri ile aynıdır. Yrd. Doç. Dr. Sedat ŞEN 20

21 Yrd. Doç. Dr. Sedat ŞEN 21

22 Yrd. Doç. Dr. Sedat ŞEN 22

23 İki nicel değişken arasındaki ilişkiyi göstermek için Pearson korelasyon katsayısını hesaplayabiliriz. Aşağıdaki tabloda kitap okuma sayısı ile öğrenci yaşı arasındaki korelasyon değeri (r=.069) gösterilmektedir. Yrd. Doç. Dr. Sedat ŞEN 23

24 Okunan kitap sayısı ile final notu arasındaki ilişki için yandaki korelasyon işlemi uygulanır. Yrd. Doç. Dr. Sedat ŞEN 24

25 Okunan kitap sayısı ile final sınavında alınan puan arasında 0 a yakın bir korelasyon vardır (.03). Yrd. Doç. Dr. Sedat ŞEN 25

26 Aynı anda bir çok değişken arasında hesaplanan ikili korelasyonlara bakabiliriz. Yrd. Doç. Dr. Sedat ŞEN 26

27 Yrd. Doç. Dr. Sedat ŞEN 27

28 Spearman s sıra korelasyonu Pearson korelasyon katsayısının parametrik olmayan versiyonudur. Parametrik varsayımların sağlanmadığı normal olmayan verilerde kullanılır. Verilerin önce sıralanması daha sonra da Pearson eşitliğinin kullanılmasıyla elde edilir. İki tane sıralanmış değişken arasındaki Pearson korelasyon değeridir diyebiliriz. Spearman s rho olarak da adlandırılır. Pearson korelasyonunda doğrusal (linear) ilişki söz konusu iken Spearman korelasyonda monotonik (monotonic) ilişkiden bahsedilir. Yrd. Doç. Dr. Sedat ŞEN 28

29 Matematik Fizik Yukarıdaki Spearman rho formülü ile yandaki 2 değişken arasındaki korelasyon değerini hesaplayabilmek için önce iki değişkendeki her puan için sıralamada kaçıncı olduklarını, sonra bu sıralamalar arasındaki farkları daha sonra da bu farkların karesini hesaplamak gerekmektedir. Bu işlemler SPSS te otomatik olarak yapılmaktadır. SPSS ile bulmadan önce elle nasıl hesaplandığını göstereceğiz. Yrd. Doç. Dr. Sedat ŞEN 29

30 Yan tarafta bir grup öğrencinin matematik ve fizik derslerinden aldığı puanlar verilmektedir. Bu iki değişken arasında Spearman sıra korelasyonu katsayısı hesaplanacaktır. Yrd. Doç. Dr. Sedat ŞEN 30

31 SPSS te Spearman korelasyonu Pearson korelasyonu ile aynı menüde yer almaktadır. Burada tek yapmanız gereken Spearman kutucuğunu seçmektir. Yrd. Doç. Dr. Sedat ŞEN 31

32 Hesaplamalarımızda bulduğumuz gibi Spearman sıra korelasyon katsayısı aşağıdaki SPSS tablosunda olarak sunulmaktadır. Yrd. Doç. Dr. Sedat ŞEN 32

33 IQ TV Bireylerin IQ puanı ile haftalık TV izleme saatleri arasındaki ilişkiyi parametrik olmayan Spearman s sıra korelasyonu ile incelemek istersek önce bu 2 değişkendeki her bir değerin kaçıncı sırada olduğunu göstermek sonra da Spearman ın formülünü kullanarak hesaplama yapmamız gerekir. SPSS te bunları yapmadan tek tuşla Pearson korelasyonunu hesapladığımız gibi Spearman sıra korelasyonunu da hesaplayabiliriz. Yrd. Doç. Dr. Sedat ŞEN 33

34 Aynı Pearson korelasyonda olduğu gibi Analyze>Correlate >Bivariate kısmına giriyoruz. Yrd. Doç. Dr. Sedat ŞEN 34

35 Açılan ekranda ilişkileri merak edilen değişkenleri Variables kısmına giriyoruz ve Correlation Coefficients kısmında Spearman kutucuğunu seçiyoruz. Yrd. Doç. Dr. Sedat ŞEN 35

36 Tabloda görüldüğü üzere Spearman s sıra korelasyon değeri olarak hesaplanır. Bu tablo kullanılarak Pearson korelasyondakine benzer yorumlar yapılabilir. Yrd. Doç. Dr. Sedat ŞEN 36

37 Korelasyon neden-sonuç ilişkisini işaret etmez Yrd. Doç. Dr. Sedat ŞEN 37

7.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1

7.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1 7.Sunum Yrd. Doç. Dr. Sedat ŞEN 1 Buraya kadar olan konularda (t-testi, ANOVA vb.) bağımlı değişkenin gruplar arasında anlamlı bir fark gösterip göstermediğini test ettik. Bu sunumumuzda farklı bir araştırma

Detaylı

KORELASYON. 7.Sunum. Yrd. Doç. Dr. Sedat ŞEN

KORELASYON. 7.Sunum. Yrd. Doç. Dr. Sedat ŞEN KORELASYON 7.Sunum 1 Korelasyon Buraya kadar olan konularda (t-testi, ANOVA vb.) bağımlı değişkenin gruplar arasında anlamlı bir fark gösterip göstermediğini test ettik. Bu sunumumuzda farklı bir araştırma

Detaylı

9.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1

9.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1 9.Sunum Yrd. Doç. Dr. Sedat ŞEN 1 Bağımlı Değ. Bağımsız Değ. Analiz Sürekli İki kategorili t-testi, Wilcoxon testi Sürekli Kategorik ANOVA, linear regresyon Sürekli Sürekli Korelasyon, doğrusal regresyon

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

Kategorik Veri Analizi

Kategorik Veri Analizi Kategorik Veri Analizi 6.Sunum Yrd. Doç. Dr. Sedat ŞEN 1 ANALİZ TÜRLERİ Bağımlı Değ. Bağımsız Değ. Analiz Sürekli İki kategorili t-testi, Wilcoxon testi Sürekli Kategorik ANOVA, linear regresyon Sürekli

Detaylı

8.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1

8.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1 8.Sunum Yrd. Doç. Dr. Sedat ŞEN 1 Bağımlı Değ. Bağımsız Değ. Analiz Sürekli İki kategorili t-testi, Wilcoxon testi Sürekli Kategorik ANOVA, linear regresyon Sürekli Sürekli Korelasyon, doğrusal regresyon

Detaylı

Korelasyon. Korelasyon. Merkezi eğilim ve değişim ölçüleri bir defada sadece bir değişkenin özelliklerini incelememize imkan tanır.

Korelasyon. Korelasyon. Merkezi eğilim ve değişim ölçüleri bir defada sadece bir değişkenin özelliklerini incelememize imkan tanır. Korelasyon Korelasyon Merkezi eğilim ve değişim ölçüleri bir defada sadece bir değişkenin özelliklerini incelememize imkan tanır. Biz şimdi, bir değişkenin özelliklerini diğer değişkenle olan ilişkisine

Detaylı

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 )

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 ) 4. SUNUM 1 Gözlem ya da deneme sonucu elde edilmiş sonuçların, rastlantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HİPOTEZ TESTLERİ denir. Sonuçların rastlantıya bağlı

Detaylı

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Bir değişkenin değerinin,

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Multivariate ANOVA (MANOVA) 11.Sunum

Multivariate ANOVA (MANOVA) 11.Sunum Multivariate ANOVA (MANOVA) 11.Sunum MANOVA Daha önce bir tane bağımlı değişkenimiz olduğunda gruplar arası farkı incelemek için ANOVA kullanacağımızı göstermiştik. Araştırmamızda birden fazla bağımlı

Detaylı

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz.

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. PARAMETRİK TESTLER Tek Örneklem t-testi 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. H0 (boş hipotez): 200 öğrencinin matematik dersinden aldıkları

Detaylı

REPEATED MEASURES ANOVA (Tekrarlı Ölçümler ANOVA )

REPEATED MEASURES ANOVA (Tekrarlı Ölçümler ANOVA ) REPEATED MEASURES ANOVA (Tekrarlı Ölçümler ANOVA ) 6.SUNUM 1 Tekrarlı Ölçümler ANOVA Repeated Measures Design: Yinelenmis Ölçüler Tasarımı ya da tekrarlanmış ölçüler tasarımı olarak adlandırılabilir. Repeated

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

Korelasyon testleri. Pearson korelasyon testi Spearman korelasyon testi. Regresyon analizi. Basit doğrusal regresyon Çoklu doğrusal regresyon

Korelasyon testleri. Pearson korelasyon testi Spearman korelasyon testi. Regresyon analizi. Basit doğrusal regresyon Çoklu doğrusal regresyon Korelasyon testleri Pearson korelasyon testi Spearman korelasyon testi Regresyon analizi Basit doğrusal regresyon Çoklu doğrusal regresyon BBY606 Araştırma Yöntemleri Güleda Doğan Ders içeriği Korelasyon

Detaylı

5.HAFTA. Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi

5.HAFTA. Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi 5.HAFTA Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi Bu sunumda kullanılan verimizde bulunan değişkenler: İsim CİNSİYET KİTAP YAŞ VİZE VİZE2 FİNAL DÖNEMSONUNOTU Bu dersimizde daha önce hesapladığımız basit

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

www.fikretgultekin.com 1

www.fikretgultekin.com 1 KORELASYON ANALĐZĐ (Correlation Analysis ) Basit Korelasyon Analizi Basit korelasyon analizinde iki değişken söz konusudur ve bu değişkenlerin bağımlıbağımsız değişken olarak tanımlanması/belirlenmesi

Detaylı

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir.

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir. ÇIKARSAMALI İSTATİSTİKLER Çıkarsamalı istatistikler, örneklemden elde edilen değerler üzerinde kitleyi tanımlamak için uygulanan istatistiksel yöntemlerdir. Çıkarsamalı istatistikler; Tahmin Hipotez Testleri

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Yrd. Doç. Dr. Sedat ŞEN 2

Yrd. Doç. Dr. Sedat ŞEN 2 6.SUNUM ANOVA da bir bağımlı değişken ile grup değişkeni kullanarak gruplar arasında bağımlı değişken açısından farklılık olup olmadığını test etmiştik. Daha sonra ANCOVA da ANOVA ya sürekli bir değişkeni

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı REGRESYON ANALİZİ VE UYGULAMA Yrd. Doç. Dr. Hidayet Takcı htakci@cumhuriyet.edu.tr Sunum içeriği Bu sunumda; Lojistik regresyon konu anlatımı Basit doğrusal regresyon problem çözümleme Excel yardımıyla

Detaylı

1 PAZARLAMA ARAŞTIRMASI

1 PAZARLAMA ARAŞTIRMASI İÇİNDEKİLER ÖNSÖZ III Bölüm 1 PAZARLAMA ARAŞTIRMASI 11 1.1. Pazarlama Araştırması Kavramı ve Kapsamı 12 1.2. Pazarlama Araştırmasının Tarihçesi 14 1.3. Pazarlama Araştırması Pazarlama Bilgi Sistemi ve

Detaylı

Ortalamaların karşılaştırılması

Ortalamaların karşılaştırılması Parametrik ve Parametrik Olmayan Testler Ortalamaların karşılaştırılması t testleri, ANOVA Mann-Whitney U Testi Wilcoxon İşaretli Sıra Testi Kruskal Wallis Testi BBY606 Araştırma Yöntemleri Güleda Doğan

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 )

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 ) 4. SUNUM 1 Gözlem ya da deneme sonucu elde edilmiş sonuçların, rastlantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HİPOTEZ TESTLERİ denir. Sonuçların rastlantıya bağlı

Detaylı

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız. .4. Merkezi Eğilim ve Dağılım Ölçüleri Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı BULGULAR Çalışma tarihleri arasında Hastanesi Kliniği nde toplam 512 olgu ile gerçekleştirilmiştir. Olguların yaşları 18 ile 28 arasında değişmekte olup ortalama 21,10±1,61 yıldır. Olguların %66,4 ü (n=340)

Detaylı

Tek Yönlü Varyans Analizi (ANOVA) Kruskal Wallis H Testi

Tek Yönlü Varyans Analizi (ANOVA) Kruskal Wallis H Testi Tek Yönlü Varyans Analizi (ANOVA) Kruskal Wallis H Testi Dr. Eren Can Aybek erencan@aybek.net www.olcme.net IBM SPSS Statistics ile Hangi Durumda Kullanılır? Bağımsız gruplar t testi, iki grubun ortalamasını

Detaylı

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1 İÇİNDEKİLER ÖNSÖZ... v 1. BÖLÜM Örneklem Genişliğinin Elde edilmesi... 1 1.1. Kitle ve Parametre... 1 1.2. Örneklem ve Tahmin Edici... 2 1.3. Basit Rastgele Örnekleme... 3 1.4. Tabakalı Rastgele Örnekleme...

Detaylı

Pazarlama Araştırması Grup Projeleri

Pazarlama Araştırması Grup Projeleri Pazarlama Araştırması Grup Projeleri Projeler kapsamında öğrencilerden derlediğiniz 'Teknoloji Kullanım Anketi' verilerini kullanarak aşağıda istenilen testleri SPSS programını kullanarak gerçekleştiriniz.

Detaylı

Bağımlı Gruplar İçin t Testi Wilcoxon İşaretli Sıralar Testi

Bağımlı Gruplar İçin t Testi Wilcoxon İşaretli Sıralar Testi Bağımlı Gruplar İçin t Testi Wilcoxon İşaretli Sıralar Testi Dr. Eren Can Aybek erencan@aybek.net www.olcme.net IBM SPSS Statistics ile Bağımlı Gruplar için t Testi İlişkili olan iki ortalama arasında

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

4.SUNUM. Yrd. Doç. Dr. Sedat Şen

4.SUNUM. Yrd. Doç. Dr. Sedat Şen 4.SUNUM 1 Minimum Maksimum Mod Medyan Aritmetik ortalama Ranj Standart sapma Varyans Çarpıklık Basıklık 2 SPSS te veri girişini veri görünümü kısmından elle ya da başka bir dosyanın SPSS içine file>open

Detaylı

Minimum Maksimum Mod Medyan Aritmetik ortalama Ranj Standart sapma Varyans Çarpıklık Basıklık

Minimum Maksimum Mod Medyan Aritmetik ortalama Ranj Standart sapma Varyans Çarpıklık Basıklık 5.SUNUM Minimum Maksimum Mod Medyan Aritmetik ortalama Ranj Standart sapma Varyans Çarpıklık Basıklık SPSS te veri girişini veri görünümü kısmından elle ya da başka bir dosyanın SPSS içine file>open >data

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Risk-Getiri İlişkisi ve Portföy Yönetimi I

Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Risk-Getiri İlişkisi ve Portföy Yönetimi I Risk-Getiri İlişkisi ve Portföy Yönetimi I 1 Giriş İşlenecek ana başlıkları sıralarsak: Finansal varlıkların risk ve getirisi Varlık portföylerinin getirisi ve riski 2 Risk ve Getiri Yatırım kararlarının

Detaylı

ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ EKO 303 EKONOMETRİ I ALIŞTIRMALAR

ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ EKO 303 EKONOMETRİ I ALIŞTIRMALAR ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ EKO 303 EKONOMETRİ I ALIŞTIRMALAR 1 2 3 4 5 6 1 7 8 9 10 10.1 11 10.2 2 12 13 14 15 16 17 3 18 19 20 21 22 23 4 24 25 26 27 28 5 29 30 31 32 33 34 6 35 36 37 37. 1 37. 2 37.

Detaylı

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ Yrd. Doç. Dr. C. Deha DOĞAN Gruplara ait ortalamalar elde edildiğinde, farklı olup olmadıkları ilk bakışta belirlenemez. Ortalamalar arsında bulunan

Detaylı

BİYOİSTATİSTİK. Uygulama 6. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK. Uygulama 6. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 6 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Soru 1 İlaç malzemelerinin kalitesini

Detaylı

Sosyal Bilimler İçin Veri Analizi El Kitabı

Sosyal Bilimler İçin Veri Analizi El Kitabı 292 Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18 (2012) 292-297 KİTAP İNCELEMESİ Sosyal Bilimler İçin Veri Analizi El Kitabı Editör Doç. Dr. Şener BÜYÜKÖZTÜRK Dilek SEZGİN MEMNUN 1 Bu çalışmada,

Detaylı

Sık kullanılan istatistiksel yöntemler ve yorumlama. Doç. Dr. Seval KUL Gaziantep Üniversitesi Tıp Fakültesi

Sık kullanılan istatistiksel yöntemler ve yorumlama. Doç. Dr. Seval KUL Gaziantep Üniversitesi Tıp Fakültesi Sık kullanılan istatistiksel yöntemler ve yorumlama Doç. Dr. Seval KUL Gaziantep Üniversitesi Tıp Fakültesi Biyoistatistik AD Bşk. 1 Hakkımda 2 Hedef: Katılımcılar modülün sonunda temel istatistiksel yöntemler

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

KORELASYON VE REGRESYON ANALİZİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı KORELASYON VE REGRESYON ANALİZİ Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı İki ya da daha çok değişken arasında ilişki olup olmadığını, ilişki varsa yönünü ve gücünü inceleyen korelasyon

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 1. Pearson Korelasyon Katsayısı

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 Aşağıdaki analizlerde http://yunus.hacettepe.edu.tr/~tonta/courses/spring2010/bby208/bby208

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir.

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. VERİ ANALİZİ GİRİŞ Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. Bilimsel Bilgi: Kaynağı ve elde edilme süreçleri belli olan bilgidir. Sosyal İlişkiler Görgül Bulgular İşlevsel

Detaylı

Parametrik İstatistiksel Yöntemler (t testi ve F testi)

Parametrik İstatistiksel Yöntemler (t testi ve F testi) Parametrik İstatistiksel Yöntemler (t testi ve F testi) Dr. Seher Yalçın 27.12.2016 1 İstatistiksel testler parametrik ve parametrik olmayan testler olmak üzere iki gruba ayrılır. Parametrik testler, ilgilenen

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Kazanımlar 1 2 3 4 5 6 Değişkenlerin ilişkisini açıklamak ve hesaplamak için Pearson korelasyon katsayısı Örneklem r ile evren korelasyonu hakkında hipotez testi yapmak Spearman

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) Parametrik Olmayan Testler Binom Testi SPSS Ders Notları III (3 Mayıs 2012) Soru 1: Öğrencilerin okul

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Kazanımlar 1 2 3 4 5 6 Değişkenlerin ilişkisini açıklamak ve hesaplamak için Pearson korelasyon katsayısı Örneklem r ile evren korelasyonu hakkında hipotez testi yapmak Spearman

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ Taşınmaz Değerlemede İstatistiksel Analiz Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ 1 Taşınmaz Değerlemede İstatistiksel Analiz İçindekiler

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Korelasyon- (lineer korelasyon) Açıklayıcı (Bağımsız) Değişken x çalışma zamanı ayakkabı numarası İki değişken arasındaki ilişkidir. Günlük sigara sayısı SAT puanı boy Yanıt (Bağımlı)

Detaylı

MATH Ýþletme Ýstatistiði II

MATH Ýþletme Ýstatistiði II MATH 220 - Ýþletme Ýstatistiði II DERS TANITIM BÝLGÝLERÝ Dersin Adý Kodu Yarýyýl Teori (saat/hafta) Uygulama/Laboratuar (saat/hafta) Yerel Kredi AKTS Ýþletme Ýstatistiði II MATH 220 Güz 0 0 0 0 Ön Koþullar

Detaylı

REGRESYON. 9.Sunum. Yrd. Doç. Dr. Sedat ŞEN

REGRESYON. 9.Sunum. Yrd. Doç. Dr. Sedat ŞEN REGRESYON 9.Sunum 1 Önceki Sunumda Basit regresyon analizini SPSSte nasıl yapacağımızı Çoklu regresyon analizini SPSSte nasıl yapacağımızı Regresyon verisini olası problemli değerler için nasıl kontrol

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

CEVAPLAR. n = n 1 + n 2 + n 3 + n 4 + n 5 + n 6 + n 7 = = 11 dir.

CEVAPLAR. n = n 1 + n 2 + n 3 + n 4 + n 5 + n 6 + n 7 = = 11 dir. T C S D Ü M Ü H E N D İ S L İ K F A K Ü L T E S İ - M A K İ N A M Ü H E N D İ S L İ Ğ İ B Ö L Ü M Ü MAK-307 OTM317 Müh. İstatistik İstatistiği ÖĞRENCİNİN: ADI - SOYADI ÖĞRETİMİ NOSU İMZASI 1.Ö 2.Ö A B

Detaylı

İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t test) Ölçümle

Detaylı

Yrd. Doç. Dr. Sedat ŞEN

Yrd. Doç. Dr. Sedat ŞEN 4.SUNUM Deney çalışmamızda manipüle ettiğimiz değişkenlerden olmayıp bağımlı değişken üzerinde etkisi olduğunu düşündüğümüz sürekli değişkenlere ortak değişken/kontrol değişkeni/etki karışımı değişkeni

Detaylı

Tablo I ve Tablo II de yer alan verileri kullanarak aşağıdaki ilgili soruları cevaplayınız.

Tablo I ve Tablo II de yer alan verileri kullanarak aşağıdaki ilgili soruları cevaplayınız. EKONOMETRİ I UYGULAMA Tablo I ve Tablo II de yer alan verileri kullanarak aşağıdaki ilgili soruları cevaplayınız. TABLO I: Bağımlı değişken; lnucret,- bağımsız değişkenler; eğitim ve deneyim LNUCRET EGITIM

Detaylı

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

KİTABIN HARİTASI AÇIKLAMALAR BÖLÜMÜ

KİTABIN HARİTASI AÇIKLAMALAR BÖLÜMÜ KİTABIN HARİTASI Bu kitapta açıklanan analizlerin işlevselliğini ön plana çıkarabilmek adına, analiz isimlerinden çok bunlarla neler yapılabileceği açıklanarak, analizden yapılacak işleme gitmek yerine,

Detaylı

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2 Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 5, Sayı:2, 2003 YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI Sibel SELİM 1 Efe SARIBAY

Detaylı

3.SUNUM. Yrd. Doç. Dr. Sedat Şen

3.SUNUM. Yrd. Doç. Dr. Sedat Şen 3.SUNUM 1 Daha önce gösterdiğimiz gibi SPSS e manual olarak (elle) veri girişi yapabildiğimiz gibi daha önce başka bir dosyaya girilmiş olan bir veriyi de SPSS e file>open >data seçeneklerini kullanarak

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 3.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene

Detaylı

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT Ünite 10: Regresyon Analizi Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT 10.Ünite Regresyon Analizi 2 Ünitede Ele Alınan Konular 10. Regresyon Analizi 10.1. Basit Doğrusal regresyon 10.2. Regresyon denklemi

Detaylı

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri Elementary Education Online, 12(1), k: 1 6, 2013. İlköğretim Online, 12(1), b:1 6, 2013. [Online]: http://ilkogretim online.org.tr KİTAP İNCELEMESİ SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

Detaylı

Ölçme ve Değerlendirme

Ölçme ve Değerlendirme Ölçme ve Değerlendirme Z Puanı T Puanı Yrd. Doç. Dr. Yetkin Utku KAMUK Standart Puan Herhangi bir ölçüm sonucunda elde edilen ve farklı birimlere sahip ham puanların, standart bir dağılım haline dönüştürülmesi

Detaylı

Non-Parametrik İstatistiksel Yöntemler

Non-Parametrik İstatistiksel Yöntemler Non-Parametrik İstatistiksel Yöntemler Dr. Seher Yalçın 27.12.2016 1 1. Tek Örneklem Kay Kare Testi 2. İki Değişken İçin Kay Kare Testi 3. Mann Whitney U Testi 4. Kruskal Wallis H Testi ortanca testine

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI

İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI Grup sayısı ikiye geçtiğinde tüm grupların bağımsız iki grup testleri ile ikişerli analiz düşünülebilir. Ancak bu yaklaşım, karşılaştırmalar bağımsız olmadığından

Detaylı

10.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1

10.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1 10.Sunum Yrd. Doç. Dr. Sedat ŞEN 1 Bağımlı Değ. Bağımsız Değ. Analiz Sürekli İki kategorili t-testi, Wilcoxon testi Sürekli Kategorik ANOVA, linear regresyon Sürekli Sürekli Korelasyon, doğrusal regresyon

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

Bağımlı Değ. Bağımsız Değ. Analiz

Bağımlı Değ. Bağımsız Değ. Analiz 7.SUNUM Bağımlı Değ. Bağımsız Değ. Analiz Sürekli İki kategorili t-testi, Wilcoxon testi Sürekli Kategorik ANOVA, doğrusal regresyon Sürekli Sürekli Korelasyon, doğrusal regresyon İki kategorili Sürekli

Detaylı

BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ

BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ 1 BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ 2 BİR ÖRNEKLEM İÇİN T TESTİ 3 Ölçüm ortalamasını bir norm değer ile karşılaştırma (BİR ÖRNEKLEM İÇİN T TESTİ) Bir çocuk bakımevinde barındırılan

Detaylı

PARAMETRİK ve PARAMETRİK OLMAYAN (NON PARAMETRİK) ANALİZ YÖNTEMLERİ.

PARAMETRİK ve PARAMETRİK OLMAYAN (NON PARAMETRİK) ANALİZ YÖNTEMLERİ. AED 310 İSTATİSTİK PARAMETRİK ve PARAMETRİK OLMAYAN (NON PARAMETRİK) ANALİZ YÖNTEMLERİ. Standart Sapma S = 2 ( X X ) (n -1) =square root =sum (sigma) X=score for each point in data _ X=mean of scores

Detaylı

PROBLEM:1. 11 yeni doğan rata günlük 1000 unts/kg epo uygulanmış, kontrol grubuna ise salin uygulanmıştır.

PROBLEM:1. 11 yeni doğan rata günlük 1000 unts/kg epo uygulanmış, kontrol grubuna ise salin uygulanmıştır. PROBLEM:1 Beyinde hipoksik iskemik hasar geliştirilmiş ratlarda recombinant insan eritropoteininin infarkt alanı üzerine ve nöron hücre apopitozisi üzerine etkisi araştırılmaktadır. 11 yeni doğan rata

Detaylı

Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları

Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistiğe Giriş-II STAT 202 Bahar 3 0 0 3 5 Ön Koşul

Detaylı

0,5749. Menkul Kıymet Getirisi ve Riskinin Hesaplanması Tek dönemlik basit getiri (Kesikli getiri)

0,5749. Menkul Kıymet Getirisi ve Riskinin Hesaplanması Tek dönemlik basit getiri (Kesikli getiri) Menkul Kıymet Getirisi ve Riskinin Hesaplanması Tek dönemlik basit getiri (Kesikli getiri) R t : t dönemlik basit getiri P t : t dönemdeki fiyat P t-1 : t dönemden önceki fiyat Örneğin, THYAO hisse senedinin

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı