4.SUNUM. Yrd. Doç. Dr. Sedat Şen

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "4.SUNUM. Yrd. Doç. Dr. Sedat Şen"

Transkript

1 4.SUNUM 1

2 Minimum Maksimum Mod Medyan Aritmetik ortalama Ranj Standart sapma Varyans Çarpıklık Basıklık 2

3 SPSS te veri girişini veri görünümü kısmından elle ya da başka bir dosyanın SPSS içine file>open >data seçeneğini kullanarak aktarılması ile yapılabilir. Sayısal değişkenler için numeric Sözel değişkenler için string Microsoft Excel, SAS, Stata ve text dosyaları aktarılabilen dosyalar arasındadır. 3

4 SPSS e girdiğimiz veriye ait değişkenin türünü belirtmemiz çok önemli. Genelde nitel veriler için (Kız, Erkek) String seçeneğini nicel veriler için Numeric seçeneğini işaretlememiz gerekiyor. Yoksa nicel analizeri yapmaya çalışırken sorun yaşarız. Çoğu zaman bu işlemi SPSS otomatik olarak bizim yerimize yapıyor fakat her veri girişinde aşağıdaki kısımı (variable type) kontrol etmemizde fayda var. 4

5 Aşağıdaki ekranda VAR00001 adlı değişkenin nicel (sayısal) olmasını istediğimiz için değişken tipini (type) Numeric olarak seçiyoruz. Benzer şekilde ekrandaki VAR00002 adlı değişkenin nitel (sözel) olmasını istediğimiz için değişken tipini (type) String olarak seçiyoruz. 5

6 Önceki ekranda oluşturduğumuz nicel ve nitel değişkenlere Data View kısmını tıklayarak ulaşabilir ve içerisine veri girişi yapabiliriz. 6

7 Frekans dağılımı Bar grafiği 7

8 8

9 Analyze>Descriptive Statistics>Crosstabs 9

10 3 değişken durumunda 10

11 Uygun analiz türünün belirlenmesinde ilk kriter verilerin türüdür. Analiz yöntemleri verilerin özelliklerine göre iki temel gruba ayrılır. Bu gruplarda yer alan temel analiz yöntemleri aşağıdaki gibidir. (1) Parametrik veriler için kullanılan analiz yöntemleri; Varyans Analizi, t-testi, Pearson Korelasyonu. (2) Parametrik olmayan veriler için kullanılan analiz yöntemleri; Mann-Whitney, Ki-Kare Testleri, Spearman Korelasyonu. 11

12 Parametrik Parametrik olmayan Varsayılan dağılım Normal Yok Varsayılan varyans Homojen Yok Veri tipi Eşit oranlı ve eşit aralıklı ölçekleri Sınıflama ve sıralama ölçekleri Data set relationships Independent Any Genel merkezi eğilim ölçüsü Aritmetik ortalama Medyan Artıları Daha fazla sonuç çıkarılabilir Basitlik ve uç değerlerden az etkilenme Seçim yaparken kullanılan test türü Parametrik test Parametrik olmayan test Korelasyon türü Pearson Spearman 2 gruplu, bağımsız örneklemlerde Bağımsız örneklemler t-testi Mann-Whitney testi Bağımsız örneklemlerde, 2 den fazla grupta Tek yönlü ANOVA Kruskal-Wallis testi 12

13 Parametrik vs. Parametrik olmayan testler varsayımlar: Veri dağılımının normalliği: bazen bağımlı değişken bazen de hataların dağılımını kastetmektedir. T-testi, ANOVA, regresyonda var. Varyans homojenliği: Verideki değişkenler boyunca varyansların aynı olması manasına gelir. T-test ve ANOVA Eşit aralıklı veri: Değişkenler en az eşit aralık düzeyinde olmalıdır. Test etme yolu yoktur sadece bakarak anlaşılır. Bağımsızlık: Yapılan analize göre değişmekle beraber varsayımda belirtilen değişkenler arasında bağımlılık olmaması durumunu kastetmektir. 13

14 t-testi Tek yönlü ANOVA (Varyans analizi) Pearson Korelasyonu Basit Doğrusal Regresyon Çoklu Doğrusal Regresyon 14

15 Kullanılması için şartlar: Evrenle ilgili Normal dağılım Homojen varyanslar Örneklemle ilgili Denekler rastgele seçilmeli Denekler birbirinden bağımsız seçilmeli Veriler en azından Interval (eşit aralıklı) düzeyde ölçülmeli 15

16 Normallik görsel olarak kontrol edilebildiği gibi sayısal verilerle de kontrol edilebilir. Ayrıca normallik test etmek için 2 tane de test üretilmiştir. Görsel olarak histogram ve P-P plot yardımıyla Sayısal olarak çarpıklık ve basıklık değerleri yardımıyla Test olarak Kolmogorov Smirnov test ve Shapiro Wilk testleri kullanarak test edilebilir. 16

17 Frekans dağılımına (histogram oluşturarak) bakarız 17

18 P-P plot Analyze>Descriptive>P-P plot Örnek hsb2 data Q-Q Plot Q-Q plot ile P-P plot un farkı grafiği oluştururken kullandıkları veri. P-P plot örneklemdeki her bir değerin kendisini kullanırken Q-Q plot bu değerlerden üretilen quantile dediğimiz çeyreklikleri kullanıyor. 18

19 Basıklık ve çarpıklık için sıfır ve sıfıra yakın değerler normalliği sıfırdan uzak değerler normallikten uzaklaşıldığını gösterir. Basıklık ve çarpıklık değerleri +-2 den (ya da +- 3 ten) yüksek olduğu durumlar normalliğin bozulduğuna işaret eder. Z=S-0/(se) skewness ve kurtosis için kullanılabilir dan büyük değerler 0.05 derecesinde anlamlı sayılmakta ve normalliğin bozulduğuna işaret etmektedir. 19

20 Kolmogorov Smirnov test ve Shapiro Wilk test Bu testler örneklemdeki veriyi normal olan başka bir veriyle karşılaştırıyor. Bu karşılaştırma sonucunda bir test istatistiği ortaya çıkıyor. Eğer bu istatistik anlamlı değil ise (p>.05), örneklemdeki veri normal olan veriden istatistiksel olarak farklı değildir yani normaldir ya da normale yakındır diyebiliriz. Analyze>Descriptive>Explore>Plots>Normali ty plots with tests 20

21 SPSS te varyansların homojen olup olmadığı Levene s Test kullanarak test edilebilir. Levene s Testte null hipotez farklı grupların varyanslarının eşit olduğudur. Bu test anlamlı olmadığı zaman (p>.05) varyansların eşit olduğu ve varsayımın yerine geldiğini söyleyebiliriz. 21

22 Eğer bu varsayımların hiçbiri yerine gelmemişse parametrik olmayan testler tercih edilebilir. Eğer bazıları yerine gelmişse, normallik ya da varyans homojenliğini sağlamak için transformayon (dönüşüm) yapılabilir. Log-karekök-1/n vb. dönüşümlerle veri normal hale getirilebilir. 22

23 1: Hipotezlerin İfade Edilmesi 2: Anlamlılık Düzeyinin Belirlenmesi 3: Örneklemin Seçilmesi, Verilerin Derlenmesi ve Test istatistiğinin Belirlenmesi 4: İstatistiksel Kararın Verilmesi 5: Probleme İlişkin Kararın Verilmesi 23

24 24

25 25

26 26

27 27

28 Bir istatistiksel hipotez testinde daha önce açıklandığı gibi ya sıfır hipotezinin reddedilmesi ya da kabul edilmesi şeklinde karar verilir. Bu iki karar arasında seçim yaparken örneklem istatistiğinden yararlanıldığı için, hatalı karar verme riski vardır. Çünkü; aynı evrenden rassal olarak seçilen, aynı hacimli farklı örneklemler için hesaplanan istatistikler, örneklemden örnekleme değişen değerler aldığından, evren parametre değerinden farklılık göstermektedirler. 28

29 Hipotez testlerinde, sıfır hipotezinin yanlışlıkla reddedilmesi ya da kabul edilmesi sonucu işlenen hataya yorumlama (çıkarsama) hatası adı verilir. İki tür yorumlama hatası vardır: Bunlar; gerçekte doğru olan sıfır hipotezinin reddedilmesi durumunda işlenen hatayla, gerçekte yanlış olan sıfır hipotezinin kabul edilmesi durumunda işlenen hatadır. Gerçekte doğru olan sıfır hipotezinin reddedilmesi durumunda işlenen hataya, I. Tip hata ya da a tipi hata ad verilir. Araştırmalarda a tipi hata işlemenin maksimum olasılığına testin anlamlılık düzeyi denir. Anlamlılık düzeyinin belirlenmesi, doğru olan sıfır hipotezinin, örneklemden elde dilen bilgilere dayanarak reddedilmesi olasılığını belirleyen a nın seçilmesi işlemidir. a anlamlılık düzeyi, araştırmacı tarafından, hipotezler ifade edilip veri derlemeye başlamadan önce seçilmesi etik gerekliliktir. Sosyal bilim araştırmalarında a için genellikle %5 veya %1 değerleri seçilmektedir. Yani p-değerini 0.05 ya da 0.01 ile karşılaştırarak sonucun anlamlı bulunup bulunmadığını belirleriz. 29

30 Diğer taraftan, sıfır hipotezi gerçekte yanlış olabilir ve araştırmacı yanlış olan bu hipotezi kabul ederse yine hatalı karar vermiş olur; bu tür hataya II. Tip hata ya da b tipi hata denir. Bu türden hata yapmanın maksimum olasılığı da b ile gösterilir. İstatistiksel uygulamalarda a tipi hatadan daha çok sakınılır ve genellikle sadece a tipi hata kontrol edilir. Araştırmada, H0 hipotezinin doğru olduğuna inanan araştırmacı, a anlamlılık düzeyini çok küçük bir değer olarak seçebilir. H0 hipotezinin kabul edilmesi riskli ise büyük kayıplara neden oluyorsa, a olasılığı büyük tutulmalıdır. Örneklem hacmi sabit olduğunda, a tipi hata işlemenin azalması (ya da artması), b tipi hata işleme olasılığının artmasına (ya da azalmasına) neden olur. 30

31 Bir araştırma planında, hipotezlerin ifade edilmesiyle araştırmanın genel çerçevesi ortaya konur, problem ve değişkenler tanımlanmış olur. İfade edilen hipotezlerin test edilmesi için, a anlamlılık düzeyi belirlendikten sonra, belirlenen evrenden, hangi hacimde rassal örneklem/örneklemler seçileceği kararlaştırılır. Daha sonra da ilgili evrenden belirlenen hacimde rassal örneklem/örneklemler seçilerek tanımlanan değişkenler hakkında veriler derlenir. Bu veriler kullanılarak, test edilecek parametre hakkında bilgi üreten örneklem istatistikleri hesaplanır. 31

32 İstatistiksel karar vermekle eş anlamlı olan hipotez testi, aslında a anlamlılık düzeyinde H0 hipotezinin kabul edilmesi ya da reddedilmesi kararıdır. Bu kararın verilebilmesi için bir ölçütün belirlenmesi gerekir. Test istatistiğinin, kritik değeri olarak isimlendirilen bu ölçüt, istatistiğin örnekleme dağılımında, red ve kabul bölgelerini birbirinden ayıran bir değerdir. Test istatistiğinin kritik değeri, bir örnekleme dağılımında, red bölgesinin başlama noktasını gösteren değerdir. Kritik değer, seçilen a anlamlılık düzeyinde, H1 hipotezinin ifade ediliş biçimine ve örneklem istatistiğinin dağılım şekline bağlıdır. H0 hipotezinin reddedilmesi yönündeki kararlar, örneklem değeri ile evren parametresi arasında, a anlamlılık düzeyinde anlamlı bir farklılığın var olduğunu, H0 hipotezinin kabul edilmesi durumundaysa varolan farklılığın örnekleme hatasından kaynaklandığı anlamına gelir. 32

33 Hipotez testlerinde önemli olan, istatistiksel kararın, araştırma problemine ilişkin karara dönüştürülmesidir. 33

34 34

35 T-testi parametrik ve normal dağılıma dayanan bir testtir. The sampling distribution is normally distributed. In the dependent t-test this means that the sampling distribution of the differences between scores should be normal, not the scores themselves (see section 9.4.3). MM Data are measured at least at the interval level. The independent t-test, because it is used to test different groups of people, also assumes: MM Variances in these populations are roughly equal (homogeneity of variance). MM Scores are independent (because they come from different people). 35

36 Bu sunumda kullanılan verimizde (SINAVDATA) bulunan değişkenler: İsim CİNSİYET KİTAP YAŞ VİZE VİZE2 FİNAL DÖNEMSONUNOTU 36

37 37

38 Bu dersimizde daha önce hesapladığımız basit istatistikler olan mod, medyan, ortalama vs. hesaplamasını Descriptives menüsünü kullanarak yapacağız. Descriptive Statistics>Descriptives 38

39 Descriptives menüsünde nicel olan değişkenlere ait mod, medyan, ortalama, st. Sapma vb. değerlerine ek olarak standart puanlar elde etme şansına sahibiz. 39

40 Descriptives menüsünü tıkladığımızda karşımıza yandaki küçük ekran gelecektir. Sol tarafında verimizdeki değişkenlerin isimlerini görebiliriz. 40

41 Descriptives menüsünü tıkladığımızda karşımıza çıkan ekranda analiz yapmak istediğimiz nicel değişkeni sağ tarafa atmamız gerekiyor. Yan tarafta YAŞ değişkenini sağ tarafa atarak bu değişken üzerinde analiz yapacağımızı belirtmiş oluyoruz. 41

42 Descriptives menüsünü tıkladığımızda karşımıza çıkan ekranda analiz yapmak istediğimiz nicel değişkeni seçtikten sonra Options seçeneğine tıklayınca yandaki ikinci küçük ekran karşımıza çıkıyor. Bu ekrandan istediğimiz istatistikleri seçebiliyoruz. 42

43 Descriptives menüsünü tıkladığımızda karşımıza çıkan ekranda analiz yapmak istediğimiz nicel değişkene ait standart puanı yani Z puanını elde etmek için yandaki küçük kutucuğu tıklamamız gerekiyor. 43

44 YAŞ değişkenine ait işlem yapmak istediğimizi belirttiğimiz için YAŞ değişkenine ait ortalama puanı elde ettik. 44

45 YAŞ değişkeni için elde ettiğimiz Z-puanları otomatik olarak verinin en sağına eklenir. 45

46 Elde ettiğimiz Z puanını kullanarak Transform>Compute menüsünden formül yazarak T puanını elde edebiliriz 46

47 Z-puanında olduğu gibi YAŞ değişkeni için elde ettiğimiz T-puanları otomatik olarak verinin en sağına eklenir. 47

48 Birden fazla değişkenin betimleyici istatistiklerini aynı anda elde edebiliriz. 48

49 Diğer değişkenlerin Z-puanlarını da elde edebiliriz. 49

50 Daha önce yaptığımız işlem tüm sınıfın bir değişkene ait ortalamasını hesaplamaktı. Eğer sınıfta KIZ-ERKEK gibi 2 grup varsa bu iki grubun başarısını karşılaştırmak isteyebiliriz. Bu durumda iki gruba ait ayrı ayrı ortalama değerleri hesaplamamız gerekecektir. Bu işlemi gerçekleştirebileceğimiz yer Analyze>Compare Means> Means menüsüdür. 50

51 Analyze>Compare Means> Means 51

52 Compare Means> Means menüsünü tıkladığımızda karşımıza yandaki ekran gelir. Bu ekranda yine analiz yapmak istediğimiz değişkeni sağ tarafa Dependent List kısmına atarız. 52

53 Burada SPSS e gruplarımızın hangi değişkende olduğunu bildirmemiz gerekiyor. Bizim grup değişkenimiz cinsiyet olduğu için CİNSİYET değişkenini de Independent List kısmına atmalıyız. 53

54 Aşağıdaki tabloda erkek öğrencilere ait (E) ortalama (Mean) YAŞ değeri ile kız öğrencilere ait (K) ortalama (Mean) YAŞ değerini görebiliriz. Soru: Sizce erkekler ile kızların arasında YAŞları açısından fark var mı? 54

55 Birden çok değişkenin aynı zamanda ortalamalarının hesaplanması. 55

56 Birden çok değişkenin aynı zamanda hem kız hem de erkek öğrenciler için ortalamalarını hesaplayabiliriz. Burada kız ve erkek öğrencilerin ortalamalarını her bir değişken için karşılaştırabiliriz. 56

57 Kız ve erkek öğrencilerinin VİZE notu ortalamaları. Kız ve erkek öğrencilerinin VİZE notları arasında anlamlı bir fark var mı? 57

58 2 grubun ortalamaları arasında anlamlı bir fak olup olmadığını bağımsız örneklem t-testi ile hesaplarız. Bu istatistiği SPSSte Independent Samples T test kullanarak elde edebiliriz 58

59 Diyelim ki VİZE değişkeni için kız ve erek öğrenciler arasında anlamlı bir fark olup olmadığına bakacağız. VİZE değişkenini Test Variable(s) kısmına atmalıyız. 59

60 Daha sonra gruplama yaptığımız (ek) değişken hangisi ise onu da Grouping Variable kısmına eklememiz gerekiyor. Burada CİNSİYET değişkenini ekledik. 60

61 Grup değişkenini ekledikten sonra en önemli nokta gruplamayı nasıl yaptığımızı SPSSe tanımlamak. Eğer 0-1 kodaladıysak 0-1 eğer e-k olarka kodladıysak e-k eğer E-K olarka kodladıysak E-K olarak Define groups kısmına girmeliyiz. 61

62 Burada grup değişkenimi z E-K şeklinde girili olduğu için biz de Defie groups kısmında Grup1 için E Grup 2 için K giriyoruz. 62

63 SORU: ERKEKLER VE KIZLARIN VIZE PUANLARI ARASINDA ANLAMLI BIR FARK VAR MIDIR? ANALİZ: INDEPENDENT SAMPLES T-TEST Yapmamız gereken elde ettiğimiz T istatistiği çıktısında Sig. Adlı bölgedeki 0 ile 1 arasında değişen p değerini bulmak ve bu değeri 0.05 değeri ile karşılaştırmak. Sig. p<.05 ise GRUPLAR ARASI ANLAMLI FARK VAR Sig. p>.05 ise ANLAMLI FARK YOK DEMEKTİR 63

64 Burada p (Sig.) değeri.000 olarak bulunmuştur. Sig. p <.05 olduğu için GRUPLAR ARASI ANLAMLI FARK VAR SONUÇ: Vize notu açısından kızlar ve erkekler arasında istatistiksel olarak anlamlı bir fark bulunmuştur. 64

65 YAŞ değişkeni için bağımsız örneklem t-testi. Kızlar ve erkeklerin yaşları arasında anlamlı fark var mı? 65

66 Burada p (Sig.) değeri.300 olarak bulunmuştur. Sig. p >.05 olduğu için GRUPLAR ARASI ANLAMLI FARK YOK SONUÇ: Yaş açısından kızlar ve erkekler arasında istatistiksel olarak anlamlı bir fark bulunmamıştır. 66

67 Final notunun kızlar ve erkekler için karşılaştırıl ması. 67

68 Burada p (Sig.) değeri.097 olarak bulunmuştur. Sig. p >.05 olduğu için GRUPLAR ARASI ANLAMLI FARK YOK SONUÇ: Final notu açısından kızlar ve erkekler arasında istatistiksel olarak anlamlı bir fark bulunmamıştır. 68

69 Eğer aynı gruba ait 2 farklı değişkeni karşılaştırıyorsa k bu sefer de bağımlı örneklem t-testi kullanabiliriz. Bu işlemi SPSS te Paired Samples T Test menüsünden yapabiliriz. 69

70 Tüm sınıfa ait VİZE, VİZE2, ve FİNAL notları ortalamaları aşağıdaki tabloda verilmiştir. 70

71 SORU: GRUBUN ViZE PUANLARI ile FiNAL PUANLARI ARASINDA ANLAMLI BiR FARK VAR MIDIR? CEVAP: PAIRED SAMPLES T-TEST 71

72 Paired samples T testini tıkladığımı zda karşımıza yandaki ekran çıkacaktır. 72

73 iyelim ki tüm ınıfın VİZE ve İNAL notlarını arşılaştırmak stiyoruz. Paired ariables ısmında ilk utucuğa VİZE yi kliyoruz. 73

74 Paired Variables kısmında ikinci kutucuğa FİNALi ekliyoruz. 74

75 Burada p (Sig.) değeri.000 olarak bulunmuştur. Sig. p <.05 olduğu için sınıfın VİZE ve FİNAL notları arasında ANLAMLI FARK VAR SONUÇ: Sınıfın vize ve final notları arasında istatistiksel olarak anlamlı bir fark bulunmuştur. 75

76 Tüm sınıfın VİZE ve VİZE2 notlarının karşılaştırıl ması. 76

77 77

78 78

79 Burada p (Sig.) değeri.761 olarak bulunmuştur. Sig. p >.05 olduğu için sınıfın VİZE ve VİZE2 notları arasında ANLAMLI FARK YOK SONUÇ: Sınıfın birinci vize ve ikinci vize notları arasında istatistiksel olarak anlamlı bir fark bulunmamıştır. 79

80 T-testi normal olmayan verilere dirençli olsa da normalliğin sağlanmadığı durumlarda sonuçlar yanlı olabilir. Normalliğin sağlanmadığı durumlarda yapabileceğimiz şeyler: örneklem büyüklüğünü artırmak, veriyi dönüştürmek ya da parametrik olmayan testleri kullanmaktır. Bu testler daha az varsayımlara dayanmaktadır. Genelde veriyi sıralamaya ve en düşük değere 1 sonraki düşük değere 2. Vermeye dayanan yöntemlerdir. Bağımlı t-testinin non-parametrik karşılığı Wilcoxon signed-rank Test iken bağımsız örneklem t-testinin non-parametrik karşılığı Wilcoxon rank-sum test ve Mann Whitney test olarak geliştirilmiştir. 80

81 Wilcoxon rank-sum test veya Mann Whitney testi kullanılarak yapılabilir. Mann Whitney U testi ve Wilcoxon rank-sum testi iki gruptaki sıralamalar arasındaki farklara bakarak 2 grup birbirinden farklı mı olduğunu test etmeye çalışır 81

82 Yan taraftaki veriyi kullanarak Mann-Whitney U testinin uygulamasını göstereceğiz. Verimizde 2 çeşit ilaca ait rakamlar ve bu ilaçların verdiği ağrı derecelerini gösteren (ağrı) değişkenler mevcut. 82

83 Analyze>Non parametric Tests>2İndep endent Samples kısmından Mann- Whitney U testini bulabilirsiniz. 83

84 Karşınıza çıkan ekranda bağımlı değişkeni Test Variable List kısmına, grup değişkenini de Grouping Variable kısmına gireceğiz. Yalnız burada grup değişkenini girdikten sonra grup değerleri hangi sayılar arasında değişiyor (min/maks) ise Define Range kısmında bunu belirtmek gerekiyor. Burada 1. grup ile 2. grup karşılaştırıldığı için 1 ve 2 girildi. 84

85 Mann-Whitney analiz sonuç tabloları yan tarafta verilmiştir. İlk tabloda iki ilaç için ortalama değerler gözükürken anlamlı bir farklılık olup olmadığı alttaki tablodan öğrenilebilir. Asymp. Sig. veya Exact Sig. değerini 0.05 ile karşılaştırdığımızda bu değer anlamlı çıkmamıştır. Yani bu iki ilaç arasında verdikleri ağrı bakımından anlamlı bir fark bulunamamıştır. 85

86 Kolmogorov-Smirnov Z: 2 grubun aynı örneklemden gelip gelmediğini test eder. Moses Extreme Reactions: Levene teste benzer. Puanların iki gruptaki değişimini/varyasyonunu gösterir Wald-Wolfowitz runs: Grupların farklı olup olmadığını gösterir (grup içindeki sıralamalara bakarak) 86

87 Wilcoxon signed-rank testi kullanılarak yapılabilir. Bu testi kullanabilmek için aynı gruba ait 2 farklı ölçüme sahip bir verimiz olması gerekmektedir. Daha sonra SPSS ten analiz menüsünden analizleri gerçekleştirebiliriz 87

88 88

89 89

90 90

91 Sig. değeri yani p değeri 0.05 ten büyük olduğu için anlamlı bir fark yoktur diyebiliriz. 91

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) Data Editör iki arayüzden oluşur. 1. Data View 2. Variable

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) SPSS Data Editör iki arayüzden oluşur. 1. Data View

Detaylı

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 1 BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 Bu bölümde bir veri seti üzerinde betimsel istatistiklerin kestiriminde SPSS paket programının kullanımı açıklanmaktadır. Açıklamalar bir örnek üzerinde hareketle

Detaylı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Varyans Analizi (ANOVA) Kruskal-Wallis H Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek Yönlü Varyans Analizi SPSS de Tek

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) Parametrik Olmayan Testler Binom Testi SPSS Ders Notları III (3 Mayıs 2012) Soru 1: Öğrencilerin okul

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

Pazarlama Araştırması Grup Projeleri

Pazarlama Araştırması Grup Projeleri Pazarlama Araştırması Grup Projeleri Projeler kapsamında öğrencilerden derlediğiniz 'Teknoloji Kullanım Anketi' verilerini kullanarak aşağıda istenilen testleri SPSS programını kullanarak gerçekleştiriniz.

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

01.02.2013. Statistical Package for the Social Sciences

01.02.2013. Statistical Package for the Social Sciences Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 Aşağıdaki analizlerde http://yunus.hacettepe.edu.tr/~tonta/courses/spring2010/bby208/bby208

Detaylı

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat...

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

Sosyal Bilimler İçin Veri Analizi El Kitabı

Sosyal Bilimler İçin Veri Analizi El Kitabı 292 Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18 (2012) 292-297 KİTAP İNCELEMESİ Sosyal Bilimler İçin Veri Analizi El Kitabı Editör Doç. Dr. Şener BÜYÜKÖZTÜRK Dilek SEZGİN MEMNUN 1 Bu çalışmada,

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir.

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. VERİ ANALİZİ GİRİŞ Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. Bilimsel Bilgi: Kaynağı ve elde edilme süreçleri belli olan bilgidir. Sosyal İlişkiler Görgül Bulgular İşlevsel

Detaylı

Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi

Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi Parametrik testlerin, normal dağılım varsayımına dayandığını, normal dağılıma sahip olmayan veriler üzerinde kullanıldığında, elde edilen sonuçların

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011 Adım Adım SPSS 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü Y. Doç. Dr. İbrahim Turan Nisan 2011 File (Dosya) Menüsü Excel dosyalarını SPSS e aktarma Variable View (Değişken Görünümü 1- Name (İsim - Kod)

Detaylı

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü SPSS Analiz Menüsü 1- Reports: a) OLAP Cubes: Seçilen değişkenlerin istatistiksel işlemlerini yapar. b) Case summaries: Verilerin frekans ve çapraz tablolarının oluşturulması, belirtici istatistiklerin

Detaylı

VERĠ ANALĠZĠ 05.05.2011 NĠCEL VERĠ ANALĠZĠ ĠSTATĠSTĠK? ĠSTATĠSTĠK. ĠSTATĠSTĠK ÇEġĠTLERĠ. Betimsel İstatistik Kestirimsel Ġstatistik

VERĠ ANALĠZĠ 05.05.2011 NĠCEL VERĠ ANALĠZĠ ĠSTATĠSTĠK? ĠSTATĠSTĠK. ĠSTATĠSTĠK ÇEġĠTLERĠ. Betimsel İstatistik Kestirimsel Ġstatistik 5.5.11 VERĠ ANALĠZĠ NĠCEL VERĠ ANALĠZĠ Nicel Veri Analizi Betimsel Ġstatistik Kestirimsel Ġstatistik Nitel Veri Analizi Betimsel Analiz Ġçerik Analizi Betimsel İstatistik Kestirimsel Ġstatistik ĠSTATĠSTĠK?

Detaylı

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri Elementary Education Online, 12(1), k: 1 6, 2013. İlköğretim Online, 12(1), b:1 6, 2013. [Online]: http://ilkogretim online.org.tr KİTAP İNCELEMESİ SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

Detaylı

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü SPSS Analiz Menüsü 1- Reports: a) OLAP Cubes: Seçilen değişkenlerin istatistiksel işlemlerini yapar. b) Case summaries: Verilerin frekans ve çapraz tablolarının oluşturulması, belirtici istatistiklerin

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI

İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI Grup sayısı ikiye geçtiğinde tüm grupların bağımsız iki grup testleri ile ikişerli analiz düşünülebilir. Ancak bu yaklaşım, karşılaştırmalar bağımsız olmadığından

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ Taşınmaz Değerlemede İstatistiksel Analiz Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ 1 Taşınmaz Değerlemede İstatistiksel Analiz İçindekiler

Detaylı

DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI

DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI 05.05.2014 Pazartesi, Saat:11.30-12.20;Korelasyon ve Regresyon Uygulaması

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

İstatistik Yöntemleri ve Hipotez Testleri

İstatistik Yöntemleri ve Hipotez Testleri Sağlık Araştırmalarında Kullanılan Temel İstatistik Yöntemleri ve Hipotez Testleri Yrd. Doç. Dr. Emre ATILGAN BİYOİSTATİSTİK İstatistiğin biyoloji, tıp ve diğer sağlık bilimlerinde kullanımı biyoistatistik

Detaylı

FARKLILIKLARI İNCELEMEYE YÖNELİK ANALİZ TEKNİKLERİ

FARKLILIKLARI İNCELEMEYE YÖNELİK ANALİZ TEKNİKLERİ FARKLILIKLARI İNCELEMEYE YÖNELİK ANALİZ TEKNİKLERİ GİRİŞ Önceki bölümlerde saha çalışmlarında toplanan verilerin analize hazır hale getirlmesi ve nicel analiz tekniklerinin sınıflandırılması üzerinde durulmuştu.

Detaylı

UYGULAMA 2 TABLO YAPIMI

UYGULAMA 2 TABLO YAPIMI 1 UYGULAMA 2 TABLO YAPIMI Amaç: SPSS 10 istatistiksel paket programında veri girişi ve tablo yapımı. SPSS 10 istatistiksel paket programı ilk açıldığında ekrana gelen görüntü aşağıdaki gibidir. Bu pencere

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME

4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME 4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME Bu bölümde; Bir grup değişkenin çalışma sayfası görüntüsünü görüntüleme Bir grup değişkenin tanımlayıcı istatistiklerini görüntüleme Bir grup içerisindeki

Detaylı

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup Araştırma sonuçlarının genelleneceği grup Evrendeğer (Parametre): Değişkenlerin evrendeki değerleri µ : Evren Ortalaması σ

Detaylı

SPSS de Tanımlayıcı İstatistikler

SPSS de Tanımlayıcı İstatistikler SPSS de Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı SPSS programında belirtici istatistikler 4 farklı menüden yararlanılarak

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

Frekans. Hemoglobin Düzeyi

Frekans. Hemoglobin Düzeyi GRUPLARARASI VE GRUPİÇİ KARŞILAŞTIRMA YÖNTEMLERİ Uzm. Derya ÖZTUNA Yrd. Doç. Dr. Atilla Halil ELHAN 1. ÖNEMLİLİK (HİPOTEZ) TESTLERİ Önemlilik testleri, araştırma sonucunda elde edilen değerlerin ya da

Detaylı

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden

Detaylı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı İSTATİSTİK İstatistik, belirli amaçlar için veri toplama, toplanan verileri tasnif etme, çözümleme ve yorumlama bilimidir Yrd. Doç. Dr. Hamit AYDIN İstatistik Nedir? Latince de durum anlamına gelen status

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

Beklenti Anketi ne İlişkin Yöntemsel Açıklama

Beklenti Anketi ne İlişkin Yöntemsel Açıklama Beklenti Anketi ne İlişkin Yöntemsel Açıklama İstatistik Genel Müdürlüğü Reel Sektör Verileri Müdürlüğü İçindekiler I- Amaç... 3 II- Kapsam... 3 III- Yöntem... 3 IV- Tanımlar ve Hesaplamalar... 3 V- Yayımlama...

Detaylı

Yrd.Doç.Dr.Tuncay SEVİNDİK DERS NOTLARI

Yrd.Doç.Dr.Tuncay SEVİNDİK DERS NOTLARI Yrd.Doç.Dr.Tuncay SEVİNDİK DERS NOTLARI GİRİŞ SPSS paket programı excel vb. paket programlar ile entegre çalışabilen bir analiz programıdır. SPSS programı Sosyal bilimler, sağlık bilimleri ve fen bilimleri

Detaylı

1 PAZARLAMA ARAŞTIRMASI

1 PAZARLAMA ARAŞTIRMASI İÇİNDEKİLER ÖNSÖZ III Bölüm 1 PAZARLAMA ARAŞTIRMASI 11 1.1. Pazarlama Araştırması Kavramı ve Kapsamı 12 1.2. Pazarlama Araştırmasının Tarihçesi 14 1.3. Pazarlama Araştırması Pazarlama Bilgi Sistemi ve

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

www.fikretgultekin.com 1

www.fikretgultekin.com 1 KORELASYON ANALĐZĐ (Correlation Analysis ) Basit Korelasyon Analizi Basit korelasyon analizinde iki değişken söz konusudur ve bu değişkenlerin bağımlıbağımsız değişken olarak tanımlanması/belirlenmesi

Detaylı

Veri Analizi ve İstatistik Testler

Veri Analizi ve İstatistik Testler Veri Analizi ve İstatistik Testler Kodlama I Mesleğiniz nedir? Analizi kolaylaştırmak için gruplamak gerekli (işçi, memur, yönetici, vs.) Kod kategorileri hem tüm meslek gruplarını kapsamalı, hem de birbirini

Detaylı

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi Parametrik Olmayan Testler Ki-kare (Chi-Square) Testi Ki-kare (Chi-Square) Testi En iyi Uygunluk (Goodness of Fit) Ki-kare Dağılımı Bir çok önemli istatistik testi ki kare diye bilinen ihtimal dağılımı

Detaylı

SPSS-Tarihsel Gelişimi

SPSS-Tarihsel Gelişimi SPSS -Giriş SPSS-Tarihsel Gelişimi ilk sürümü Norman H. Nie, C. Hadlai Hull ve Dale H. Bent tarafından geliştirilmiş ve 1968 yılında piyasaya çıkmış istatistiksel analize yönelik bir bilgisayar programıdır.

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR

BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR İÇİNDEKİLER BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR I. Öğretimde Ölçme ve Değerlendirmenin Gerekliliği... 2 II. Ölçme Kavramı... 3 1. Tanımı ve Unsurları... 3 2. Aşamaları... 3 2.1. Ölçülecek

Detaylı

İstatistikî İfadeyle... / Statistically Speaking...

İstatistikî İfadeyle... / Statistically Speaking... İstatistikî İfadeyle... / Statistically Speaking... DOI: 10.5455/jmood.20140707045407 Tıbbi Araştırmalarda İstatistik Teknik Seçimi Cengiz Han Açıkel 1, Selim Kılıç 1 ÖZET: Tıbbi araştırmalarda istatistik

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri Parametrik Olmayan Testler 2 Wilcoxon ve Kruskal-Wallis Testleri İki Bağımlı Örneklemin Karşılaştırılması (Wilcoxon Bağımlı Örneklemler İşaretli Sıralamalar Testi) (Wilcoxon Matched-Samples Signed Ranks

Detaylı

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir.

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. 1 UYGULAMA 1 SPSS E GİRİŞ SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. Bu menülerin işlevleri ve alt menüleri ile komutları

Detaylı

BÖLÜM 1 İSTATİSTİK İLE İLGİLİ BAZI TEMEL KAVRAMLAR

BÖLÜM 1 İSTATİSTİK İLE İLGİLİ BAZI TEMEL KAVRAMLAR 1 BÖLÜM 1 İSTATİSTİK İLE İLGİLİ BAZI TEMEL KAVRAMLAR İstatistik öğrenmelerinde sıklıkla karşılaşılacak olan temel bazı kavramlar, eğitim alanına yönelik örnekleriyle birlikte aşağıda açıklanmaktadır. 1.1.

Detaylı

Nicel Veri Analizi ve İstatistik Testler

Nicel Veri Analizi ve İstatistik Testler Nicel Veri Analizi ve İstatistik Testler Yaşar Tonta H.Ü. BBY tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/courses/spring2009/bby208/ SLIDE 1 Nicel Analiz Olguları tanımlamak ve açıklamak için

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU)

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) TOPLAM KALİTE YÖNETİMİ BİLİNÇLENDİRME EĞİTİMİ NONPARAMETRİK KÜKRER GIDA TESTLER (Mann Whitney U ve Wilcoxon Testleri) Yrd.Doç.Dr. İsmail

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

SAĞLIK ARAŞTIRMALARI VE BİYOİSTATİSTİK. Doç. Dr. Mustafa N. İLHAN mnilhan@gazi.edu.tr

SAĞLIK ARAŞTIRMALARI VE BİYOİSTATİSTİK. Doç. Dr. Mustafa N. İLHAN mnilhan@gazi.edu.tr SAĞLIK ARAŞTIRMALARI VE BİYOİSTATİSTİK Doç. Dr. Mustafa N. İLHAN mnilhan@gazi.edu.tr METODOLOJİK ARAŞTIRMALAR Tanı yöntemlerinin doğru ölçme derecesi ve bu yöntemleri kullananların farklılıklarını saptamak

Detaylı

HİPOTEZ TESTLERİ HİPOTEZ NEDİR?

HİPOTEZ TESTLERİ HİPOTEZ NEDİR? HİPOTEZ TESTLERİ HİPOTEZ NEDİR? Örnekleme ile test edilmeye çalışılan bir popülasyonun ilgili parametresi hakkında ortaya sunulan iddiadır. Örneğin; A dersi için vize ortalaması 50 nin altındadır Firestone

Detaylı

İSTATİSTİK SPSS UYGULAMA

İSTATİSTİK SPSS UYGULAMA İSTATİSTİK SPSS UYGULAMA Yrd. Doç. Dr. H. İbrahim CEBECİ SPSS UYGULAMA Bu bölümde SPSS veri girişi, Basit grafik hazırlama, örneklem çekimi ve tanımlayıcı istatistiksel analizler hakkında SPSS uygulamaları

Detaylı

GÜVEN ARALIĞI KESTİRİM

GÜVEN ARALIĞI KESTİRİM GÜVEN ARALIĞI KESTİRİM GÜVEN ARALIĞI Herhangi bir parametre için güven aralığı iki istatistikle verilir: U ve L. Öyle ki, eğer parametrenin doğru değeri θ ise, o zaman P(L θ U) = 1 - α Burada θ parametrenin

Detaylı

İSTATİSTİK ÖRNEK SORULARI

İSTATİSTİK ÖRNEK SORULARI 1. Aşağıda gruplandırılmış seri verilmiştir. (n) 0-10 den az 5 10-20 den az 6 20-30 den az 9 30-40 den az 11 40-50 den az 4 50-60 den az 3 TOPLAM 38 İSTATİSTİK ÖRNEK SORULARI a) Mod değerini bulunuz? (15

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011 SPPS Verileri Düzenleme ve Değiştirme 3 - Data Menüsü Y. Doç. Dr. İbrahim Turan Nisan 2011 Data Menüsü 1- Define Variable 1- Properties (Değişken Özelliklerini Tanımlama) Değişken özelliklerini tanımlamak

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ YARARLANILACAK ANA KAYNAK: SOSYAL BİLİMLER İÇİN İSTATİSTİK/ ŞENER BÜYÜKÖZTÜRK, ÖMAY ÇOKLUK, NİLGÜN KÖKLÜ/PEGEM YAY. YARDIMCI KAYNAKLAR:

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

TÜRKÇE KULLANIM KILAVUZU

TÜRKÇE KULLANIM KILAVUZU KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ ÖĞRENCİ İŞLERİ DAİRESİ BAŞKANLIĞI AKADEMİK BİLGİ SİSTEMİ (ABİS) Otomasyon Programı TÜRKÇE KULLANIM KILAVUZU İÇİNDEKİLER ABİS Nedir?... 2 Sistem Gereksinimleri...

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME Öğrenci başarısının veya başarısızlığının kaynağında; öğrenci, öğretmen, çevre ve program vardır. Eğitimde değerlendirme yapılırken bu kaynaklar dikkate alınmaz. Eğitimciler,

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi. Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD

Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi. Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD Giriş Yeterli Örneklem Büyüklüğü Neden Önemlidir? Özel

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

NONPARAMETRİK TEKNİKLERİN GÜÇ VE ETKİNLİKLERİ

NONPARAMETRİK TEKNİKLERİN GÜÇ VE ETKİNLİKLERİ Elektronik Sosyal Bilimler Dergisi www.esosder.org Electronic Journal of Social Sciences info@esosder.org Yaz-2010 Cilt:9 Sayı:33 (018-040) ISSN:1304-0278 Summer-2010 Volume:9 Issue:33 NONPARAMETRİK TEKNİKLERİN

Detaylı

Ders 1 Minitab da Grafiksel Analiz-I

Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Örneklem Dağılımları ve Merkezi Limit Teoremi

Örneklem Dağılımları ve Merkezi Limit Teoremi Örneklem Dağılımları ve Merkezi Limit Teoremi Çıkarımsal İstatistik (Inferential Statistics) : Örneklemden yola çıkarak ana kütleyle (popülasyonla) ilgili çıkarımlarda bulunmak (Smidt, 2001) İstatistiksel

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar 15.433 YATIRIM Ders 7: CAPM ve APT Bölüm 2: Uygulamalar ve Sınamalar Bahar 2003 Öngörüler ve Uygulamalar Öngörüler: - CAPM: Piyasa dengesinde yatırımcılar sadece piyasa riski taşıdıklarında ödüllendirilir.

Detaylı

Çevre ve Şehircilik Bakanlığı, İstanbul Çevre İl Müdürlüğü, Beşiktaş, İstanbul. 2

Çevre ve Şehircilik Bakanlığı, İstanbul Çevre İl Müdürlüğü, Beşiktaş, İstanbul. 2 Onur GÜMÜŞ 1, Ülkü ALVER ŞAHİN 2, Burcu ONAT 2, Ramazan ÖZÇELİK 3, Ergün GEDİK 3, İsmail SOLAKOĞLU 3, Nihat TAŞ 4 1 Çevre ve Şehircilik Bakanlığı, İstanbul Çevre İl Müdürlüğü, Beşiktaş, İstanbul. 2 İstanbul

Detaylı

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI aysecagli@beykent.edu.tr 1 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek

Detaylı

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I 19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I Bir dil dershanesinde öğrenciler talep ettikleri takdirde, öğretmenleriyle

Detaylı