İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI

Save this PDF as:
Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI"

Transkript

1 İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI

2 Grup sayısı ikiye geçtiğinde tüm grupların bağımsız iki grup testleri ile ikişerli analiz düşünülebilir. Ancak bu yaklaşım, karşılaştırmalar bağımsız olmadığından α hata seviyesinde artışa, diğer bir deyişle (1- α) güven düzeyinde azalmaya neden olur. Üç grubun olduğu bir çalışmada bağımsız iki grup t testi ile µ 1 = µ 2, µ 1 = µ 3, µ 2 = µ 3 şeklinde üç test yaptığımızda, α=0.05 önem seviyesi, α I =1-(1-.05) 3 =0.143 şeklinde gerçekleşir.

3 Bu nedenle, 2 den fazla grup olan çalışmalarda her bir grubu ikişerli ikişerli karşılaştırmak yerine, bu amaca uygun yöntemleri kullanmak gerekir.

4 Tek Yönlü Varyans Analizi 2 ve daha çok bağımsız grubun ortalamalarını karşılaştırma için kullanılabilecek parametrik bir analiz yöntemidir. 2 grup olduğunda, varyansların homojenliği altında uygulanan t-testi ile aynı sonucu (p) verir [t 2 =F].

5 Veri yapısı: İki değişkenimiz vardır, bunlardan bir tanesi farklı işlemleri ya da uygulamaları ifade eden grup değişkenidir [faktör, bağımsız değişken]. Bu değişken genellikle nominal skalada [A, B ve C ilaçları], bazen de ordinal skalada [evre 1, 2, 3, 4] elde edilir. Diğeri ise bağımlı değişken dediğimiz ve grup değişkeninde yer alan sınıflar arasında ortalamalarını karşılaştırmak istediğimiz değişkendir. Nümerik skalada elde dilmiş olmalıdır.

6 İncelediğimiz değişken [ortalamalarını karşılaştırdığımız] bakımından, Grup değişkeninde yer alan sınıflardaki farklılığı doğru belirleyebilmek için, ölçüm yaptığımız deneysel ünitelerin homojen olması önemlidir. Aksi durumda daha karmaşık ANOVA modelleri kullanmak gerekir.

7 Varsayımları: Tüm gruplar Normal Dağılışlı Popülasyonlardan elde dilmiş bağımsız birer şans örneğidir. Bu popülasyonların varyansı eşittir. Varyans Analiz Tablosunun Oluşturulması: H = 0 µ 1 = µ 2 = µ 3 =.= µ k = µ H 1 : En az iki popülasyonun ortalamaları arasında farklılık vardır.

8 Örnek büyüklükleri eşit olmak zorunda değildir, ancak eşit ya da en azından yakın olmalarında yarar vardır. x ij : i. grupta j. bireyin ölçülen değeri. i = 1, 2,., k (k:grup sayısı) j = 1, 2,., n i (n i : i. gruptaki örnek büyüklüğü)

9 Varyans Analiz Tablosu: k : grup sayısı n = x = k i= 1 n i n (toplam gözlem sayısı) i x i. grupta yer alan n tane gözlemin toplamı i. ij j j1 = k x = x = n tane x gözleminin toplamı.. i. ij i= 1 k n i i=1 j= 1 x 2 ij = n tane gözleminin tek tek kareleri alınıp toplanması

10 Hipotezler hakkında karar: α önem seviyesinde GuKO F h = > F[k-1;n-k; α ] H 0 reddedilir. HKO F H reddedilmez. [k-1;n-k; α ] 0 Örnekten elde edilen verilere dayanarak H 0 hipotezi reddedilemez ise [F h F t ], çalışma, gruplar arasındaki farklılık anlamlı bulunmadı [p>α] şeklinde yorumlanarak çalışma tamamlanır. Ancak H 0 hipotezi reddedilirse [F h > F t ; p<α], yani gruplar arasındaki farklılık anlamlı bulunduğunda, bu farklılığın ne şekilde gerçekleştiğini belirlemek amacıyla varyans analizi yöntemine özel geliştirilmiş testler kullanılır [Kontrast yada Post Hoc Testler].

11 Normallik ve Varyans Homojenliği varsayımlarındaki sapmalarda yapılabilecekler Varyans Analiz yönteminde veriler simetrik özellikli popülasyonlardan geldiği durumlarda Normallik varsayımı gerçekleşmese bile, fazla problem yaşanmaz. Yani, elde edilen verilerden hesaplanan F h değerini, F tablo değeri ile karşılaştırarak Hipotezleri test etmek güvenlidir. Ancak varyans homojenliği [σ 1 2 = σ 22 = =σ k2 =σ 2 ] varsayımının yerine gelmediği durumlarda F h değerine göre yorum yapmak, yanlış sonuçlara neden olur. Özellikle, grupların örnek büyüklükleri de dengesiz ise hata daha da büyür.

12 Çözümler: 1. Varyans ortalamaya bağlı olarak azalma veya artmaya eğilimli bir istatistiktir. Bu da homojenlik varsayımını doğrudan etkiler. Bu gibi durumlarda x ij gözlemlerine, x ij, xij + 1, arcsin(x ij), log(x ij), log(x ij +1) gibi dönüşümler yapılarak, varyans homojenliği incelenebilir. 2. Hipotezler hakkındaki karar ANOVA tablosundaki F h yerine, Brown-Forsythe yada Welch istatistiklerine göre yapılabilir. Bu iki test One-Way ANOVA penceresindeki Options menüsünde yer alır. 3. Parametrik olmayan Kruskal-Wallis yöntemi kullanılır.

13 Özellikle, hem varyans homojenliği olmadığında hem de örnek büyüklükleri dengesiz (eşit olmaması) olduğunda Welch istatistiği diğer ikisine göre daha güçlüdür. Varyansların Homojenliği One-Way ANOVA penceresinde Options menüsü altındaki Homogeneity of variance test kutucuğu işaretlenerek gerçekleştirilir. σ 1 2 = σ 22 = =σ k2 =σ 2 hipotezi Levene testi ile kontrol edilir.

14 H 0 Hipotezi reddedildiğinde grup farklılıklarının incelenmesi: Çalışmanın öncesinde planlanmış bazı karşılaştırmalar yapmak (Konrast): µ 1 =1/3(µ 2 + µ 3 + µ 4 ) µ 1 = µ 2, µ 3 = µ 4 gibi One-Way ANOVA penceresinde Contrasts menüsünde tanımlanırlar.

15 Range Testleri [Post Hoc Range Tests]: Bu testler, grupları kendi içinde farklı olmayan homojen alt gruplara bölerler. k-grup karşılaştırılıyor ise homojen alt grup sayısı k olur. One-Way ANOVA penceresinde Post Hoc menüsünde yer alırlar. İkili Çoklu Karşılaştırmalar [Post Hoc Pairwise Multiple Comparisons]: Tüm grupları birbirleriyle ikişerli karşılaştırarak gerçekleştirilir.

16 Range Testleri ve İkili Karşılaştırma testleri, çalışma öncesinde belirlenmemiş karşılaştırmalar için kullanılır ve her iki test tipi de Post Hoc yöntemler adı altında toplanmışlardır. Varyanslar Homojen Tukey [Tukey s honestly], Hochberg s GT2, Gabriel, Scheffe testleri hem Range hem de İkili çoklu karşılaştırmaları verir. Tukey s b, S-N-K (Student-Newman-Keules), Duncan, R-E-G-W-F (Ryan-Einot-Gabriel-Welsch F test), R-E-G- W-Q (Ryan-Einot-Gabriel-Welsch Range test) ve Waller-Duncan yöntemleri, Range Testleri için kullanılabilir [homojen alt gruplar]. LSD, Benferroni, Sidak ve Dunnetyöntemleri, İkili çoklu karşılaştırmalar için kullanılır.

17 Bu üç gruptaki testler sadece Varyans Homojenliği altında kullanılabilir. Bu testlerde en çok kullanılan ikisi Tukey ve Bonferroni dir. Karşılaştırılan çift sayısı çok olduğunda Tukey, az olduğunda Bonferroni Testi tercih edilir. Bu testlerden Dunnett testi tek yönlü karşılaştırmalara olanak verir. Ancak, grupların sadece birisinin diğer gruplarla tek tek karşılaştırılması şeklinde gerçekleştirilebilir. Diğerleri ile karşılaştırılacak gruba k grup varsa, 1 ya da k değeri vermek gerekir.

18 Varyanslar Homojen Değil: Bunlar varyans homojenliği gerektirmeyen çoklu ikili karşılaştırma testleridir; Tamhane s T2, Dunnett s T3, Games-Howell ve Dunnett s C. Dunnett s T3 ve Dunnett s C daha tercih edilebilir testlerdir.

19 Kruskal-Wallis Testi k tane (k 2) birbirinden bağımsız örneğin, gelmiş oldukları popülasyonların medyanlarının eşit olup olmadığını test etmek için kullanılan Parametrik Olmayan bir yöntemdir. Mann-Whitney U testi geliştirilerek elde edilmiştir. Nümerik skalada elde edilen verilerde Tek-yönlü varyans analizinin varsayımları gerçekleştirmediği durumlarda ya da Ordinal skalada elde edilmiş verileri karşılaştırmak için kullanılır. SPSS de Analyze>Nonparametric Tests>K Independent Samples... menüsünde yer alır.

20 Uygulama: H 0 :M 1 =M 2 =M 3 =..=M k =M H 1 :En az iki M değeri arasında fark vardır. Mann-Whitney U testindeki gibi tüm gözlemlere (x ij ) sıra değerleri verilir. Daha sonra her bir grup için (k-grup) sıra değerleri toplanarak T 1, T 2,., T k istatistikleri elde edilir. H 0 ın doğruluğu altında, 10 T k 2 i 2 H= 3 (n + 1) ~ χ[sd= k 1] [Ki Kare dağılışı] n (n+1) i= 1 ni k: grup sayısı; n i : i. gruptaki gözlem sayısı (i=1, 2,.,k ) n k = n i= 1 i T i : i. gruptaki sıra değerlerinin toplamı H H >χ χ 2 [ α ;sd= k 1] 0 2 [ α ;sd= k 1] 0 H hipotezi reddedilir. H hipotezi reddedilmez.

21 X 2 dağılış yaklaşımının iyi olabilmesi için her bir grupta yer alan gözlem sayılarının 5 ve üzerinde olmalıdır (n i 5 i = 1, 2,.,k). Aksi durumda (exact) tam olasılıkların hesaplanması gerekir. H > X 2 [α; sd=k-1], yani H 0 hipotezi reddedildiğinde, gruplar arasındaki farklılığın anlamlı olduğuna karar verilir. Bu durumda grupların Varyans analizinde olduğu gibi ikili karşılaştırılması gerekir. Grupların ikili analizleri için özel bir yöntem yoktur. Bu amaçla Mann-Whitney U testi kullanılır. Ancak Mann-Whitney U testlerinde α önem seviyesi, α ı = α / (ikili karşılaştırma sayısı) şeklinde belirlenmelidir [Bonferroni Correction]. Örnek: k=3, H 0 hipotezi reddedildi, α = 0.05, M 1 =M 2,, M 1 =M 3, M 2 =M 3 karşılaştırmaları yapılacaksa 0.05 α= olarak seçilir.

22 REGRESYON ve KORELASYON Değişkenler Arası İlişkiler

23 Regresyon analizi, bir bağımlı değişken (Y) ile bir ya da daha çok bağımsız (X1, X2,X3,...) değişken arasındaki ilişkiyi yansıtan modeli (eşitliği) bulmaya yarayan bir yöntemdir. Bağımlı değişken ile bağımsız değişken/ler arasındaki ilişkinin doğrusal olduğu durumlarda, yöntem, Doğrusal Regresyon Analizi adını alır. Eğer bir Y değişkeni ile bir X değişkeni arasında doğrusal model aranıyor ise Y= β 0 + β 1 X + e eşitliğindeki β 0 ve β 1 parametre değerlerini tahmin etmek ve elde edilen modelin geçerliliğini test etmek amacıyla yapılan analiz Basit Doğrusal Regresyon Analizi olur.

24 Bağımsız X değişkeni ile bağımlı Y değişkeni arasında güçlü bir ilişki bulunursa, bu tahmin edilen model kullanılarak herhangi bir X değeri için Y nin alabileceği değer tahmin edilebilir.

25 Varsayımları: Bağımsız değişkenin her bir değeri (x i ) için, y i değişkeni normal dağılışa uyar. Bu normal dağılışlar, her bir x i değeri için,sabit bir σ 2 varyansına sahiptir. Bu iki değişken arasında doğrusal bir ilişki vardır. Gözlemler birbirlerinden bağımsız olarak elde edilirler. Basit Doğrusal Regresyon Analizinde gözlemler (x i,y i ) çiftleri şeklinde alınır.

26 Örnek: Süreye bağlı olarak, Ca salınımının incelendiği çalışmada aşağıdaki veriler elde edilmiş. X bağımsız değişkeni: Süre (saat) Y bağımlı değişkeni: Ca salınım miktarı (mg/dl) Öncelikle serpme (scatter) grafiği ile X ve Y arasında doğrusal ilişkinin varlığını incelemek gerekir.

27

28 Şekilden doğrusal ilişkinin varlığı belirlendikten sonra, En Küçük Kareler Yöntemine göre Y= β 0 + β 1 X + e modelindeki β 0 için b 0 ve β 1 için b 1 tahminleri elde edilir.

29 2 En küçük kareler yöntemi ei lerin minimize edilmesine dayanır. i= 1 b 1 : doğrunun eğimidir. ( x)( y) Aynı zamanda x deki 1 xy birim değişimin y de n oluşturduğu b = ( x) 0 1 x b = y bx n değişimin büyüklüğünü verir. b 0 : doğrunun y eksenini kestiği noktadır ve x=0 da y nin aldığı değeri gösterir. Tahmin edilen denklemin geçerliliği varyans analiz tablosu oluşturularak test edilir. n

30 Varyans Analiz Tablosu: F RKT = > HKT F h [ α,sd = 1;sd = n 2] 1 2 Elde edilen denklemin X ile Y arasındaki doğrusal ilişkiyi açıklamakta önemli olduğuna karar verilir. 2 RKT R = GKT Belirleme katsayısı 1 e yakın olması model uyumunun iyi olduğunu gösterir.

31 Korelasyon Analizi Özellikle iki değişken arasındaki doğrusal ilişki incelenirken, regresyon analizinde olduğu gibi bağımlı ve bağımsız değişkenlerin tam olarak belirlenemediği durumlarda, korelasyon analizinden yararlanılabilir.

32 Pearson Korelasyon Analizi (x i,y i ) çiftleri nümerik skalada elde edilmelidir. Varsayımı: Her bir gözlem çiftinin iki değişkenli normal dağılıştan gelmektedir. r = ( )( ) xy x y / n ( ) 2 ( ) x x /n y y /n İki değişkenin birlikte değişiminin ölçüsü olan korelasyon katsayısı r; -1 r 1 arasında değerler alabilir.

33 İlişki azalır r Negatif yönde y artan doğrusal ilişki: x artarken y azalmaktadır r (tersi de geçerlidir). erlidir). Pozitif yönde y artan doğrusal ilişki: x artarken y de artar (tersi de geçerlidir). erlidir).

34 r>0 r<0 r=+1 r=0 r= - 1

35 Spearman Rho Korelasyon Analizi (x i,y i ) çifti iki değişkenli normal dağılış varsayımına uymadığı durumlarda, iki tane nümerik skalada elde edilmiş değişken için kullanıldığı gibi, değişkenlerden her ikisi de ordinal ya da biri ordinal diğeri nümerik olduğu durumlarda kullanılabilir. Özellikle, iki değişken arasında düz bir çizgi şeklinde ifade edilemese bile sürekli artan ya da azalan yapıda bir ilişki olduğu durumlarda yararlıdır.

36 Uygulamada X ve Y değişkenlerine ayrı ayrı en küçüğü 1 en büyüğü n olacak şekilde sıra değerleri verilir. Daha sonra her bir (x i,y i ) i=1,2,3...,n gözlem çifti için; d i =(x i nin sıra değeri - y i nin sıra değeri) farkı ve bu farkların karesi,d i ², hesaplanır; n 2 6 di i= 1 rs = 1 n(n 2 1) formülüyle Spearman rho korelasyon katsayısı hesaplanır. Yorumu pearson korelasyon katsayısında olduğu gibidir.

37 İki Yönlü Tablolarda Yapılan Bazı Hipotez Testleri Bağımsızlık Testleri İki nominal ya da biri ordinal diğeri nominal skalada elde edilmiş değişkenin bağımsızlığını test etmek için kullanılır. H 0 : X ile Y değişkenleri birbirinden bağı ğımsızdır. H 1 : X ile Y bağı ğımlıdır.

38 n n n h c i. ij j1 =.j ij i= 1 r r c.. ij i= 1 j= 1 0 = = = G G.. G H hipotezinin doğruluğu altında; nn i..j B ij = bulunur ve, n ( ) 2 r c Gij B 2 ij 2 ~ χ h [sd = (r 1) (c 1)] i= 1 j= 1 Bij χ = χ >χ 2 2 [sd = (r 1) (c 1)] 0 H hipotezi reddedilir.

39 r=2, c=2 olan 2x2 tablolarda χ = n(g G G G ) kullanılabilir. n n n n formülü Yates Düzeltmeli Formül: 2 χ = n (G G G G ) 0.5n ( ) n n n n

40 2x2 tablolarda tüm beklenen değerlerin 5 ten büyük olduğu durumlarda Yates Düzeltmesi yapılarak kikare uygulaması önerilmektedir. Özellikle 5 ten küçük beklenen değerler olduğu durumlarda Fisher in Tam Olasılık Testi kullanılmalıdır. rxc tablolarda herhangi bir gözdeki beklenen değer 1 den küçük ise ve/veya 5 ten küçük olan gözlerin sayısı toplam göz sayısının %20 sinden çok ise, kikare testini kullanmak sakıncalıdır. Özellikle H 0 hipotezinin reddedildiği durumlarda çözüm grupları birleştirmek ya da sebep olan grupları analize almamaktır.

41 2x2 tablolarda Mc Nemar Testi 2 bağlantılı (eşleştirilmiş) dikotom değişkendeki değişimi ölçmek için kullanılan Parametrik olmayan bir yöntemdir. ( B C 1) B+ C ~ χ[sd= 1] χ = H 0 : Önce sonra arasında farklılık k yoktur. H 1 : Önce sonra arasında farklılık k anlamlıdır.

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Bir değişkenin değerinin,

Detaylı

BİYOİSTATİSTİK. Uygulama 6. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK. Uygulama 6. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 6 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Soru 1 İlaç malzemelerinin kalitesini

Detaylı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Varyans Analizi (ANOVA) Kruskal-Wallis H Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek Yönlü Varyans Analizi SPSS de Tek

Detaylı

BİYOİSTATİSTİK Kategorik Veri Analizi Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Kategorik Veri Analizi Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Kategorik Veri Analizi Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 SAYIMLA ELDE EDİLEN

Detaylı

İkiden Çok Grup Karşılaştırmaları

İkiden Çok Grup Karşılaştırmaları İkiden Çok Grup Karşılaştırmaları Bir onkoloji kliniğinde göğüs kanseri tanısı almış kadınlar arasından histolojik evrelerine göre 17 şer kadın seçilerek sağkalım süreleri (ay) alınmıştır. HİSTLOJİK EVRE

Detaylı

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir.

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir. ÇIKARSAMALI İSTATİSTİKLER Çıkarsamalı istatistikler, örneklemden elde edilen değerler üzerinde kitleyi tanımlamak için uygulanan istatistiksel yöntemlerdir. Çıkarsamalı istatistikler; Tahmin Hipotez Testleri

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz.

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. PARAMETRİK TESTLER Tek Örneklem t-testi 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. H0 (boş hipotez): 200 öğrencinin matematik dersinden aldıkları

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

ÇND BİYOİSTATİSTİK EĞİTİMİ

ÇND BİYOİSTATİSTİK EĞİTİMİ ÇND BİYOİSTATİSTİK EĞİTİMİ Yrd.Doç.Dr.Gökmen ZARARSIZ Erciyes Üniversitesi, Tıp Fakültesi, Biyoistatistik Anabilim Dalı, Kayseri Turcosa Analitik Çözümlemeler Ltd Şti, Kayseri gokmenzararsiz@hotmail.com

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

BİYOİSTATİSTİK Tek Örneklem ve İki Örneklem Hipotez Testleri Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Tek Örneklem ve İki Örneklem Hipotez Testleri Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Tek Örneklem ve İki Örneklem Hipotez Testleri Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

7.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1

7.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1 7.Sunum Yrd. Doç. Dr. Sedat ŞEN 1 Bağımlı Değ. Bağımsız Değ. Analiz Sürekli İki kategorili t-testi, Wilcoxon testi Sürekli Kategorik ANOVA, linear regresyon Sürekli Sürekli Korelasyon, doğrusal regresyon

Detaylı

taşinmaz DEĞERLEME- DE İSTATİKSEL ANALİZ

taşinmaz DEĞERLEME- DE İSTATİKSEL ANALİZ 8 Varyans Analizi (Anova) TAŞINMAZ GELİŞTİRME TEZSİZ YÜKSEK LİSANS PROGRAMI taşinmaz DEĞERLEME- DE İSTATİKSEL ANALİZ Doç. Dr. Yüksel TERZİ 1 Ünite: 8 VARYANS ANALİZİ (ANOVA) Doç. Dr. Yüksel TERZİ İçindekiler

Detaylı

İÇİNDEKİLER. Birinci Bölüm UYGULAMA VERİLERİ

İÇİNDEKİLER. Birinci Bölüm UYGULAMA VERİLERİ İÇİNDEKİLER Birinci Bölüm UYGULAMA VERİLERİ VERİ GRUBU 1. Yüzücü ve Atlet Verileri... 1 VERİ GRUBU 2. Sutopu, Basketbol ve Voleybol Oyuncuları Verileri... 4 VERİ 3. Solunum Yolları Verisi... 7 VERİ 4.

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

Tek Yönlü Varyans Analizi (ANOVA) Kruskal Wallis H Testi

Tek Yönlü Varyans Analizi (ANOVA) Kruskal Wallis H Testi Tek Yönlü Varyans Analizi (ANOVA) Kruskal Wallis H Testi Dr. Eren Can Aybek erencan@aybek.net www.olcme.net IBM SPSS Statistics ile Hangi Durumda Kullanılır? Bağımsız gruplar t testi, iki grubun ortalamasını

Detaylı

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 1. Pearson Korelasyon Katsayısı

Detaylı

Tek yönlü varyans analizi kısaltılmış olarak ANOVA (Analysis of Variance) bilinen

Tek yönlü varyans analizi kısaltılmış olarak ANOVA (Analysis of Variance) bilinen DÖNEM II ENDOKRİN SİSTEMİ Ders Kurulu Başkanı : Doç. Dr. Osman EVLİYAOĞLU VARYANS ANALİZİ (14.03.014 Cuma Y.ÇELİK Tek Yönlü Varyans Analizi Tek yönlü varyans analizi kısaltılmış olarak ANOVA (Analysis

Detaylı

İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t test) Ölçümle

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

TEK YÖNLÜ VARYANS ANALİZİ

TEK YÖNLÜ VARYANS ANALİZİ 1 İkiden fazla grubun ortalamalarını karşılaştırma TEK YÖNLÜ VARYANS ANALİZİ ve ardından yapılan ÇOKLU KARŞILAŞTIRMA TESTLERİ Parametrik test koşulları sağlanmadığında İkiden fazla bağımsız grubun ortalamalarını

Detaylı

K BAĞIMSIZ ÖRNEKLEM HİPOTEZ TESTLERİ

K BAĞIMSIZ ÖRNEKLEM HİPOTEZ TESTLERİ K BAĞIMSIZ ÖRNEKLEM HİPOTEZ TESTLERİ Yrd.Doç.Dr. Selçuk Korkmaz Trakya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Turcosa Analitik Çözümlemeler selcukorkmaz@gmail.com TÜRKİYE EKMUD BİYOİSTATİSTİK

Detaylı

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ Taşınmaz Değerlemede İstatistiksel Analiz Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ 1 Taşınmaz Değerlemede İstatistiksel Analiz İçindekiler

Detaylı

Çalıştığı kurumun prestij kaynağı olup olmaması KIZ 2,85 ERKEK 4,18

Çalıştığı kurumun prestij kaynağı olup olmaması KIZ 2,85 ERKEK 4,18 1 * BAĞIMSIZ T TESTİ (Independent Samples t test) ÖRNEK: Yapılan bir anket çalışmasında katılımcılardan, çalıştıkları kurumun kendileri için bir prestij kaynağı olup olmadığını belirtmeleri istenmiş. 30

Detaylı

KRUSKAL WALLIS VARYANS ANALİZİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

KRUSKAL WALLIS VARYANS ANALİZİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı KRUSKAL WALLIS VARYANS ANALİZİ Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı ükruskal Wallis varyans analizi, tek yönlü varyans analizinin parametrik olmayan karşılığıdır. üveriler ölçümle

Detaylı

UYGUN HİPOTEZ TESTİNİN SEÇİMİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

UYGUN HİPOTEZ TESTİNİN SEÇİMİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı UYGUN HİPOTEZ TESTİNİN SEÇİMİ Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı ÖNEMLİLİK (Hipotez) TESTLERİ ü Önemlilik testleri, araştırma sonucunda elde edilen değerlerin ya da varılan

Detaylı

Yrd. Doç. Dr. Sedat ŞEN 2

Yrd. Doç. Dr. Sedat ŞEN 2 3.SUNUM Önceki derste gördüğümüz gibi 2 grubu karşılaştırırken kullandığımız yöntem t-testi idi. Peki araştırmamızda 3 gruba (A,B ve C grupları) sahip isek bu 3 grup arasında nasıl karşılaştırma yaparız?

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 )

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 ) 4. SUNUM 1 Gözlem ya da deneme sonucu elde edilmiş sonuçların, rastlantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HİPOTEZ TESTLERİ denir. Sonuçların rastlantıya bağlı

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

KATEGORİK VERİLERİN ANALİZİ (Uyum İyiliği, Bağımsızlık ve Dağılıma Uygunluk Testleri)

KATEGORİK VERİLERİN ANALİZİ (Uyum İyiliği, Bağımsızlık ve Dağılıma Uygunluk Testleri) KATEGORİK VERİLERİN ANALİZİ (Uyum İyiliği, Bağımsızlık ve Dağılıma Uygunluk Testleri) Günümüzde yapılan birçok araştırmada nitel değişkenler kullanılmaktadır. Göz rengi, saç rengi gibi bazı değişkenler

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ Dönem V SPSS İLE TEMEL BİYOİSTATİSTİK UYGULAMALARI Seçmeli Staj Eğitim Programı (08 19 Haziran 2015) Eğitim Başkoordinatörü: Doç. Dr. Erkan Melih ŞAHİN Dönem Koordinatörü: Yrd. Doç. Dr. Baran GENCER Koordinatör

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

Bağımlı Değ. Bağımsız Değ. Analiz

Bağımlı Değ. Bağımsız Değ. Analiz 7.SUNUM Bağımlı Değ. Bağımsız Değ. Analiz Sürekli İki kategorili t-testi, Wilcoxon testi Sürekli Kategorik ANOVA, doğrusal regresyon Sürekli Sürekli Korelasyon, doğrusal regresyon İki kategorili Sürekli

Detaylı

9.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1

9.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1 9.Sunum Yrd. Doç. Dr. Sedat ŞEN 1 Bağımlı Değ. Bağımsız Değ. Analiz Sürekli İki kategorili t-testi, Wilcoxon testi Sürekli Kategorik ANOVA, linear regresyon Sürekli Sürekli Korelasyon, doğrusal regresyon

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

Tablo I ve Tablo II de yer alan verileri kullanarak aşağıdaki ilgili soruları cevaplayınız.

Tablo I ve Tablo II de yer alan verileri kullanarak aşağıdaki ilgili soruları cevaplayınız. EKONOMETRİ I UYGULAMA Tablo I ve Tablo II de yer alan verileri kullanarak aşağıdaki ilgili soruları cevaplayınız. TABLO I: Bağımlı değişken; lnucret,- bağımsız değişkenler; eğitim ve deneyim LNUCRET EGITIM

Detaylı

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1 İÇİNDEKİLER ÖNSÖZ... v 1. BÖLÜM Örneklem Genişliğinin Elde edilmesi... 1 1.1. Kitle ve Parametre... 1 1.2. Örneklem ve Tahmin Edici... 2 1.3. Basit Rastgele Örnekleme... 3 1.4. Tabakalı Rastgele Örnekleme...

Detaylı

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir.

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. BİYOİSTATİSTİK Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. Veri Analiz Bilgi El ile ya da birtakım bilgisayar programları

Detaylı

Daha önce yaptığımız işlem tüm sınıfın bir değişkene ait ortalamasını hesaplamaktı. Eğer sınıfta KIZ-ERKEK gibi 2 grup varsa bu iki grubun başarısını

Daha önce yaptığımız işlem tüm sınıfın bir değişkene ait ortalamasını hesaplamaktı. Eğer sınıfta KIZ-ERKEK gibi 2 grup varsa bu iki grubun başarısını 5.SUNUM Daha önce yaptığımız işlem tüm sınıfın bir değişkene ait ortalamasını hesaplamaktı. Eğer sınıfta KIZ-ERKEK gibi 2 grup varsa bu iki grubun başarısını karşılaştırmak isteyebiliriz. Bu durumda iki

Detaylı

BİYOİSTATİSTİK PARAMETRİK TESTLER

BİYOİSTATİSTİK PARAMETRİK TESTLER BİYOİSTATİSTİK PARAMETRİK TESTLER Doç. Dr. Mahmut AKBOLAT *Bir testin kullanılabilmesi için belirli şartların sağlanması gerekir. *Bir testin, uygulanabilmesi için gerekli şartlar; ne kadar çok veya güçlü

Detaylı

Parametrik Olmayan İstatistiksel Yöntemler IST

Parametrik Olmayan İstatistiksel Yöntemler IST Parametrik Olmayan İstatistiksel Yöntemler IST-435-5- DEÜ İstatistik Bölümü 8 Güz Non-Parametric Statistics Nominal Ordinal Interval One Sample Tests Binomial test Run test Kolmogrov-Smirnov test X test

Detaylı

Parametrik Olmayan İstatistiksel Yöntemler IST Ders

Parametrik Olmayan İstatistiksel Yöntemler IST Ders Parametrik Olmayan İstatistiksel Yöntemler IST-4035 10. Ders DEÜ İstatistik Bölümü 018 Güz 1 Non-Parametric Statistics Nominal Ordinal Interval One Sample Tests Binomial test Run test Kolmogrov-Smirnov

Detaylı

Yrd. Doç. Dr. Sedat ŞEN

Yrd. Doç. Dr. Sedat ŞEN 4.SUNUM Deney çalışmamızda manipüle ettiğimiz değişkenlerden olmayıp bağımlı değişken üzerinde etkisi olduğunu düşündüğümüz sürekli değişkenlere ortak değişken/kontrol değişkeni/etki karışımı değişkeni

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Bir veri tablosuna en uygun fonksiyonu bulma sürecine

Detaylı

Ki-Kare Bağımsızlık Analizi

Ki-Kare Bağımsızlık Analizi Ki-Kare Bağımsızlık Analizi Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Ki-Kare Bağımsızlık Analizi Kikare bağımsızlık analizi, isimsel ya da sıralı ölçekli

Detaylı

Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi. Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD

Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi. Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD Giriş Yeterli Örneklem Büyüklüğü Neden Önemlidir? Özel

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 10: Prof. Dr. İrfan KAYMAZ Tanım Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi ile yapılabilir. Ancak karşılaştırılacak

Detaylı

Korelasyon testleri. Pearson korelasyon testi Spearman korelasyon testi. Regresyon analizi. Basit doğrusal regresyon Çoklu doğrusal regresyon

Korelasyon testleri. Pearson korelasyon testi Spearman korelasyon testi. Regresyon analizi. Basit doğrusal regresyon Çoklu doğrusal regresyon Korelasyon testleri Pearson korelasyon testi Spearman korelasyon testi Regresyon analizi Basit doğrusal regresyon Çoklu doğrusal regresyon BBY606 Araştırma Yöntemleri Güleda Doğan Ders içeriği Korelasyon

Detaylı

Bağımlı Değ. Bağımsız Değ. Analiz

Bağımlı Değ. Bağımsız Değ. Analiz 6.SUNUM Bağımlı Değ. Bağımsız Değ. Analiz Sürekli İki kategorili t-testi, Wilcoxon testi Sürekli Kategorik ANOVA, linear regresyon Sürekli Sürekli Korelasyon, doğrusal regresyon İki kategorili Sürekli

Detaylı

İSTATİSTİK-II. Korelasyon ve Regresyon

İSTATİSTİK-II. Korelasyon ve Regresyon İSTATİSTİK-II Korelasyon ve Regresyon 1 Korelasyon ve Regresyon Genel Bakış Korelasyon Regresyon Belirleme katsayısı Varyans analizi Kestirimler için aralık tahminlemesi 2 Genel Bakış İkili veriler aralarında

Detaylı

REPEATED MEASURES ANOVA (Tekrarlı Ölçümler ANOVA )

REPEATED MEASURES ANOVA (Tekrarlı Ölçümler ANOVA ) REPEATED MEASURES ANOVA (Tekrarlı Ölçümler ANOVA ) 6.SUNUM 1 Tekrarlı Ölçümler ANOVA Repeated Measures Design: Yinelenmis Ölçüler Tasarımı ya da tekrarlanmış ölçüler tasarımı olarak adlandırılabilir. Repeated

Detaylı

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız. .4. Merkezi Eğilim ve Dağılım Ölçüleri Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Korelasyon- (lineer korelasyon) Açıklayıcı (Bağımsız) Değişken x çalışma zamanı ayakkabı numarası İki değişken arasındaki ilişkidir. Günlük sigara sayısı SAT puanı boy Yanıt (Bağımlı)

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT Ünite 10: Regresyon Analizi Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT 10.Ünite Regresyon Analizi 2 Ünitede Ele Alınan Konular 10. Regresyon Analizi 10.1. Basit Doğrusal regresyon 10.2. Regresyon denklemi

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri Parametrik Olmayan Testler 2 Wilcoxon ve Kruskal-Wallis Testleri İki Bağımlı Örneklemin Karşılaştırılması (Wilcoxon Bağımlı Örneklemler İşaretli Sıralamalar Testi) (Wilcoxon Matched-Samples Signed Ranks

Detaylı

Kategorik Veri Analizi

Kategorik Veri Analizi Kategorik Veri Analizi 6.Sunum Yrd. Doç. Dr. Sedat ŞEN 1 ANALİZ TÜRLERİ Bağımlı Değ. Bağımsız Değ. Analiz Sürekli İki kategorili t-testi, Wilcoxon testi Sürekli Kategorik ANOVA, linear regresyon Sürekli

Detaylı

PARAMETRİK ve PARAMETRİK OLMAYAN (NON PARAMETRİK) ANALİZ YÖNTEMLERİ.

PARAMETRİK ve PARAMETRİK OLMAYAN (NON PARAMETRİK) ANALİZ YÖNTEMLERİ. AED 310 İSTATİSTİK PARAMETRİK ve PARAMETRİK OLMAYAN (NON PARAMETRİK) ANALİZ YÖNTEMLERİ. Standart Sapma S = 2 ( X X ) (n -1) =square root =sum (sigma) X=score for each point in data _ X=mean of scores

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

KORELASYON VE REGRESYON ANALİZİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı KORELASYON VE REGRESYON ANALİZİ Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı İki ya da daha çok değişken arasında ilişki olup olmadığını, ilişki varsa yönünü ve gücünü inceleyen korelasyon

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ Dönem V SPSS İLE TEMEL BİYOİSTATİSTİK UYGULAMALARI Seçmeli Staj Eğitim Programı (2016) Eğitim Başkoordinatörü: Doç. Dr. Erkan Melih ŞAHİN Dönem Koordinatörü: Yrd. Doç. Dr. Baran GENCER Koordinatör Yardımcısı:

Detaylı

PROBLEM:1. 11 yeni doğan rata günlük 1000 unts/kg epo uygulanmış, kontrol grubuna ise salin uygulanmıştır.

PROBLEM:1. 11 yeni doğan rata günlük 1000 unts/kg epo uygulanmış, kontrol grubuna ise salin uygulanmıştır. PROBLEM:1 Beyinde hipoksik iskemik hasar geliştirilmiş ratlarda recombinant insan eritropoteininin infarkt alanı üzerine ve nöron hücre apopitozisi üzerine etkisi araştırılmaktadır. 11 yeni doğan rata

Detaylı

Bağımsız Örneklemler İçin Tek Faktörlü ANOVA

Bağımsız Örneklemler İçin Tek Faktörlü ANOVA Bağımsız Örneklemler İçin Tek Faktörlü ANOVA ANOVA (Varyans Analizi) birden çok t-testinin uygulanması gerektiği durumlarda hata varyansını azaltmak amacıyla öncelikle bir F istatistiği hesaplanır bu F

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER Parametrik Olmayan İstatistik Prof. Dr. Cenk ÖZLER bulunur. Bağımsızlık Testleri Sütun Kategorisi Satır Kategorisi I II III Satır Toplamı A B Sütun Toplamı Genel Toplam Bu kategorilere dayanarak A nın

Detaylı

Koşullu Öngörümleme. Bu nedenle koşullu öngörümleme gerçekleştirilmelidir.

Koşullu Öngörümleme. Bu nedenle koşullu öngörümleme gerçekleştirilmelidir. Koşullu Öngörümleme Ex - ante (tasarlanan - umulan) öngörümleme söz konusu iken açıklayıcı değişkenlerin hatasız bir şekilde bilindiği varsayımı gerçekçi olmayan bir varsayımdır. Çünkü bazı açıklayıcı

Detaylı

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1 SPSS UYGULAMALARI-II 27.12.2016 Dr. Seher Yalçın 1 Normal Dağılım Varsayımının İncelenmesi Çarpıklık ve Basıklık Katsayısının İncelenmesi Analyze Descriptive Statistics Descriptives tıklanır. Açılan pencerede,

Detaylı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı REGRESYON ANALİZİ VE UYGULAMA Yrd. Doç. Dr. Hidayet Takcı htakci@cumhuriyet.edu.tr Sunum içeriği Bu sunumda; Lojistik regresyon konu anlatımı Basit doğrusal regresyon problem çözümleme Excel yardımıyla

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

İstatistik Yöntemleri ve Hipotez Testleri

İstatistik Yöntemleri ve Hipotez Testleri Sağlık Araştırmalarında Kullanılan Temel İstatistik Yöntemleri ve Hipotez Testleri Yrd. Doç. Dr. Emre ATILGAN BİYOİSTATİSTİK İstatistiğin biyoloji, tıp ve diğer sağlık bilimlerinde kullanımı biyoistatistik

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ

TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ 1 İstatistik İstatistik, belirsizliğin veya eksik bilginin söz konusu olduğu durumlarda çıkarımlar yapmak ve karar vermek için sayısal verilerin

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

8.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1

8.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1 8.Sunum Yrd. Doç. Dr. Sedat ŞEN 1 Bağımlı Değ. Bağımsız Değ. Analiz Sürekli İki kategorili t-testi, Wilcoxon testi Sürekli Kategorik ANOVA, linear regresyon Sürekli Sürekli Korelasyon, doğrusal regresyon

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

Basit ve Çoklu Doğrusal Regresyon

Basit ve Çoklu Doğrusal Regresyon Basit ve Çoklu Doğrusal Regresyon Dr. Eren Can Aybek erencan@aybek.net www.olcme.net IBM SPSS Statistics ile Basit Doğrusal Regresyon Bir yordayıcı değişkene ait değerleri bildiğimizde, sürekli bir yordanan

Detaylı

1 PAZARLAMA ARAŞTIRMASI

1 PAZARLAMA ARAŞTIRMASI İÇİNDEKİLER ÖNSÖZ III Bölüm 1 PAZARLAMA ARAŞTIRMASI 11 1.1. Pazarlama Araştırması Kavramı ve Kapsamı 12 1.2. Pazarlama Araştırmasının Tarihçesi 14 1.3. Pazarlama Araştırması Pazarlama Bilgi Sistemi ve

Detaylı

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Marmara Üniversitesi U.B.F. Dergisi YIL 2005, CİLT XX, SAyı 1 YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Yrd. Doç. Dr. Ebru ÇACLAYAN' Arş. Gör. Burak GÜRİş" Büyüme modelleri,

Detaylı

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel

Detaylı

www.fikretgultekin.com 1

www.fikretgultekin.com 1 KORELASYON ANALĐZĐ (Correlation Analysis ) Basit Korelasyon Analizi Basit korelasyon analizinde iki değişken söz konusudur ve bu değişkenlerin bağımlıbağımsız değişken olarak tanımlanması/belirlenmesi

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı