7.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "7.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1"

Transkript

1 7.Sunum Yrd. Doç. Dr. Sedat ŞEN 1

2 Buraya kadar olan konularda (t-testi, ANOVA vb.) bağımlı değişkenin gruplar arasında anlamlı bir fark gösterip göstermediğini test ettik. Bu sunumumuzda farklı bir araştırma sorusunu cevaplamak yeni bir yöntem kullanacağız. Bu sunumda fark yerine ilişki durumuna korelasyon yöntemi ile bakacağız. Korelasyon temel anlamda iki değişken arasındaki ilişkiyi göstermek için kullanılır. Yrd. Doç. Dr. Sedat ŞEN 2

3 Korelasyon konusunu anlatmadan önce ilk olarak kovaryans terimini inceleyeceğiz. İki değişkenin ilişkili olup olmadığını öğrenmenin en basit yolu bu iki değişkenin birbirlerine göre değişimini gösteren kovaryans değerini hesaplamaktır. Kovaryansı daha iyi anlamak için betimsel istatistiklerde bahsettiğimiz varyans formülüne bakmakta fayda vardır. Yrd. Doç. Dr. Sedat ŞEN 3

4 Bir değişkenin varyansı verinin aritmetik ortalamadan ortalama uzaklığını temsil eder. Katılımcı Ar. Ortalama İzlenen Reklam Sayısı Alınan Ürün St. Sapma Varyan s Yukarıdaki formülü kullanarak varyans değerleri 2.80 ve 8.50 olarak hesaplanır. Yrd. Doç. Dr. Sedat ŞEN 4

5 Yandaki grafikte iki değişken için de her bir değerin ortalamadan farkı (sapmalar) gösterilmektedir. Şimdi iki değişkenin birlikte değişimini bulabilmek için her bir değerin ortalamadan farkının çarpımını bulacağız. Bu işleme kovaryans hesaplaması denir. Yrd. Doç. Dr. Sedat ŞEN 5

6 Yandaki grafikteki sapmaları ve üstteki formülü kullanarak aşağıdaki işlemlerle kovaryans değerini hesaplarız. Sapmaların çarpımları hep pozitif olduğu için pozitif bir kovaryans değeri yani pozitif bir ilişki beklenebilir. Yrd. Doç. Dr. Sedat ŞEN 6

7 Kovaryans değerini hesaplayarak iki değişkenin birbirlerine göre değişimi yani ilişkisi gösterilebilir. Bir değişkenin değerleri ortalamanın üzerinde iken diğer değişkenin değerleri de ortalamanın üzerinde ise bu iki değişken arasında pozitif bir ilişki vardır diyebiliriz. Bu durumda iki değişken arasında pozitif bir ilişki vardır diyebiliriz. Biri ortalamanın altında iken diğeri de ortalamanın altında değerler gösteriyorsa genelde kovaryans negatif çıkar. Bu durumda iki değişken arasında negatif bir ilişki vardır diyebiliriz. Fakat kovaryans kullanmadaki problem kovaryansın değişkenlerin birimine bağlı olmasıdır. Eğer iki değişken farklı birimler ile ölçülüyorsa (kg vs. km) bu durumda kovaryansın değerini yorumlamada zorluk yaşarız. Büyük ya da küçük olmasının ne anlama geldiğini söylemek zorlaşır. Yrd. Doç. Dr. Sedat ŞEN 7

8 Kovaryanstaki birim probleminden kurtulmak için kovaryans değerini standartlaştırmamız gerekmektedir. Bir şekilde her türlü birimi ortak bir değere çevirebilmemiz lazım. Bunu yapabilmek için standart sapma kullanmamız gerekmektedir. Aynı standart z puanlarının hesaplanmasında yaptığımız gibi her hangi bir değerin ortalamadan sapmasını standart sapmaya böldüğümüzde standart bir ölçek elde ederiz. Kovaryans formülünü standart sapma değerleri ile böldüğümüzde elde edeceğimiz değerin adı korelasyon olacaktır. Yrd. Doç. Dr. Sedat ŞEN 8

9 Aşağıdaki formül vasıtasıyla iki değişkene ait değerler kullanılarak hesaplanan değere «Pearson Momentler Çarpımı Korelasyon Katsayısı» denir. Karl Pearson tarafından geliştirildiği için Pearson korelasyonu adını almıştır. Yrd. Doç. Dr. Sedat ŞEN 9

10 Önceki slaytlarda verdiğimiz iki değişkene ait kovaryans değerini 4.25 olarak hesaplamıştık. Bu değeri iki değişkenin standart sapmasına bölersek korelasyon katsayısını (r) hesaplayabiliriz. Korelasyon değeri r harfi ile gösterilmektedir. Katılımcı Ar. Ortalama İzlenen Reklam Sayısı Alınan Ürün St. Sapma Varyan s r = 4.25/(1.67x2.92) r = İki değişken arasında pozitif yönde yüksek bir ilişki olduğunu söyleyebiliriz. Yrd. Doç. Dr. Sedat ŞEN 10

11 Korelasyon (ilişki), iki değişkenin birlikte değişiminin bir ölçüsüdür. Boy uzunluğu ile kilo arasındaki ilişki, yaş ile boy arasındaki ilişki, çalışma saati ve sınav puanı arasındaki ilişki, hava sıcaklığı ve doğalgaz tüketimi arasındaki ilişki eğer sayısal veriler varsa korelasyon katsayısı cinsinden gösterilebilir. Korelasyon katsayısı matematiksel olarak -1 ile +1 arasında değerler alır. Korelasyonun büyüklüğü (0-1) iki değişken arasındaki ilişkinin gücünü gösterirken işareti (+,-) değişkenlerin aynı yönde (+) artıp azaldığını ya da zıt yönlerde (-) artış ve azalış gösterdiğini belirtir. Hava sıcaklığı ve doğalgaz tüketimi arasındaki ilişki NEGATİF Çalışma saati ve sınav puanı arasındaki ilişki POZİTİF olabilir. Eğer iki değişken arasında hiç ilişki yoksa korelasyon katsayısı sıfır ya da sıfıra yakın bulunur. Eğer iki değişken birbiriyle yüzde yüz oranında ilişkili ise korelasyon maksimum (1) değeri (mükemmel ilişki) alır. Yrd. Doç. Dr. Sedat ŞEN 11

12 İki değişken arasında hesaplanan korelasyon (r) değeri: r<0.20 ve sıfıra yakın değerler ilişkinin olmadığı ya da çok zayıf ilişkiyi işaret eder arasında ise zayıf ilişki arasında ise orta düzeyde ilişki arasında ise yüksek düzeyde ilişki ise çok yüksek ilişki olduğu yorumu yapılır. Yrd. Doç. Dr. Sedat ŞEN 12

13 Korelasyon değeri standartlaştırılmış bir değer olduğu için etki boyutu büyüklüğü olarak da kullanılabilir. ±.1 arasındaki değerler küçük etki, (±.1) ve (±.3) arasındaki değerler orta büyüklükteki etki ve (±.3) ve (±.5) arasındaki değerler ile daha üstteki değerler büyük etki şeklinde yorumlanabilir. Yrd. Doç. Dr. Sedat ŞEN 13

14 Korelasyon katsayısını yorumlarken neden-sonuç ilişkisinden bahsetmek doğru değildir. Çünkü korelasyon bize iki değişken arasındaki ilişkinin büyüklüğünü gösterirken neden-sonuç ilişkisine dair bir şey söylememektedir. A değişkeni B değişkeni etkiliyor olabilir ya da B değişkeni A değişkenini etkiliyor olabilir. Başka bir alternatif de iki A ile B değişkenleri arasında neden-sonuç ilişkisi olmayabilir. Korelasyon değeri nedensonuç ilişkisinin yönünü vermemektedir. Korelasyon değerine bakarak neden-sonuç ilişkisinden bahsedemememizin başka sebebi de üçüncü bir değişkenin etkisidir. İki değişkenin arasındaki neden-sonuç ilişkisini diğer değişkenlerin etkisinden bağımsız düşünemeyiz. Yrd. Doç. Dr. Sedat ŞEN 14

15 T-testi ve ANOVA analizlerinde gördüğümüz gibi araştırmacılar bu analizleri kullanarak bir hipotezi test edebilmektedir. Korelasyonu kullanarak bir sıfır hipotez test edilebilmektedir. Korelasyonda test edilen sıfır hipotezi iki değişken arasında bir ilişki olmadığını (r = 0) belirtmektedir(ilişki YOK). Alternatif hipotez ise iki değişken arasında bir ilişki olduğunu belirtir (İLİŞKİ VAR). Burada da elde edilen p-değerine bakarak sıfır hipotezini reddedip edemeyeceğimizi söyleyebiliriz. Örneğin p-değeri 0.05 ten küçük bulunduğunda sıfır hipotezini reddedip alternatif hipotezi kabul edebiliriz. Yani iki değişken arasında anlamlı bir ilişki bulunmaktadır diyebiliriz. Yrd. Doç. Dr. Sedat ŞEN 15

16 Pearson korelasyonu hesaplaması için değişkenlerin sürekli olması yani en azında eşit aralıklı ölçek düzeyinde olması gerekmektedir. Eğer Pearson korelasyon katsayısının anlamlılığından bahsetmek istiyorsak örneklem dağılımının normal olması varsayımının yerine getirilmesi gerekmektedir. Normalliğin nasıl kontrol edileceğine önceki sunumlardan bakabilirsiniz. Değişkenlerin normal dağılıma sahip olmadığı durumlarda Spearman Rank korelasyon katsayısı tercih edilir. Yrd. Doç. Dr. Sedat ŞEN 16

17 Açılan SPSS ekranında bivariate (ikili) ve Partial (kısmi) olmak üzere iki korelasyon türü karşımıza çıkmaktadır. İkili (bivariate) korelasyon iki değişken arasındaki korelasyonu gösterirken kısmi (partial) korelasyon iki değişken arasındaki ilişkiyi gösterirken diğer değişkenlerine etkisini kontrol etmek için kullanılır. Pearson korelasyon ve Spearman korelasyon katsayıları ikili korelasyonlar arasındadır. Yrd. Doç. Dr. Sedat ŞEN 17

18 Açılan SPSS ekranında bivariate (ikili) Pearson korelasyon ve Spearman korelasyon katsayıları ikili korelasyonlar arasındadır. Yrd. Doç. Dr. Sedat ŞEN 18

19 Sunumun başında önce varyans ve kovaryans sonra da korelasyon değerlerini hesapladığımız veriyi SPSS ile korelasyon değeri hesaplamada kullanacağız. Veride katılımcıların izledikleri reklam sayıları ile aldıkları ürün sayıları içeren iki değişken verilmektedir. Yrd. Doç. Dr. Sedat ŞEN 19

20 Yan taraftaki ekranda aralarında ilişki olup olmadığını merak ettiğimiz iki değişkeni ekraın sağ tarafına attıktan sonra Pearson kutucuğunu işaretledikten sonra OK tuşuna basabiliriz. Burada iki yönlü hipotez için iki kuyruklu (two-tailed) seçilir. Yrd. Doç. Dr. Sedat ŞEN 20

21 Options menüsünde ortalama ve standart sapma gibi betimleyici istatistiklerin yanında kovaryans istatistiği de elde edebiliriz. Eğer verimizde kayıp veri var ise nasıl müdahale edilmesi gerektiğini (pairwise ya da listwise) de seçebiliriz. Yrd. Doç. Dr. Sedat ŞEN 21

22 Options Menüsünde işaretlememize göre betimleyici istatistik değerleri elde edebiliriz. Bu tablodaki değerler sunumun başındaki hesaplamalarımız ile aynıdır. Yrd. Doç. Dr. Sedat ŞEN 22

23 Korelasyon analizi sonucunda elde ettiğimiz yandaki tabloda korelasyon değerinin yanında, bu değerin anlamlılığı (pdeğeri), çapraz çarpımlar, kovaryans ve örneklem büyüklüğü (N) değerleri elde edilir. Yrd. Doç. Dr. Sedat ŞEN 23

24 Yandaki tabloda dikkat etmemiz gereken şey ise aynı değerlerin 2 kez rapor edilmesidir. Bunun sebebi A-B arasındaki her hesaplamanın B-A arasındaki hesaplamalara eşit olmasıdır. Burada tablonun alt ya da üst kısımlarından birine odaklanmak yeterlidir. Yrd. Doç. Dr. Sedat ŞEN 24

25 Yandaki tabloya göre 5 değere sahip reklam ve 5 değere sahip ürün değişkenleri arasındaki korelasyon değeri olarak hesaplanmıştır. Sıfır hipotezini reddedemeyeceğimizi söyleyen p-değerine göre anlamlı bir ilişki bulunmamaktadır. Ayrıca kovaryans değeri 4.25 olarak bulunmuştur. Bu değerleri sunumun başında SPSS kullanmadan hesaplamıştık. Burada bir değişkenin kendi ile olan kovaryansı varyanstır ve daha önce hesapladığımız (2.8 ve 8.5) varyans değerleri ile aynıdır. Yrd. Doç. Dr. Sedat ŞEN 25

26 Yrd. Doç. Dr. Sedat ŞEN 26

27 Yrd. Doç. Dr. Sedat ŞEN 27

28 İki nicel değişken arasındaki ilişkiyi göstermek için Pearson korelasyon katsayısını hesaplayabiliriz. Aşağıdaki tabloda kitap okuma sayısı ile öğrenci yaşı arasındaki korelasyon değeri (r=.069) gösterilmektedir. Yrd. Doç. Dr. Sedat ŞEN 28

29 Okunan kitap sayısı ile final notu arasındaki ilişki için yandaki korelasyon işlemi uygulanır. Yrd. Doç. Dr. Sedat ŞEN 29

30 Okunan kitap sayısı ile final sınavında alınan puan arasında 0 a yakın bir korelasyon vardır (.03). Yrd. Doç. Dr. Sedat ŞEN 30

31 Aynı anda bir çok değişken arasında hesaplanan ikili korelasyonlara bakabiliriz. Yrd. Doç. Dr. Sedat ŞEN 31

32 Yrd. Doç. Dr. Sedat ŞEN 32

33 Spearman s sıra korelasyonu Pearson korelasyon katsayısının parametrik olmayan versiyonudur. Parametrik varsayımların sağlanmadığı normal olmayan verilerde kullanılır. Verilerin önce sıralanması daha sonra da Pearson eşitliğinin kullanılmasıyla elde edilir. İki tane sıralanmış değişken arasındaki Pearson korelasyon değeridir diyebiliriz. Spearman s rho olarak da adlandırılır. Pearson korelasyonunda doğrusal (linear) ilişki söz konusu iken Spearman korelasyonda monotonik (monotonic) ilişkiden bahsedilir. Yrd. Doç. Dr. Sedat ŞEN 33

34 Matematik Fizik Yukarıdaki Spearman rho formülü ile yandaki 2 değişken arasındaki korelasyon değerini hesaplayabilmek için önce iki değişkendeki her puan için sıralamada kaçıncı olduklarını, sonra bu sıralamalar arasındaki farkları daha sonra da bu farkların karesini hesaplamak gerekmektedir. Bu işlemler SPSS te otomatik olarak yapılmaktadır. SPSS ile bulmadan önce elle nasıl hesaplandığını göstereceğiz. Yrd. Doç. Dr. Sedat ŞEN 34

35 Matematik Fizik Mat Sıralama , , , , , , , , , ,50 Yrd. Doç. Dr. Sedat ŞEN 35

36 Matematik Fizik Mat Sıralama Fizik Sıralama ,00 4, ,00 2, ,00 10, ,00 7, ,50 5, ,00 9, ,00 8, ,00 1, ,00 3, ,50 6,00 Yrd. Doç. Dr. Sedat ŞEN 36

37 Matematik Fizik Mat Sıralama Fizik Sıralama Farklar ,00 4,00 5, ,00 2,00 1, ,00 10,00 0, ,00 7,00-3, ,50 5,00 1, ,00 9,00-4, ,00 8,00 0, ,00 1,00 0, ,00 3,00-1, ,50 6,00 0,50 Yrd. Doç. Dr. Sedat ŞEN 37

38 Matematik Fizik Mat Sıralama Fizik Sıralama Farklar Farkların Karesi ,00 4,00 5, ,00 2,00 1, ,00 10,00 0, ,00 7,00-3, ,50 5,00 1,50 2, ,00 9,00-4, ,00 8,00 0, ,00 1,00 0, ,00 3,00-1, ,50 6,00 0,50 0,25 Farkların Karesi Toplamı=54,5 Yrd. Doç. Dr. Sedat ŞEN 38

39 Yan tarafta bir grup öğrencinin matematik ve fizik derslerinden aldığı puanlar verilmektedir. Bu iki değişken arasında Spearman sıra korelasyonu katsayısı hesaplanacaktır. Yrd. Doç. Dr. Sedat ŞEN 39

40 SPSS te Spearman korelasyonu Pearson korelasyonu ile aynı menüde yer almaktadır. Burada tek yapmanız gereken Spearman kutucuğunu seçmektir. Yrd. Doç. Dr. Sedat ŞEN 40

41 Hesaplamalarımızda bulduğumuz gibi Spearman sıra korelasyon katsayısı aşağıdaki SPSS tablosunda olarak sunulmaktadır. Yrd. Doç. Dr. Sedat ŞEN 41

42 IQ TV Bireylerin IQ puanı ile haftalık TV izleme saatleri arasındaki ilişkiyi parametrik olmayan Spearman s sıra korelasyonu ile incelemek istersek önce bu 2 değişkendeki her bir değerin kaçıncı sırada olduğunu göstermek sonra da Spearman ın formülünü kullanarak hesaplama yapmamız gerekir. SPSS te bunları yapmadan tek tuşla Pearson korelasyonunu hesapladığımız gibi Spearman sıra korelasyonunu da hesaplayabiliriz. Yrd. Doç. Dr. Sedat ŞEN 42

43 Aynı Pearson korelasyonda olduğu gibi Analyze>Correlate >Bivariate kısmına giriyoruz. Yrd. Doç. Dr. Sedat ŞEN 43

44 Açılan ekranda ilişkileri merak edilen değişkenleri Variables kısmına giriyoruz ve Correlation Coefficients kısmında Spearman kutucuğunu seçiyoruz. Yrd. Doç. Dr. Sedat ŞEN 44

45 Tabloda görüldüğü üzere Spearman s sıra korelasyon değeri olarak hesaplanır. Bu tablo kullanılarak Pearson korelasyondakine benzer yorumlar yapılabilir. Yrd. Doç. Dr. Sedat ŞEN 45

46 Kendall Tau korelasyon değeri de Spearman s sıra korelasyonu gibi parametrik korelasyondur. Kendall sıralı korelasyon katsayısı iki değişkenin istatistiksel olarak birbirine bağımlı olup olmadığını test etmek için de kullanılabilir. Spearmanın hesaplanmasında olduğu gibi öncelikle sürekli değişken değerlerine sıra numarası verilmesini ya da sıralı verilere sahip olunmasını gerektirir. Daha sonra her bir çift değerin hem A değişkeninde hem de B değişkeninde artıp azalmasına göre concordance ve discordance sayıları hesaplamayı gerektirir. Yrd. Doç. Dr. Sedat ŞEN 46

47 concordant (uyumlu) eğer (x i > x j ve y i > y j ) veya (x i < x j ve y i < y j ) Bu şartlara uyan her bir çift için +1 discordant (uyumsuz) eğer (x i > x j ve y i < y j ) veya (x i < x j ve y i > y j ) bu şartları sağlayan her bir çift için -1 yazılır. İkisine de uymayan durum x i = x j veya y i = y j. Yrd. Doç. Dr. Sedat ŞEN 47

48 Öğrenci Not IQ Ahmet 1 1 Ayşe 2 4 Mehmet 5 2 Fatma 3 3 Mustafa 4 5 Yukarıda beş öğrencinin notlarına ve IQ puanlarına göre kaçıncı oldukları verilmiştir. Bu durumda notlarının ve IQ puanlarının ne olduğunu bilmemize gerek yoktur. Eğer notları ve IQ puanları var ise biz sıralama değerleri verebiliriz. Daha sonra her bir öğrenci çiftini (Ahmet-Ayşe, Ahmet-Mehmet, Ahmet-Fatma, Ahmet- Mustafa,..Fatma-Mustafa) hem Not hem de IQ puanındaki sıralamalar açısından karşılaştırırız. Anlatımda kolaylık olması açısından bir sonraki slaytta öğrenci isimlerini harflerle sembolleştirdik. Yrd. Doç. Dr. Sedat ŞEN 48

49 Öğrenci Not IQ Ahmet a 1 1 Ayşe b 2 4 Fatma c 3 3 Mustafa d 4 5 Mehmet e 5 2 Yrd. Doç. Dr. Sedat ŞEN 49

50 (a,b) çifti hem NOT hem IQ için a<b olduğu için +1 (a,c) çifti hem NOT hem IQ için a<c olduğu için +1 (a,d) çifti hem NOT hem IQ için a<d olduğu için +1 (a,e) çifti hem NOT hem IQ için a<e olduğu için +1 (b,c) çifti hem NOT hem IQ için b<c olmadığı için -1 (b,d) çifti hem NOT hem IQ için b<d olduğu için +1 (b,e) çifti hem NOT hem IQ için b<e olmadığı için -1 (c,d) çifti hem NOT hem IQ için c<d olduğu için +1 (c,e) çifti hem NOT hem IQ için b<d olmadığı için -1 (d,e) çifti hem NOT hem IQ için d<e olmadığı için -1 Tüm değerleri topladığımızda 6-4=2 olur. Tüm kombinasyonların sayısı da Nx(N-1)/2 den 10 bulunur. Kendall s tau değeri = 2/((1/2)x(5x4))=0.2 bulunur. Yrd. Doç. Dr. Sedat ŞEN 50

51 SPSS te Kendall tau değeri hesaplamak için yanda sıralı şekilde verilmiş ders notu ve IQ puanı değişkenleri kullanılmıştır. Yrd. Doç. Dr. Sedat ŞEN 51

52 SPSS te Pearson korelasyon katsayısının hesaplandığı yer olan bivariate (ikili) korelasyon menüsü seçilebilir. Yrd. Doç. Dr. Sedat ŞEN 52

53 Elde edilen Kendall s tau değeri ve test istatistiği aşağıdaki tabloda görülebilir. Yrd. Doç. Dr. Sedat ŞEN 53

54 Çift Serili (Biserial) ve Nokta Çift Serili (point biserial) Korelasyonları iki değişkenden birinin sürekli diğerinin de iki kategorili (dichotomous) olduğu durumlarda kullanılır. Çift-serili ve nokta çift-serili korelasyon arasındaki fark iki kategorili değişkenin aslının gerçekten iki kategorili olup olmamasına bağlıdır. Örneğin ölü ya da yaşıyor olmak, kız ya da erkek olmak kendiliğinden iki kategorilidir ama kaldı ya da geçti demek için sürekli dağılıma sahip not değerleri kullanılır. Nokta çift-serili korelasyon değeri süreksiz değişkenlerin (kız-erkek) olduğu durumlarda çiftserili korelasyon ise sürekli değişkenin iki kategoriye indirildiği durumlarda (kaldı-geçti) kullanılır. Yrd. Doç. Dr. Sedat ŞEN 54

55 Yan taraftaki veride bir sürekli değişken (zaman) ve bir süreksiz iki kategorili değişken (cinsiyet) olduğu için nokta çift serili korelasyon hesaplaması yapacağız. Bu işlemi SPSS te Pearson korelasyonu yaptığımız yerden yapabiliriz. Yrd. Doç. Dr. Sedat ŞEN 55

56 Yrd. Doç. Dr. Sedat ŞEN 56

57 Kadın=0, Erkek=1 kodlandığında Yrd. Doç. Dr. Sedat ŞEN 57

58 Kadın=1, Erkek=0 kodlandığında Yrd. Doç. Dr. Sedat ŞEN 58

59 Burada kadına 1 erkeğe 0 dediğimizde korelasyon değeri çıkarken; kadına 0 erkeğe 1 değeri verdiğimizde korelasyom katsayısı çıkmaktadır. Burada cinsiyet ile zaman arasındaki ilişkinin büyüklüğü çıkmıştır deyip yönü göz ardı edebiliriz. İlişkiyi yorumlarken R-kare değeri hesaplayıp (0.378*0.378=0.142) cinsiyet değişkeni zaman içerisindeki değişimin %14 ünü açıklamaktadır diyebiliriz. Yrd. Doç. Dr. Sedat ŞEN 59

60 Yandaki formül ve normal dağılım tablosundan elde edilen p, q, ve y değerleri kullanılarak Nokta Çift Serili Korelasyondan Çift Serili Korelasyon Elde Edilebilir. Yrd. Doç. Dr. Sedat ŞEN 60

61 P,q ve y değerlerini normal dağılım tablosundan bulabilmek için cinsiyet değişkeninin frekans değerlerini bilmek gerekmektedir. Kadın = %53.33, Erkek=%46.7 olduğuna göre e denk gelen p,q ve y değerleri yandaki tablodan elde edilebilir. Yrd. Doç. Dr. Sedat ŞEN 61

62 Bir önceki slayttaki değerleri dönüştürme formülünde yerine koyarak aşağıdaki hesaplamalarla çift serili korelasyon değerini olarak elde ederiz. Yrd. Doç. Dr. Sedat ŞEN 62

63 Pearson korelasyon her iki değişkeninde sürekli olduğu durumlarda Spearman s korelasyon değişkenlerin sıralı olduğu durumlarda Kendall s korelasyon değişkenlerin sıralı olduğu durumlarda (küçük örneklemlerde daha uygun) Nokta çift serili korelasyon bir sürekli değişken ile gerçek iki kategorili bir değişken arasında Çift serili korelasyon bir sürekli değişken ile sonradan iki kategoriye indirilmiş iki kategorili bir değişken arasında Yrd. Doç. Dr. Sedat ŞEN 63

64 Korelasyon neden-sonuç ilişkisini işaret etmez Yrd. Doç. Dr. Sedat ŞEN 64

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

www.fikretgultekin.com 1

www.fikretgultekin.com 1 KORELASYON ANALĐZĐ (Correlation Analysis ) Basit Korelasyon Analizi Basit korelasyon analizinde iki değişken söz konusudur ve bu değişkenlerin bağımlıbağımsız değişken olarak tanımlanması/belirlenmesi

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir.

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. VERİ ANALİZİ GİRİŞ Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. Bilimsel Bilgi: Kaynağı ve elde edilme süreçleri belli olan bilgidir. Sosyal İlişkiler Görgül Bulgular İşlevsel

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 Aşağıdaki analizlerde http://yunus.hacettepe.edu.tr/~tonta/courses/spring2010/bby208/bby208

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

Sosyal Bilimler İçin Veri Analizi El Kitabı

Sosyal Bilimler İçin Veri Analizi El Kitabı 292 Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18 (2012) 292-297 KİTAP İNCELEMESİ Sosyal Bilimler İçin Veri Analizi El Kitabı Editör Doç. Dr. Şener BÜYÜKÖZTÜRK Dilek SEZGİN MEMNUN 1 Bu çalışmada,

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

Pazarlama Araştırması Grup Projeleri

Pazarlama Araştırması Grup Projeleri Pazarlama Araştırması Grup Projeleri Projeler kapsamında öğrencilerden derlediğiniz 'Teknoloji Kullanım Anketi' verilerini kullanarak aşağıda istenilen testleri SPSS programını kullanarak gerçekleştiriniz.

Detaylı

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 1. Pearson Korelasyon Katsayısı

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) Parametrik Olmayan Testler Binom Testi SPSS Ders Notları III (3 Mayıs 2012) Soru 1: Öğrencilerin okul

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup Araştırma sonuçlarının genelleneceği grup Evrendeğer (Parametre): Değişkenlerin evrendeki değerleri µ : Evren Ortalaması σ

Detaylı

1 PAZARLAMA ARAŞTIRMASI

1 PAZARLAMA ARAŞTIRMASI İÇİNDEKİLER ÖNSÖZ III Bölüm 1 PAZARLAMA ARAŞTIRMASI 11 1.1. Pazarlama Araştırması Kavramı ve Kapsamı 12 1.2. Pazarlama Araştırmasının Tarihçesi 14 1.3. Pazarlama Araştırması Pazarlama Bilgi Sistemi ve

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ Taşınmaz Değerlemede İstatistiksel Analiz Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ 1 Taşınmaz Değerlemede İstatistiksel Analiz İçindekiler

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) SPSS Data Editör iki arayüzden oluşur. 1. Data View

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

01.02.2013. Statistical Package for the Social Sciences

01.02.2013. Statistical Package for the Social Sciences Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Varyans Analizi (ANOVA) Kruskal-Wallis H Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek Yönlü Varyans Analizi SPSS de Tek

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri Elementary Education Online, 12(1), k: 1 6, 2013. İlköğretim Online, 12(1), b:1 6, 2013. [Online]: http://ilkogretim online.org.tr KİTAP İNCELEMESİ SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

Detaylı

SOSYAL BİLİMLER İÇİN İSTATİSTİK

SOSYAL BİLİMLER İÇİN İSTATİSTİK Yaşar BAYKUL - Cem Oktay GÜZELLER SOSYAL BİLİMLER İÇİN İSTATİSTİK SPSS UYGULAMALI Prof. Dr. Yaşar BAYKUL Doç. Dr. Cem Oktay GÜZELLER Sosyal Bilimler İçin İstatistik ISBN 978-605-364-464-4 Kitapta yer alan

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) Data Editör iki arayüzden oluşur. 1. Data View 2. Variable

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI

İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI Grup sayısı ikiye geçtiğinde tüm grupların bağımsız iki grup testleri ile ikişerli analiz düşünülebilir. Ancak bu yaklaşım, karşılaştırmalar bağımsız olmadığından

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ İKİ ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

UYGULAMA 2 TABLO YAPIMI

UYGULAMA 2 TABLO YAPIMI 1 UYGULAMA 2 TABLO YAPIMI Amaç: SPSS 10 istatistiksel paket programında veri girişi ve tablo yapımı. SPSS 10 istatistiksel paket programı ilk açıldığında ekrana gelen görüntü aşağıdaki gibidir. Bu pencere

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 12 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

İSTATİSTİK ÖRNEK SORULARI

İSTATİSTİK ÖRNEK SORULARI 1. Aşağıda gruplandırılmış seri verilmiştir. (n) 0-10 den az 5 10-20 den az 6 20-30 den az 9 30-40 den az 11 40-50 den az 4 50-60 den az 3 TOPLAM 38 İSTATİSTİK ÖRNEK SORULARI a) Mod değerini bulunuz? (15

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ Dönem V SPSS İLE TEMEL BİYOİSTATİSTİK UYGULAMALARI Seçmeli Staj Eğitim Programı (08 19 Haziran 2015) Eğitim Başkoordinatörü: Doç. Dr. Erkan Melih ŞAHİN Dönem Koordinatörü: Yrd. Doç. Dr. Baran GENCER Koordinatör

Detaylı

FEN BİLGİSİ ÖĞRETMEN ADAYLARININ FEN BRANŞLARINA KARŞI TUTUMLARININ İNCELENMESİ

FEN BİLGİSİ ÖĞRETMEN ADAYLARININ FEN BRANŞLARINA KARŞI TUTUMLARININ İNCELENMESİ FEN BİLGİSİ ÖĞRETMEN ADAYLARININ FEN BRANŞLARINA KARŞI TUTUMLARININ İNCELENMESİ Sibel AÇIŞLI 1 Ali KOLOMUÇ 1 1 Artvin Çoruh Üniversitesi, Eğitim Fakültesi, İlköğretim Bölümü Özet: Araştırmada fen bilgisi

Detaylı

BÖLÜM12. 2- FORMÜLLER ve OTOMATİK TOPLAM. 2.1. Formüller

BÖLÜM12. 2- FORMÜLLER ve OTOMATİK TOPLAM. 2.1. Formüller BÖLÜM12 2- FORMÜLLER ve OTOMATİK TOPLAM 2.1. Formüller Formül, bir sayfadaki verilerin aritmetiksel, mantıksal, istatistiksel vb. işlemleri yapması için kullanılan denklemlerdir ve bize sonuç bildirirler.

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat...

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR

BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR İÇİNDEKİLER BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR I. Öğretimde Ölçme ve Değerlendirmenin Gerekliliği... 2 II. Ölçme Kavramı... 3 1. Tanımı ve Unsurları... 3 2. Aşamaları... 3 2.1. Ölçülecek

Detaylı

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2 Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 5, Sayı:2, 2003 YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI Sibel SELİM 1 Efe SARIBAY

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI

ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI Araştırmalarda incelenen olaylar göstermektedir ki tek değişkenli istatistiklerin kullanılması problemi açıklamakta yetersiz ve eksik kalmaktadır.

Detaylı

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011 Adım Adım SPSS 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü Y. Doç. Dr. İbrahim Turan Nisan 2011 File (Dosya) Menüsü Excel dosyalarını SPSS e aktarma Variable View (Değişken Görünümü 1- Name (İsim - Kod)

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Amacı : YGS de başarılı olmak isteyen bir öğrencinin, istatistiksel yöntemler çerçevesinde, sınavda çıkan soru sayısını,

Detaylı

VERĠ ANALĠZĠ 05.05.2011 NĠCEL VERĠ ANALĠZĠ ĠSTATĠSTĠK? ĠSTATĠSTĠK. ĠSTATĠSTĠK ÇEġĠTLERĠ. Betimsel İstatistik Kestirimsel Ġstatistik

VERĠ ANALĠZĠ 05.05.2011 NĠCEL VERĠ ANALĠZĠ ĠSTATĠSTĠK? ĠSTATĠSTĠK. ĠSTATĠSTĠK ÇEġĠTLERĠ. Betimsel İstatistik Kestirimsel Ġstatistik 5.5.11 VERĠ ANALĠZĠ NĠCEL VERĠ ANALĠZĠ Nicel Veri Analizi Betimsel Ġstatistik Kestirimsel Ġstatistik Nitel Veri Analizi Betimsel Analiz Ġçerik Analizi Betimsel İstatistik Kestirimsel Ġstatistik ĠSTATĠSTĠK?

Detaylı

Yrd. Doç. Dr. Sedat ŞEN

Yrd. Doç. Dr. Sedat ŞEN 8. HAFTA Test Geliştirme Aşamaları Madde Analizleri Madde Güçlüğü Madde Ayırıcılığı Madde varyansı ve standart sapması Madde güvenirlik katsayısı Test ortalaması, standart sapması ve ortalama güçlüğü Yrd.

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr. Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 4 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1 REGRESYON ANALĐZĐ Regresyon analizi, aralarında sebep-sonuç ilişkisi bulunan iki veya daha fazla değişken arasındaki ilişkiyi belirlemek ve bu ilişkiyi kullanarak o konu ile ilgili tahminler (estimation)

Detaylı

ÖLÇME VE DEĞERLENDĠRME (3)

ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME SONUÇLARI ÜZERĠNDE ĠSTATĠSTĠKSEL ĠġLEMLER VERĠLERĠN DÜZENLENMESĠ -Herhangi bir test uygulamasından önce verilerin düzenlenmesi için önce bütün puanların büyüklüklerine

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir.

Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir. İşaretli Tamsayı Gösterimi 1. İşaretli Büyüklük Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir. Örnek

Detaylı

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ YARARLANILACAK ANA KAYNAK: SOSYAL BİLİMLER İÇİN İSTATİSTİK/ ŞENER BÜYÜKÖZTÜRK, ÖMAY ÇOKLUK, NİLGÜN KÖKLÜ/PEGEM YAY. YARDIMCI KAYNAKLAR:

Detaylı

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr BBY 375, 16 Ekim 2015-1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi

Detaylı

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOKLU REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi

Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi Parametrik testlerin, normal dağılım varsayımına dayandığını, normal dağılıma sahip olmayan veriler üzerinde kullanıldığında, elde edilen sonuçların

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 1 BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 Bu bölümde bir veri seti üzerinde betimsel istatistiklerin kestiriminde SPSS paket programının kullanımı açıklanmaktadır. Açıklamalar bir örnek üzerinde hareketle

Detaylı

ULUDAĞ ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ BEDEN EĞİTİMİ ve SPOR BÖLÜMÜ ÖĞRENCİLERİNİN ÖSS ve ÖZEL YETENEK SINAVI PUANLARINA GÖRE GENEL AKADEMİK BAŞARILARI

ULUDAĞ ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ BEDEN EĞİTİMİ ve SPOR BÖLÜMÜ ÖĞRENCİLERİNİN ÖSS ve ÖZEL YETENEK SINAVI PUANLARINA GÖRE GENEL AKADEMİK BAŞARILARI Uludağ Üniversitesi Eğitim Fakültesi Dergisi Cilt: XVII, Sayı: 1, 2003 ULUDAĞ ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ BEDEN EĞİTİMİ ve SPOR BÖLÜMÜ ÖĞRENCİLERİNİN ÖSS ve ÖZEL YETENEK SINAVI PUANLARINA GÖRE GENEL

Detaylı

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS DİSKRİMİNANT ANALİZİ (AYIRIM) Emre KUZUGÜDENL DENLİ Doç.Dr.Serdar CARUS Bu analiz ile; Bir bireyin hangi gruptan geldiği (p değişkeni kullanarak, bireyi uygun bir gruba atar ) Her bir değişkenin atama

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ Dönem V SPSS İLE TEMEL BİYOİSTATİSTİK UYGULAMALARI Seçmeli Staj Eğitim Programı (2016) Eğitim Başkoordinatörü: Doç. Dr. Erkan Melih ŞAHİN Dönem Koordinatörü: Yrd. Doç. Dr. Baran GENCER Koordinatör Yardımcısı:

Detaylı

5. HAFTA PFS 107 EĞİTİMDE ÖLÇME VE DEĞERLENDİRME. Yrd. Doç Dr. Fatma Betül Kurnaz. betulkurnaz@karabuk.edu.tr KBUZEM. Karabük Üniversitesi

5. HAFTA PFS 107 EĞİTİMDE ÖLÇME VE DEĞERLENDİRME. Yrd. Doç Dr. Fatma Betül Kurnaz. betulkurnaz@karabuk.edu.tr KBUZEM. Karabük Üniversitesi 5. HAFTA PFS 107 EĞİTİMDE Yrd. Doç Dr. Fatma Betül Kurnaz betulkurnaz@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 İçindekiler Standart Hata... Hata! Yer işareti tanımlanmamış.

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 13 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Örnek (Ekonomik Sipariş Miktarı Modeli)(1)

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Örnek (Ekonomik Sipariş Miktarı Modeli)(1) Stok Kontrol Önceki Derslerin Hatırlatması Ders 7 Farklı Bir Stok Yönetimi Durumu Uzun Dönemli Stok Problemi Talep hızı sabit, biliniyor Birim ürün maliyeti sabit Sipariş maliyeti sabit Tedarik Süresi

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir.

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. BİYOİSTATİSTİK Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. Veri Analiz Bilgi El ile ya da birtakım bilgisayar programları

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS BİLİMSEL ARAŞTIRMA TEKNİKLERİ MAN 303 5 3 + 0 3 6. Ön Koşul Dersleri - Dersin Seviyesi

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS BİLİMSEL ARAŞTIRMA TEKNİKLERİ MAN 303 5 3 + 0 3 6. Ön Koşul Dersleri - Dersin Seviyesi DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS BİLİMSEL ARAŞTIRMA TEKNİKLERİ MAN 303 5 3 + 0 3 6 Ön Koşul Dersleri - Dersin Dili Dersin Seviyesi Dersin Türü Almanca Lisans Zorunlu Dersin Koordinatörü

Detaylı

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ 1. ÇOKLU REGRESYON ANALİZİ VE VARSAYIMALARDAN SAPMALAR 1.1. Çoklu Regresyon modeli Varsayımları 1.2. Tahmincilerin anlamlılığının sınanması

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Araş.Gör. Efe SARIBAY

Araş.Gör. Efe SARIBAY GÜVEN ARALIKLARI (ARALIK TAHMİNİ) ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY 1) Bir hisse senedinin $ bazında fiyatının ortalamasını incelemek için yapılan bir araştırmada 18 gün boyunca hisse senedinin

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

EKONOMİK KATILIM VE FIRSATLARDA CİNSİYET EŞİTSİZLİĞİNİN SOSYOEKONOMİK VE KÜLTÜREL DEĞİŞKENLERLE İLİŞKİSİ. Aslı AŞIK YAVUZ

EKONOMİK KATILIM VE FIRSATLARDA CİNSİYET EŞİTSİZLİĞİNİN SOSYOEKONOMİK VE KÜLTÜREL DEĞİŞKENLERLE İLİŞKİSİ. Aslı AŞIK YAVUZ EKONOMİK KATILIM VE FIRSATLARDA CİNSİYET EŞİTSİZLİĞİNİN SOSYOEKONOMİK VE KÜLTÜREL DEĞİŞKENLERLE İLİŞKİSİ Aslı AŞIK YAVUZ 1 İçindekiler 1. Küresel Cinsiyet Eşitsizliği Endeksi 2. Çalışmanın Amacı 3. Çalışmada

Detaylı

Örneklem. Yöntemleri FBED511 Eğitim Bilimlerinde Temel Araştırma Yöntemleri 1. Evren & Örneklem. Evren. Örneklem ve örnekleme

Örneklem. Yöntemleri FBED511 Eğitim Bilimlerinde Temel Araştırma Yöntemleri 1. Evren & Örneklem. Evren. Örneklem ve örnekleme Yöntemleri & EBE Z Eğitimde Araştırma Yöntemleri (Fraenkel & Wallen, 1990), araştırma sonuçlarının genelleneceği (geçerli olacağı) büyük grup. Hedef evren, araştırmacının ulaşmak istediği, ancak ulaşması

Detaylı

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ

Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ Yrd.Doç.Dr. Ali SICAK BEÜ. EREĞLİ EĞİTİM FAKÜLTESİ EĞİTİM BİLİMLERİ BÖLÜMÜ YARARLANILACAK ANA KAYNAK: SOSYAL BİLİMLER İÇİN İSTATİSTİK/ ŞENER BÜYÜKÖZTÜRK, ÖMAY ÇOKLUK, NİLGÜN KÖKLÜ/PEGEM YAY. YARDIMCI KAYNAKLAR:

Detaylı