Ölçme ve Değerlendirme

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Ölçme ve Değerlendirme"

Transkript

1 Ölçme ve Değerlendirme Z Puanı T Puanı Yrd. Doç. Dr. Yetkin Utku KAMUK

2 Standart Puan Herhangi bir ölçüm sonucunda elde edilen ve farklı birimlere sahip ham puanların, standart bir dağılım haline dönüştürülmesi işlemine standart puan a çevirme denir. Standart puanlar, aritmetik ortalaması ve standart sapması farklı dağılımların, aynı aritmetik ortalama ve standart sapmaya sahip dağılım haline dönüştürülmesini sağlar. Çeşitli ölçüm birimlerine ait ham puanların ortak bir puan sistemine, yani standart puanlara dönüştürülmesi, bu puanlar kullanılarak aritmetik işlemlerin yapılabilmesini sağlar.

3 Z Puanı X = 0 ve SD = 1 olan puanlara Z puanı, bu şekilde gerçekleşen dağılımlara ise normal dağılım adı verilir. Z puanı istatistiksel işlemlerde ve karşılaştırmalarda kolaylık sağlar. Z puanının başlangıç noktası olan sıfırın bağıl sıfır ve birimlerinin standart olması nedeniyle, aralıklı ölçekte puanlar verir. Bu nedenle aralık ölçekteki verilere uygulanabilecek her türlü işlem Z puanlarına da uygulanabilir.

4 Z Puanı Formülü Z = X X SD

5 Z Puanı Örneği Bir sporcu ortalamanın 70 ve standart sapmanın 2 olduğu şınav testinde 77 tekrar, ortalamanın 50 ve standart sapmanın 1,6 olduğu mekik testinde ise 58 tekrar yapmıştır. Görüldüğü gibi şınav ve mekik testlerinde grupların dağılımı farklılık göstermektedir. Bu durumda sporcunun içinde bulunduğu gruba göre testlerdeki başarısının karşılaştırılması için önce iki testin de aynı standarda getirilmesi gerekir. Bu, Z puanı ile yapılabilir: Z şınav = = 3,5 Z mekik = = 5 Bu sonuca göre sporcu, mekik testinden daha düşük performans göstermesine rağmen içinde bulunduğu gruba göre mekik testinde daha başarılıdır.

6 T Puanı Z puanı bazen negatif değere sahip ya da kesirli olabilir. Bu da, hesaplama ve anlamlandırma işlemlerinde karmaşaya yol açabilir. Bu yüzden, Z puanları hesaplandıktan sonra, daha aşina olunan puan tipine yani T puanına dönüştürülür. Bu yolla, X = 0 ve SD = 1 olan puanlar X = 50 ve SD = 10 olan puanlara çevrilir. T puanlarının yorumlanması, Z puanlarının yorumlanmasından daha kolaydır.

7 T Puanı Formülü T = 50 + X X SD x 10

8 Örnek Mekik ve şınav testlerine katılan bir grup öğrencinin ortalama ve standart sapma değerleri şöyledir: Mekik : X = 41 ve SD = 2,9 Şınav : X = 37 ve SD = 3,1 Buna göre aşağıdaki öğrencilerin mekik ve şınav performansları için Z ve T puanlarını hesaplayınız. ÖĞRE NCİ Mekik Şınav Mekik Z Mekik T Şınav Z Şınav T A ,03 39,7 0,97 59,7 B ,34 CEVAPLARI 46,6 GÖRMEK -0,65 İÇİN 43,5 C ,69 56,9 TIKLAYINIZ! -1,29 37,1 D ,72 32,8 1,61 66,1

9 Süre Verilerinin Hesaplanması Saat, dakika, saniye, 1/ 100 sn. gibi birimlere sahip performans değerlerine hesaplama yapabilmek için, süre verilerinin onluk sisteme dönüştürülmesi gerekmektedir. Diyelim ki 3000 m. koşu derecelerine hesaplama yapılacak ise derecesi, saniye olarak dönüştürülmeli ve gerekli hesaplamalar daha sonra yapılmalıdır. Bunun nedeni, ve dercelerinin ortalamasının ( )/ 2 olarak hesaplanamamasıdır. ( ) / ( )/2= 15 45

10 Örnek Aşağıdaki süre verilerinin ortalamalarını hesaplayınız m Koşu 2400 m Koşu 10x30 m Mekik Koşusu 100 m Koşu : : : : : : :

11 Yüzdelikler T puanları hesaplandıktan sonra, farklı birimlere sahip olan değerlerin birbirleri ile aritmetik işlem yapılabilir hale geldiğini görmüştük. Eğer bu değerleri kullanarak ortalama almak istersek, her bir birey için T puanlarını hesaplayıp test adedine böleriz. Daha önce vermiş olduğumuz örnekteki öğrencilerin performanslarını tekrar ele alalım ve en başarılı öğrenciyi bulalım.

12 Örnek ÖĞRE NCİ Mekik Şınav Mekik T Şınav T Toplam Ortalama A ,7 59,7 99,4 49,70 B ,6 43,5 90,1 45,05 C ,9 37,1 94,0 47,00 D ,8 66,1 98,9 49,45

13 Yüzdelikler Eğer, yapılmış olan testlerin ortalamaya katkı sağlayan yüzdelik payları eşit değilse, her bir test için, verilmiş oran kadar pay hesaplanarak ağırlıklı ortalamaya dahil edilir. Örneğin, daha önce verilmiş olan örnek tablosuna uzun atlama testi T değeri verisini de eklersek ve mekik testinin %25, şınav testinin %35 ve uzun atlama testinin de %40 oranında ağırlığa sahip olduğunu bilirsek hesaplamayı şu şekilde yaparız.

14 Örnek ÖĞRENCİ Mekik T Şınav T Uzun Atlama T Mekik %25 Şınav %35 Uzun Atlama %40 TOPLAM A B C D

15 SORULAR

16 ÖDEV Sizin de dahil olduğunuz 20 sporcunun katılmış olduğu 4 maddelik testin ham puanları verilmiştir. Bu verileri kullanarak, sporcuları her bir test için ve ağırlıklı ortalamaya göre olmak üzere en iyiden kötüye doğru beş kez sıralayınız. Verilen listede yer alan ancak performans değerleri boş olan X kişisi sizsiniz. Bu değerlerin ne olduğunu tablodan bakarak bulunuz ve yerine yerleştiriniz. Ağırlıklı ortalamanın hesaplanmasında da yine size verilmiş olan yüzdelik oranlarını kullanınız. Bu sunuyu ve ödeve ilişkin gerekli dosyaları aşağıdaki adresten indirebilirsiniz. web.hitit.edu.tr/ yetkinkamuk

17 HAM VERİLER SPORCU ŞINAV (tekrar) UZUN ATLAMA (m) 3000 M. KOŞU (dk) KOORDİNASYON TESTİ (sn) A B C D E F G H I J K L M N O P R S T X Bu hanelere kendi isminizin yanında bulunan değerleri yazınız.

18 ÖDEV İÇİN AÇIKLAMALAR 1. X yerine kendi değerlerinizi yazınız. 2. Test maddelerinin ortalamalarını bulunuz. 3. Her bir teste ait varyansı (evren formülü kullanarak) bulunuz. 4. Her bir teste ait standart sapma değerini bulunuz. 5. Her bir testte sporcuların elde ettikleri Z değerini bulunuz. 6. Her bir testte sporcuların elde ettikleri T değerini bulunuz. 7. Her bir test için sıralamayı yapınız. 8. Her testten ağırlıklı ortalamaya yapılan katkıyı göz önünde bulundurarak ağırlıklı ortalamayı hesaplayınız. 9. Ağırlıklı ortalamaya göre sıralamayı yapınız. 10. Süre değerleri ile çalışırken (ortalama, varyans vb.) onluk taban kullanımını unutmayınız.

19 A B C D E F G H I J K L M N O P R S T X TESTİ σ HESAPLAMASI SPORCU Χ X X X (X X ) 2 TOPLAM V= σ=

20 A B C D E F G H I J K L M N O P R S T X TESTİ Z ve T PUANLARI HESAPLAMASI SPORCU Χ X X σ Z T

21 SPORCULARIN... TESTİNDEN ALDIKLARI T PUANINA GÖRE SIRALAMASI SIRA NO SPORCU Χ T

22 GENEL SIRALAMA SIRA ŞINAV UZUN ATLAMA 3000 m KOŞU KOORDİNASYON GENEL SPORCU NO Χ T % Χ T % Χ T % Χ T % PUAN NOT: X SÜTUNLARINA HAM VERİLER YAZILACAKTIR. ÖRNEĞİN 3000 M KOŞU DERECESİ 15:35 OLARAK YAZILACAKTIR.

Ölçme ve Değerlendirme

Ölçme ve Değerlendirme Ölçme ve Değerlendirme Z Puanı T Puanı Yrd. Doç. Dr. Yetkin Utku KAMUK Standart Puan Herhangi bir ölçüm sonucunda elde edilen ve farklı birimlere sahip ham puanların, standart bir dağılım haline dönüştürülmesi

Detaylı

Ölçme ve Değerlendirme T PUANI

Ölçme ve Değerlendirme T PUANI Ölçme ve Değerlendirme Z PUANI T PUANI YRD. DOÇ. DR. YETKİN UTKU KAMUK Standart Puan Herhangi bir ölçüm sonucunda elde edilen ve farklı birimlere sahip ham puanların, standart bir dağılım haline dönüştürülmesi

Detaylı

Normal Dağılım ve Puan Dönüşümleri (z ve T puanı)

Normal Dağılım ve Puan Dönüşümleri (z ve T puanı) Normal Dağılım ve Puan Dönüşümleri (z ve T puanı) Normal Dağılım Normal Dağılımın Özellikleri Normal Dağılım Eğrisi Altında Kalan Alan ve Olasılıklar Standart Normal Dağılım Standart Puanlar Z ve T puanları

Detaylı

BÖLÜM 10 PUAN DÖNÜŞÜMLERİ

BÖLÜM 10 PUAN DÖNÜŞÜMLERİ 1 BÖLÜM 10 PUAN DÖNÜŞÜMLERİ Bir gözlem sonucunda elde edilen ve üzerinde herhangi bir düzenleme yapılmamış ölçme sonuçları 'ham veri' ya da 'ham puan' olarak isimlendirilir. Genellikle ham verilerin anlaşılması

Detaylı

T.C. ADANA BİLİM VE TEKNOLOJİ ÜNİVERSİTESİ SINAV VE BAŞARI DEĞERLENDİRME YÖNERGESİ

T.C. ADANA BİLİM VE TEKNOLOJİ ÜNİVERSİTESİ SINAV VE BAŞARI DEĞERLENDİRME YÖNERGESİ T.C. ADANA BİLİM VE TEKNOLOJİ ÜNİVERSİTESİ SINAV VE BAŞARI DEĞERLENDİRME YÖNERGESİ Amaç MADDE 1 (1) Bu Yönergenin amacı Adana Bilim ve Teknoloji Üniversitesi ne bağlı fakülte, yüksekokul ve enstitülerde

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar TEMEL İSTATİSTİK BİLGİSİ İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar İstatistiksel Verileri Tasnif Etme Verileri daha anlamlı hale getirmek amacıyla

Detaylı

BANDIRMA ONYEDİ EYLÜL ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME YÖNERGESİ

BANDIRMA ONYEDİ EYLÜL ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME YÖNERGESİ Senato Karar Tarihi: **.**.2016 Senato Karar Sayısı: 2016/ BANDIRMA ONYEDİ EYLÜL ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME YÖNERGESİ Amaç MADDE 1- (1) Bu Yönergenin amacı, Bandırma Onyedi Eylül Üniversitesi fakülte,

Detaylı

BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR

BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR Amaç * MADDE 1. Bu esasların amacı, Bülent Ecevit Üniversitesi Tıp ve Diş Hekimliği Fakülteleri ve Devlet Konservatuvarı dışındaki

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız. .4. Merkezi Eğilim ve Dağılım Ölçüleri Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin

Detaylı

Konum ve Dağılım Ölçüleri. BBY606 Araştırma Yöntemleri Güleda Doğan

Konum ve Dağılım Ölçüleri. BBY606 Araştırma Yöntemleri Güleda Doğan Konum ve Dağılım Ölçüleri BBY606 Araştırma Yöntemleri Güleda Doğan Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl? Yakın, uzak? Sıklık dağılımlarının karşılaştırılması

Detaylı

MATE211 BİYOİSTATİSTİK

MATE211 BİYOİSTATİSTİK MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: 180 230 190 186 220 191

Detaylı

İZMİR BAKIRÇAY ÜNİVERSİTESİ ÖNLİSANS VE LİSANS ÖLÇME VE DEĞERLENDİRME ESASLARI. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar

İZMİR BAKIRÇAY ÜNİVERSİTESİ ÖNLİSANS VE LİSANS ÖLÇME VE DEĞERLENDİRME ESASLARI. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar İZMİR BAKIRÇAY ÜNİVERSİTESİ ÖNLİSANS VE LİSANS ÖLÇME VE DEĞERLENDİRME ESASLARI Amaç BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar MADDE 1 - (1) Bu Yönergenin amacı, İzmir Bakırçay Üniversitesi nde öğrenim

Detaylı

CELAL BAYAR ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ YÖNERGESİ

CELAL BAYAR ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ YÖNERGESİ CELAL BAYAR ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ YÖNERGESİ Amaç MADDE 1 (1) Bu Yönergenin amacı, Celal Bayar Üniversitesi Önlisans ve Lisans Eğitim- Öğretim Yönetmeliğine uygun olarak Celal Bayar Üniversitesine

Detaylı

MANİSA CELAL BAYAR ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ YÖNERGESİ

MANİSA CELAL BAYAR ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ YÖNERGESİ MANİSA CELAL BAYAR ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ YÖNERGESİ Amaç MADDE 1 (1) Bu Yönergenin amacı, Manisa Celal Bayar Üniversitesi Önlisans ve Lisans Eğitim-Öğretim Yönetmeliğine uygun olarak

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

TÜRK-ALMAN ÜNİVERSİTESİ LİSANS ÖLÇME VE DEĞERLENDİRME YÖNERGESİ. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar

TÜRK-ALMAN ÜNİVERSİTESİ LİSANS ÖLÇME VE DEĞERLENDİRME YÖNERGESİ. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar TÜRK-ALMA ÜİVERSİTESİ LİSAS ÖLÇME VE DEĞERLEDİRME YÖERGESİ BİRİCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç MADDE 1 - (1) Bu düzenlemenin amacı, Türk Alman Üniversitesi bünyesindeki lisans programlarında

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

Bağıl Değerlendirme Sistemi ile ilgili Bilgi Notu

Bağıl Değerlendirme Sistemi ile ilgili Bilgi Notu Bağıl Değerlendirme Sistemi ile ilgili Bilgi Notu 2013-2014 Eğitim Öğretim yılından itibaren Fakültemizin kayıtlı tüm öğrencilerinin (hem eski hem de yeni müfredata tabi olan öğrencilerin) başarı notları

Detaylı

Test İstatistikleri AHMET SALİH ŞİMŞEK

Test İstatistikleri AHMET SALİH ŞİMŞEK Test İstatistikleri AHMET SALİH ŞİMŞEK İçindekiler Test İstatistikleri Merkezi Eğilim Tepe Değer (Mod) Ortanca (Medyan) Aritmetik Ortalama Merkezi Dağılım Dizi Genişliği (Ranj) Standart Sapma Varyans Çarpıklık

Detaylı

T.C. AVRASYA ÜNİVERSİTESİ BAĞIL NOT DEĞERLENDİRME SİSTEMİ YÖNERGESİ

T.C. AVRASYA ÜNİVERSİTESİ BAĞIL NOT DEĞERLENDİRME SİSTEMİ YÖNERGESİ T.C. AVRASYA ÜNİVERSİTESİ BAĞIL NOT DEĞERLENDİRME SİSTEMİ YÖNERGESİ Amaç MADDE 1 (1) Bu Yönergenin amacı, Avrasya Üniversitesi bünyesindeki önlisans ve lisans programlarındaki ölçme ve değerlendirmeye

Detaylı

T.C. SÜLEYMAN ŞAH ÜNİVERSİTESİ SINAV VE BAŞARI DEĞERLENDİRME YÖNERGESİ. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar

T.C. SÜLEYMAN ŞAH ÜNİVERSİTESİ SINAV VE BAŞARI DEĞERLENDİRME YÖNERGESİ. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar T.C. SÜLEYMAN ŞAH ÜNİVERSİTESİ SINAV VE BAŞARI DEĞERLENDİRME YÖNERGESİ Amaç BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar MADDE 1 - (1) Bu Yönergenin amacı, Süleyman Şah Üniversitesine bağlı birimlerde

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

Karadeniz Teknik Üniversitesi Ön Lisans ve Lisans Programlarında Başarı Notunun Değerlendirilmesine Dair Senato Tarafından Belirlenen Usul ve Esaslar

Karadeniz Teknik Üniversitesi Ön Lisans ve Lisans Programlarında Başarı Notunun Değerlendirilmesine Dair Senato Tarafından Belirlenen Usul ve Esaslar Karadeniz Teknik Üniversitesi Ön Lisans ve Lisans Programlarında Başarı Notunun Değerlendirilmesine Dair Senato Tarafından Belirlenen Usul ve Esaslar Karadeniz Teknik Üniversitesi (KTÜ) Ön Lisans ve Lisans

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ Yrd. Doç. Dr. C. Deha DOĞAN Gruplara ait ortalamalar elde edildiğinde, farklı olup olmadıkları ilk bakışta belirlenemez. Ortalamalar arsında bulunan

Detaylı

BİTLİS EREN ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ UYGULAMA YÖNERGESİ

BİTLİS EREN ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ UYGULAMA YÖNERGESİ 28.07.2010 SENATO 2010/7-I BİTLİS EREN ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ UYGULAMA YÖNERGESİ Amaç MADDE 1- (1) Yönergenin amacı, ders başarı notunun saptanmasında bağıl değerlendirme sisteminin uygulanması

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

DERS 7 PORTFÖY RİSK VE GETİRİSİ

DERS 7 PORTFÖY RİSK VE GETİRİSİ DERS 7 PORTFÖY RİSK VE GETİRİSİ Menkul Kıymet Risk ve Getirisi Bir yatırımcının temel beklentisi, menkul kıymeti uygun bir fiyattan almak, uygun görülen bir zamanda daha fazla bir fiyata satmak ve ayrıca

Detaylı

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir.

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. VERİ ANALİZİ GİRİŞ Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. Bilimsel Bilgi: Kaynağı ve elde edilme süreçleri belli olan bilgidir. Sosyal İlişkiler Görgül Bulgular İşlevsel

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 )

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 ) 4. SUNUM 1 Gözlem ya da deneme sonucu elde edilmiş sonuçların, rastlantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HİPOTEZ TESTLERİ denir. Sonuçların rastlantıya bağlı

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU Örnek: Aşağıda 100 yetişkine ilişkin kolesterol değerlerini sınıflandırılarak aritmetik ortalamasını bulunuz (sınıf aralığını 20 alınız). 2 x A fb C 229.5 n 40 20 100 221.5 3 Örnek:.

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME YÖNERGESİ

KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME YÖNERGESİ KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME YÖNERGESİ BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak, Tanımlar ve Kısaltmalar Amaç MADDE 1- (1) Bu yönergenin amacı, Kahramanmaraş Sütçü İmam Üniversitesi

Detaylı

EĞĠTĠMDE ÖLÇME VE DEĞERLENDĠRME BÖLÜM IV Ölçme Sonuçları Üzerinde Ġstatistiksel ĠĢlemler VERİLERİN DÜZENLENMESİ VERİLERİN DÜZENLENMESİ

EĞĠTĠMDE ÖLÇME VE DEĞERLENDĠRME BÖLÜM IV Ölçme Sonuçları Üzerinde Ġstatistiksel ĠĢlemler VERİLERİN DÜZENLENMESİ VERİLERİN DÜZENLENMESİ 09.0.0 Temel Kavramlar EĞĠTĠMDE ÖLÇME VE DEĞERLENDĠRME BÖLÜM IV Ölçme Sonuçları Üzerinde Ġstatistiksel ĠĢlemler Dr. Aylin ALBAYRAK SARI Hacettepe Üniversitesi Eğitim Fakültesi Evren: Üzerinde çalışılacak

Detaylı

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I S1. Cep telefonu üreten bir fabrikada toplam üretimin % 30 u A, % 30 u B ve % 40 ı C makineleri tarafından yapılmaktadır. Bu makinelerin

Detaylı

Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Kitle ve Örneklem Örneklem Dağılımı Nokta Tahmini Tahmin Edicilerin Özellikleri Kitle ortalaması için Aralık Tahmini Kitle Standart Sapması için Aralık

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

KIRKLARELİ ÜNİVERSİTESİ SINAV VE BAŞARI DEĞERLENDİRME YÖNERGESİ KIRKLARELİ ÜNİVERSİTESİ

KIRKLARELİ ÜNİVERSİTESİ SINAV VE BAŞARI DEĞERLENDİRME YÖNERGESİ KIRKLARELİ ÜNİVERSİTESİ Doküman No ÖİYR-262 KIRKLARELİ ÜNİVERSİTESİ SINAV VE BAŞARI DEĞERLENDİRME YÖNERGESİ İlk Yayın Tarihi 16.05.2015 Revizyon Tarihi - Revizyon No - Sayfa 1/6 KIRKLARELİ ÜNİVERSİTESİ SINAV VE BAŞARI DEĞERLENDİRME

Detaylı

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 7. HAFTA Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 23.02.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

MADDE VE TEST ANALİZİ. instagram: sevimasiroglu

MADDE VE TEST ANALİZİ.  instagram: sevimasiroglu MADDE VE TEST ANALİZİ Sunu Sırası Madde Analizi Madde Güçlüğü Madde Ayırıcılık Gücü Test Analizi Dizi Genişliği Ortanca Ortalama Standart Sapma Testin Ortalama Güçlüğü Testin Çarpıklık Düzeyi Test Güvenirliği

Detaylı

Sınav ve Başarı Değerlendirme Yönergesi

Sınav ve Başarı Değerlendirme Yönergesi Sınav ve Başarı Değerlendirme Yönergesi BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç Madde 1 (1) Bu Yönergenin amacı, Akdeniz Üniversitesine bağlı fakülte, yüksekokul, konservatuar ve meslek yüksekokullarında

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

ASTROİSTATİSTİK 5. KONU

ASTROİSTATİSTİK 5. KONU ASTROİSTATİSTİK 5. KOU Hazırlayan: Doç. Dr. Tolgahan KILIÇOĞLU 5. MOMETLER, ÇARPIKLIK VE BASIKLIK Bir verinin orta değeri ve yayılımına ilişkin ölçütlerin nasıl hesaplandığını gördük. Bu iki ölçütün verilmesi

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

JEODEZİK VERİLERİN İSTATİSTİK ANALİZİ. Prof. Dr. Mualla YALÇINKAYA

JEODEZİK VERİLERİN İSTATİSTİK ANALİZİ. Prof. Dr. Mualla YALÇINKAYA JEODEZİK VERİLERİN İSTATİSTİK ANALİZİ Prof. Dr. Mualla YALÇINKAYA Karadeniz Teknik Üniversitesi, Harita Mühendisliği Bölümü Trabzon, 2018 VERİLERİN İRDELENMESİ Örnek: İki nokta arasındaki uzunluk 80 kere

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

Gruplanmış serilerde standart sapma hesabı

Gruplanmış serilerde standart sapma hesabı Gruplanmış serilerde standart sapma hesabı Örnek: Verilen gruplanmış serinin standart sapmasını bulunuz? Sınıflar f i X X X m i f i. m i m i - (m i - ) f i.(m i - ) 0 den az 3 4 den az 7 4 6 dan az 4 6

Detaylı

Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Risk-Getiri İlişkisi ve Portföy Yönetimi I

Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Risk-Getiri İlişkisi ve Portföy Yönetimi I Risk-Getiri İlişkisi ve Portföy Yönetimi I 1 Giriş İşlenecek ana başlıkları sıralarsak: Finansal varlıkların risk ve getirisi Varlık portföylerinin getirisi ve riski 2 Risk ve Getiri Yatırım kararlarının

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 2.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene

Detaylı

ÇUKUROVA ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME YÖNERGESİ

ÇUKUROVA ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME YÖNERGESİ ÇUKUROVA ÜİVERSİTESİ BAĞIL DEĞERLEDİRME YÖERGESİ BİRİCİ BÖLÜM Amaç, Kapsam, Dayanak, Tanımlar ve Kısaltmalar Amaç MADDE 1- (1) Bu düzenlemenin amacı, Çukurova Üniversitesi bünyesindeki Diş Hekimliği, Tıp

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

Daha önce yaptığımız işlem tüm sınıfın bir değişkene ait ortalamasını hesaplamaktı. Eğer sınıfta KIZ-ERKEK gibi 2 grup varsa bu iki grubun başarısını

Daha önce yaptığımız işlem tüm sınıfın bir değişkene ait ortalamasını hesaplamaktı. Eğer sınıfta KIZ-ERKEK gibi 2 grup varsa bu iki grubun başarısını 5.SUNUM Daha önce yaptığımız işlem tüm sınıfın bir değişkene ait ortalamasını hesaplamaktı. Eğer sınıfta KIZ-ERKEK gibi 2 grup varsa bu iki grubun başarısını karşılaştırmak isteyebiliriz. Bu durumda iki

Detaylı

NİĞDE ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME YÖNERGESİ. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar

NİĞDE ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME YÖNERGESİ. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar İĞDE ÜİVERSİTESİ BAĞIL DEĞERLEDİRME YÖERGESİ BİRİCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç MADDE 1- (1) Bu Yönerge nin amacı, öğrencilerin başarıları değerlendirilirken, başarıyı ölçmek için, gerekli

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ DÖNEM SONU SINAV SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ DÖNEM SONU SINAV SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ DÖNEM SONU SINAV SORULARI Tarih/Saat/Yer: 15.06.16/09:00-10:30/AS115-116-117 Instructor: Prof. Dr. Hüseyin

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 3.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene

Detaylı

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 7. HAFTA Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 14.04.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ MANN-WHITNEY U TESTİ

BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ MANN-WHITNEY U TESTİ 1 BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ MANN-WHITNEY U TESTİ 2 BİR ÖRNEKLEM İÇİN T TESTİ 3 Ölçüm ortalamasını bir norm değer ile karşılaştırma (BİR ÖRNEKLEM İÇİN T TESTİ) Bir çocuk

Detaylı

BAĞIL DEĞERLENDİRME SİSTEMİ

BAĞIL DEĞERLENDİRME SİSTEMİ 1.1. Bağıl Değerlendirme Sistemi (BDS) BAĞIL DEĞERLENDİRME SİSTEMİ Her bir öğrencinin, aynı dersi takip eden öğrencilerin oluşturduğu ana kütle içerisinde yer alan diğer öğrencilerin başarı düzeylerine

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI 1. Doğum sırasının çocuğun zeka düzeyini etkileyip etkilemediğini araştıran bir araştırmacı çocuklar

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

LİSELERE GEÇİŞ SİSTEMİ

LİSELERE GEÇİŞ SİSTEMİ LİSELERE GEÇİŞ SİSTEMİ Liselere geçiş sisteminde 2017-2018 eğitim ve öğretim yılından itibaren değişikliğe gidildi. Buna göre öğrencilere 2 farklı alternatif sunuluyor; 1. Adrese dayalı mahalli yerleştirme

Detaylı

SÜREKLİ OLASILIK DAĞILIMI

SÜREKLİ OLASILIK DAĞILIMI SÜREKLİ OLASILIK DAĞILIMI Normal Olasılık Dağılımı Akülerin dayanma süresi, araçların belli bir zamanda aldığı yol, bir koşuya katılanların bitirme süresi gibi sayılamayacak kadar çok değer alabilen sürekli

Detaylı

OLASILIK ve KURAMSAL DAĞILIMLAR

OLASILIK ve KURAMSAL DAĞILIMLAR OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine

Detaylı

Veri nedir? Bir öğrenci kümesine uygulanan bir sınavdan elde edilen puanların herhangi bir işlem yapılmamış haline ham veri denir (ham puanlar) denir.

Veri nedir? Bir öğrenci kümesine uygulanan bir sınavdan elde edilen puanların herhangi bir işlem yapılmamış haline ham veri denir (ham puanlar) denir. Dr. Sedat Şen 1 Veri nedir? Bir öğrenci kümesine uygulanan bir sınavdan elde edilen puanların herhangi bir işlem yapılmamış haline ham veri denir (ham puanlar) denir. Değer nedir? Bir veriyi (puanlar dizisini)

Detaylı

17/01/2015. PowerPoint Template. Dr. S.Nihat ŞAD LOGO. İnönü University. Company Logo

17/01/2015. PowerPoint Template. Dr. S.Nihat ŞAD LOGO. İnönü University.  Company Logo PowerPoint Template LOGO Dr. S.Nihat ŞAD İnönü University www.thmemgallery.com Company Logo 1 Contents www.thmemgallery.com geliştirme süreci Birey hakkında bilgi toplama yolları lerin sınıflandırılması

Detaylı

Yrd. Doç. Dr. Sedat ŞEN

Yrd. Doç. Dr. Sedat ŞEN 6. SUNUM Test Geliştirme Aşamaları Madde Analizleri Madde Güçlüğü Madde Ayırıcılığı Madde varyansı ve standart sapması Madde güvenirlik katsayısı Test ortalaması, standart sapması ve ortalama güçlüğü Yrd.

Detaylı

7.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1

7.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1 7.Sunum Yrd. Doç. Dr. Sedat ŞEN 1 Bağımlı Değ. Bağımsız Değ. Analiz Sürekli İki kategorili t-testi, Wilcoxon testi Sürekli Kategorik ANOVA, linear regresyon Sürekli Sürekli Korelasyon, doğrusal regresyon

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI Tarih/Saat/Yer: 24.06.16/11:00-12:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ TELAFĐ SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ TELAFĐ SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ TELAFĐ SINAVI SORULARI Tarih/Saat/Yer: 20.06.16/15:00-16:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz Öğrenci

Detaylı

Parametrik İstatistiksel Yöntemler (t testi ve F testi)

Parametrik İstatistiksel Yöntemler (t testi ve F testi) Parametrik İstatistiksel Yöntemler (t testi ve F testi) Dr. Seher Yalçın 27.12.2016 1 İstatistiksel testler parametrik ve parametrik olmayan testler olmak üzere iki gruba ayrılır. Parametrik testler, ilgilenen

Detaylı

Bağımlı Gruplar İçin t Testi Wilcoxon İşaretli Sıralar Testi

Bağımlı Gruplar İçin t Testi Wilcoxon İşaretli Sıralar Testi Bağımlı Gruplar İçin t Testi Wilcoxon İşaretli Sıralar Testi Dr. Eren Can Aybek erencan@aybek.net www.olcme.net IBM SPSS Statistics ile Bağımlı Gruplar için t Testi İlişkili olan iki ortalama arasında

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

EGE ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ ve HARFLİ SİSTEM UYGULAMA KLAVUZU

EGE ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ ve HARFLİ SİSTEM UYGULAMA KLAVUZU EGE ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ ve HARFLİ SİSTEM UYGULAMA KLAVUZU I. BÖLÜM: KAPSAM ve TANIMLAR 1- Kılavuzun Dayanağı İşbu kılavuz 30.03.2004 tarih ve 25418 sayı ile Resmi Gazetede yayınlanan

Detaylı

Ölçme Araçlarında Bulunması Gereken Nitelikler. Geçerlik. Geçerlik Türleri. Geçerlik. Kapsam Geçerliği

Ölçme Araçlarında Bulunması Gereken Nitelikler. Geçerlik. Geçerlik Türleri. Geçerlik. Kapsam Geçerliği BÖLÜM 3 Ölçme Araçlarında Bulunması Gereken Nitelikler Yrd. Doç. Dr. Çetin ERDOĞAN cetinerdogan@gmail.com Ölçme Araçlarında Bulunması Gereken Nitelikler Geçerlik Güvenirlik Kullanışlılık Geçerlik Geçerlik,

Detaylı

5. SUNUM. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

5. SUNUM. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 5. SUNUM Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 08.09.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

Sapma (Dağılma) ölçüleri. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Sapma (Dağılma) ölçüleri. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK Sapma (Dağılma) ölçüleri Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK tover@sakarya.edu.tr Sapma (Dağılma) ölçüleri Mutlak Sapma Ölçüleri Değişim aralığı Kartil ve Desil aralığı Ortalama mutlak sapma Standart sapma

Detaylı

Popülasyon Ortalamasının Tahmin Edilmesi

Popülasyon Ortalamasının Tahmin Edilmesi Güven Aralıkları Popülasyon Ortalamasının Tahmin Edilmesi Tanımlar: Nokta Tahmini Popülasyon parametresi hakkında tek bir rakamdan oluşan tahmindir. Popülasyon ortalaması ile ilgili en iyi nokta tahmini

Detaylı

Sayı sistemleri-hesaplamalar. Sakarya Üniversitesi

Sayı sistemleri-hesaplamalar. Sakarya Üniversitesi Sayı sistemleri-hesaplamalar Sakarya Üniversitesi Sayı Sistemleri - Hesaplamalar Tüm sayı sistemlerinde sayılarda işaret kullanılabilir. Yani pozitif ve negatif sayılarla hesaplama yapılabilir. Bu gerçek

Detaylı

Merkezi Limit Teoremi

Merkezi Limit Teoremi Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal

Detaylı

İSTATİSTİK ÖRNEK SORULARI

İSTATİSTİK ÖRNEK SORULARI 1. Aşağıda gruplandırılmış seri verilmiştir. (n) 0-10 den az 5 10-20 den az 6 20-30 den az 9 30-40 den az 11 40-50 den az 4 50-60 den az 3 TOPLAM 38 İSTATİSTİK ÖRNEK SORULARI a) Mod değerini bulunuz? (15

Detaylı

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME Öğrenci başarısının veya başarısızlığının kaynağında; öğrenci, öğretmen, çevre ve program vardır. Eğitimde değerlendirme yapılırken bu kaynaklar dikkate alınmaz. Eğitimciler,

Detaylı

T.C. BÜLENT ECEVİT ÜNİVERSİTESİ Öğrenci İşleri Daire Başkanlığı MÜHENDİSLİK FAKÜLTESİ DEKANLIĞINA

T.C. BÜLENT ECEVİT ÜNİVERSİTESİ Öğrenci İşleri Daire Başkanlığı MÜHENDİSLİK FAKÜLTESİ DEKANLIĞINA Evrak Tarih ve Sayısı: 07/06/2017-28182 T.C. BÜLENT ECEVİT ÜNİVERSİTESİ Öğrenci İşleri Daire Başkanlığı *BE6P3274K* Sayı :46148110/100/ Konu :Öğrenci Bilgi Sistemi- Bağıl Not İşlemleri MÜHENDİSLİK FAKÜLTESİ

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 Prof. Dr. Nihal ERGİNEL 2 ÖRNEKLEME Anakütleden n birimlik örnek alınması ve anakütle parametrelerinin örnekten tahmin edilmesidir. 3 ÖRNEKLEME ALMANIN NEDENLERİ Anakütleye

Detaylı

İstatistik 1 BÖLÜM 3 VERİ SETLERİNİN ÖZETLENMESİNDE KULLANILAN SAYISAL YÖNTEMLER

İstatistik 1 BÖLÜM 3 VERİ SETLERİNİN ÖZETLENMESİNDE KULLANILAN SAYISAL YÖNTEMLER İstatistik 1 BÖLÜM 3 VERİ SETLERİNİN ÖZETLENMESİNDE KULLANILAN SAYISAL YÖNTEMLER 2017-2018 Ankara Üniversitesi, SBF SBF Onur Onur Özsoy 1 İşlenecek Konular Merkezi Eğilim Ölçüleri Ortalama, medyan, mod,

Detaylı

İstatistik Temel Kavramlar- Devam

İstatistik Temel Kavramlar- Devam İstatistik Temel Kavramlar- Devam 26.12.2016 Dr. Seher Yalçın 1 Değişken türleri Değişken; gözlemden gözleme farklı değerler alabilen objelere, niteliklere ya da durumlara denir (Arıcı, 2006). Bir özellik

Detaylı

BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ

BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ 1 BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ 2 BİR ÖRNEKLEM İÇİN T TESTİ 3 Ölçüm ortalamasını bir norm değer ile karşılaştırma (BİR ÖRNEKLEM İÇİN T TESTİ) Bir çocuk bakımevinde barındırılan

Detaylı

Ortalamaların karşılaştırılması

Ortalamaların karşılaştırılması Parametrik ve Parametrik Olmayan Testler Ortalamaların karşılaştırılması t testleri, ANOVA Mann-Whitney U Testi Wilcoxon İşaretli Sıra Testi Kruskal Wallis Testi BBY606 Araştırma Yöntemleri Güleda Doğan

Detaylı

İSTANBUL ÜNİVERSİTESİ ÖNLİSANS, LİSANS ÖLÇME VE DEĞERLENDİRME ESASLARI. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar

İSTANBUL ÜNİVERSİTESİ ÖNLİSANS, LİSANS ÖLÇME VE DEĞERLENDİRME ESASLARI. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar İSTANBUL ÜNİVERSİTESİ ÖNLİSANS, LİSANS ÖLÇME VE DEĞERLENDİRME ESASLARI 1 BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç MAE 1- (1) Bu düzenlemenin amacı, İstanbul Üniversitesi bünyesindeki önlisans

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

EĞİTİMDE ÖLÇME VE DEĞERLENDİRME UĞUR YILMAZER 1

EĞİTİMDE ÖLÇME VE DEĞERLENDİRME UĞUR YILMAZER 1 EĞİTİMDE ÖLÇME VE DEĞERLENDİRME UĞUR YILMAZER 1 5. BÖLÜM (9. KONU) TEST PUANLARI ÜZERİDE İSTATİSTİKİ İŞLEMLER MERKEZİ EĞİLİM/YIĞILIM ÖLÇÜLERİ ÇARPIKLIK VE YORUMU UĞUR YILMAZER 2 TEST İSTATİSTİKLERİ 1-

Detaylı