TÜRKÇE ULUSAL DİL DERLEMİ PROJESİ BİÇİMBİRİM ÇALIŞMALARINDA BELİRSİZLİKLERİN SINIFLANDIRILMASI VE DAĞILIMI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TÜRKÇE ULUSAL DİL DERLEMİ PROJESİ BİÇİMBİRİM ÇALIŞMALARINDA BELİRSİZLİKLERİN SINIFLANDIRILMASI VE DAĞILIMI"

Transkript

1 TÜRKÇE ULUSAL DİL DERLEMİ PROJESİ BİÇİMBİRİM ÇALIŞMALARINDA BELİRSİZLİKLERİN SINIFLANDIRILMASI VE DAĞILIMI Yeşim AKSAN, Ümit MERSİNLİ, Yılmaz YALDIR ve Umut Ufuk DEMİRHAN Mersin Üniversitesi 1. GİRİŞ 1.1. Alanyazın Türkçe için yapılan biçimbirim belirginleştirme çalışmaları incelendiğinde Oflazer ve Kuruöz (1994) ün Tagging and Morphological Disambiguation of Turkish Text başlıklı çalışmalarında Türkçenin iki düzeyli biçimbilimsel bir tanımının PC-KIMMO yazılımına Türkçe kural setlerini tanımlanarak yapıldığı gözlenmektedir. Uyarlanan açımlayıcı, olasılık temelli bilgi toplanması ve kullanımı, çok sözcüklü yapı tanıma ve kısıtlama ve sözcük türü belirginleştirme çözümleyicisi ile genişletilmiştir. Sözcük kullanım sıklıklarıyla ilgili hesaplamalı bilgiler, belirsizliklerin çözümlenmesinde kullanılmaktadır. İstatistiki bilgilerin kullanıldığı yerlerden biri de, bir sözcüğün çok ender kullanılan anlamlarının elenmesidir. Oflazer ve Kuruöz (1994) bu istatistiklerin toplanmasının yanı sıra, işaretleyicinin kullanıcı tarafından belirtilen hatalı ayrıştırmalarını da kayda geçirdiğini ve böylelikle biçimbilimsel çözümleyicinin düzeltilebildiğini ifade etmektedir. Biçimbirimsel belirsizlik, istatistiki bilgi kullanılarak, otomatik olarak çözümlenemezse, bu belirsizlikleri çözmek için sözdizimsel bağlamlara gitmek durumunda kalınacaktır. Bir sözcüğün çoklu açımlamalarının belirginleştirilmesi için, sözcüğün yerel bağlamı üzerindeki kısıtlamaların neler olduğu saptanmaktadır. Tür (1996) ün Using Multiple Sources of Information for Constraint-Based Morphological Disambiguation başlıklı çalışması otomatik belirginleştirme yöntemini kullanarak; eğitici derlemden (training corpus), eğiticisiz öğrenme (unsupervised learning) yoluyla öğrenilen elle hazırlanmış kısıtlama kurallarını, biçimbilimsel belirginleştirilmesi yapılan derlemden elde edilen ek olasılıksal bilgiyle birleştirmektedir. Elle oluşturulmuş kuralların geri çağırmadan (recall) kısıtlama yapmaksızın, kesinlik (precision) artıracak şekilde düzenlenen dilbilimsel kurallar olduğu bildirilmektedir. Geri çağırma doğru olarak işaretlenmiş örnekçe sayısının, işaretlenen toplam örnekçe sayısına bölünmesiyle elde edilen orandır. Kesinlik ise işaretleyicinin metinden attığı istenmeyen işaret sayısıdır. Tür (1996) de tanıtılan bu çözümleyici %93-94 lük bir kesinlik ve örnekçe başına lük çözümleme (parse) oranındaki belirsizlikle, %96-97 lik geri çağırmaya sahiptir. Yüret ve Türe (2006) nin Learning Morphological Disambiguation Rules for Turkish adlı çalışması Türkçe metinlerin kural temelli bir biçimbirimsel belirginleştirme çalışmasıdır. Çalışma karar listelerini temel alan yeni bir yöntem kullanmaktadır. Karar listeleri, sıralanmış kural dizileridir. Her bir kural ise bir örüntü (pattern) ve bir sınıflandırmadan (classification) meydana gelmiştir. Bu kurallar, kural-temelli denetlemeli çalıştırma yöntemi (supervised learning) kullanan algoritma tarafından üretilmektedir. Algoritma, bir problemin çözümünde kullanılan işlemler dizisidir. Yeni karar listesi öğrenebilen bu algoritma ile 126 biçimbirimsel özelliğin her biri için farklı bir model eğitilmiş, elde edilen karar listeleriyle bir sözcüğün olası ayrıştırılmalarına olasılık değeri verilerek son işaretleme yapılmıştır. Çalışmada en iyi çözümü seçmek üzere her bir karar listesinin doğruluğu da hesaba katılarak sonuçlar olasılık temelinde birleştirilmiştir. Yüret & Türe (2006) modellerinin doğruluk oranını %96 olarak vermekte ve bu oranın kendilerinden önceki bildirilmiş en iyi doğruluk oranlarından biraz daha yüksek olduğunu ifade etmektedirler. Daybelge ve Çiçekli (2007) Türkçe için kural-temelli bir biçimbilimsel belirginleştirici geliştirmiştir. Geliştirdikleri biçimbirimsel belirginleştirici İngilizce ile Türkçe arasında örnektemelli makine-çeviri sisteminin bir parçası olarak kullanılmak üzere planlanmıştır. Bu kural-

2 temelli biçimbirimsel belirginleştiriciyi değerlendirmek üzere internet ortamından rastgele seçilmiş 15 makaleyi içeren bir test kümesi hazırlamışlardır. Farklı işlem basamakları sonucunda ulaştıkları duyarlık düzeyi % 81,2 ve geri çağırma oranıda % 98,5 olmuştur. Morphological Disambiguation of Turkish Text with Perceptron Algorithm adlı çalışmada Sak vd. (2007) ise Türkçe metinlerin biçimbilimsel işaretlemesini ve biçimbilimsel belirginleştirilmesini olasılık temelli Perceptron Algoritması kullanarak yapmıştır. Bu çalışmanın en önemli özelliği Türkçe metinlerin biçimbilimsel belirginleştirilmesi için perceptron algoritmasını uygulamasıdır. Perceptron terimi, insan beyninin tanıma ve ayırtetme yetilerini taklit etmeye çalışan modeller için kullanılmaktadır. Sak vd. (2007) ne göre biçimbilimsel belirginleştirme yapmak üzere eğitilmiş perceptron, temel modelin doğruluk derecesini % 93,61 den % 96,80 e yükseltmektedir. Perceptron un sözcük türü işaretleyicisi olarak eğitildiği durumda ise doğruluk oranı % 98,27 olarak bildirilmektedir. Elde edilen Türkçenin biçimbilimsel belirginleştirilmesi ve sözcük türü işaretlemesi sonuçlarının bugüne kadar bildirilen en iyi sonuçlar olduğu vurgulanmaktadır Biçimbirim Açımlamada Kullanılan Temel Kavramlar Biçimbirim açımlamada sıklıkla kullanılan temel kavramlar Belirsizlik (ambiguity), Belirginleştirme (disambiguation), Kural tabanlı belirginleştirme (rule-based disambiguation), Olasılığa dayalı belirginleştirme (probabilistic disambiguation) olarak sıralanabilir Belirsizlik Kullanılan temel kavramlardan ilki belirsizlik kavramıdır. Derlem açımlamada, belirsizliğin ortaya çıktığı durumlar, bir derlem metni içinde herhangi bir noktada iki ya da daha fazla işaretleme seçeneğinin bulunduğu durumlardır. Örneğin; sözcük türü işaretlemede, bazı sözcüklerin dilbilgisel ulamlarını belirlemek kolay değildir. Bazı durumlarda belirsizliği gidermek için ikili işaret (portmanteau tag) kullanılabilir. Sözcüğün içinde bulunduğu bağlamın incelenmesi de belirsizliği gidermede kullanılmaktadır (Baker vd., 2006) Belirginleştirme Belirginleştirme, derlem açımlamada, metnin verili bir noktasında, mümkün olan bir grup işaret arasından doğru açımlamanın seçilme işlemidir. Bu işlem elle veya otomatik olarak yapılabilir. Sözcük türü işaretlemeye yönelik pek çok yaklaşım belirginleştirme yapmaya odaklanmıştır. Belirginleştirme yapılırken, öncelikle, her bir örnekçeye, işaretleme sözlüğüne bakarak ya da bir biçimbilimsel çözümleyici kullanarak farklı bağlamlarda alabileceği bütün işaretler atanır. Belirginleştirme yazılımı doğru işareti seçmek için çoğunlukla bağlamı kullanır. Belirginleştirme; kural-tabanlı ya da olasılık temelli yaklaşımlarla, çoğu zaman da bunların karması olan melez yaklaşımlarla gerçekleştirilir (Baker vd., 2006) Kural tabanlı belirginleştirme Derlemdeki bir ögenin doğru işaretinin belirlenmesinde olasılıktan çok, kuralları kullanan bir işaretleme tekniğidir. Örneğin, ad ya da eylem olma ihtimali bulunan bir sözcükten hemen önce bir sıfat geliyorsa ya da bir eylem tarafından takip ediliyorsa, bu sözcüğün ad olarak işaretlenmesinin anlamlı olacağını söyler (Baker vd., 2006) Olasılığa dayalı belirginleştirme Olasılığa dayalı belirginleştirme, otomatik derlem açımlamada iki ya da daha fazla alternatif arasından doğru işareti seçmek amacıyla, doğru işaretlemenin ne olabileceğine ilişkin iyi bir

3 tahmin yapmak üzere geliştirilmiş; olasılık ya da istatistik hesaplarına dayanan bir dizi yönteme verilen addır. Olasılığa dayalı belirginleştirmede kullanılan bu istatistikler temelde sözcük sıklıklarıdır. İstatistikler, çoğunlukla işaretlenmemiş metinler üzerinde ileride bir çözümlemenin yapılabilmesi için, daha önceden açımlanmış derlemlerden türetilmektedirler (Baker vd., 2006). 2. AMAÇ Bu çalışmanın amacı Türkçe Ulusal Derlemi (TUDD) Oluşturma Projesi kapsamında oluşturulan, 5 milyon sözcüklük, biçimbirim açımlaması yapılmış bir alt derlem kullanarak; biçimbirim açımlamada ortaya çıkan belirsizlik türlerini sınıflandırmak, sınıflandırılan türlerin gözlenen sıklıklarını belirlemek ve belirsizlik türlerini ortadan kaldırabilecek kural tabanlı belirginleştirme örnekleri sunmaktır. 3. YAZILIM Türkçe Ulusal Dil Derlemi Projesi Biçimbirim Çalışmalarında Belirsizliklerin Sınıflandırılması ve Dağılımı adlı bu çalışma Silberztein (2003) tarafından ayrıntılandırılan NooJ uygulamasının Türkçe Eklentisi aracılığıyla yapılmıştır. Türkçe eklentisi, uygulamanın Türkçe için uyarlanmış sözlüklerini ve kural dosyalarını içermektedir. 4. VERİ Çalışma öncesinde yapılan pilot uygulama kapsamında TUDD Oluşturma Projesi veri tabanları kullanılarak hazırlanan 250 bin sözcüklük alt derlemden belirsizlik listeleri alınmıştır. Pilot çalışma sonucunda gözlemlenen yanlış işaretlemeleri içeren çizelgeler düzeltilmiş, yapay belirsizlikler kaldırılmış ve çalışmada kullanılacak 5 milyon sözcüklük derlem üzerinde çalışma tamamlanmıştır. Oluşturulan 5 milyon sözcüklük, yıllarında yayınlanmış metin örneklerinden oluşan alt derlem aşağıda belirtilen yayın türlerini ve sözcük sayılarını kapsamaktadır: Bilgilendirici Metin (1 milyon sözcük) Kurgusal Metin (1 milyon sözcük) Süreli Yayın (2 milyon sözcük) Yazılı / Basılmamış Metin ( sözcük) Sözlü Metin ( sözcük) 5. YÖNTEM Çalışmanın ilk aşamasını; 5 milyon sözcükten oluşan alt derlemin NooJ uygulamasının Türkçe Eklentisi ile işaretlenmesi oluşturmuştur. İşaretlenen alt derlemin belirsizlik listeleri yine aynı uygulama yardımıyla alınmış ve gözlenen sıklık değeri 100 den fazla olan belirsizlikler çalışma kapsamına alınmıştır. Gözlenen sıklık değeri 100 den fazla olan belirsizlik sınıfları aşağıda belirtilen başlıklar altında File Maker Pro 8.5 aracılığıyla sınıflandırılmıştır: Eşyazımlı başsözcükler et (V), et (N) Eşyazımlı ekler defter+in (p2s), defter+in (gen) Ekleme sonucu oluşan eşyazımlılıklar birlikte (AV), birlik+te(loc) Eşyazımlı ek-ek birleşimleri taşı+makta (cont), taşı+mak (nz1)+ta(loc) 6. BELİRSİZLİKLERİN SINIFLANDIRILMASI TUDD Oluşturma projesi kapsamında 5 milyon sözcüklük veri tabanı kullanılarak yapılan çalışmanın bu bölümünde ortaya çıkan belirsizlik türleri ve gözlenen sıklık değerleri belirtilecektir. NooJ Türkçe Eklentisi kullanılarak yapılan çalışma sonucunda eşyazımlı

4 başsözcükler, eşyazımlı ekler, ekleme sonucu ortaya çıkan eşyazımlılıklar ve eşyazımlı ek-ek birleşimleri olmak üzere 4 farklı belirsizlik türü ortaya çıkmıştır. Ortaya çıkan eşyazımlı başsözcüklere ait belirsizlik türlerinin İngilizce-Türkçe gösterimleri ve kısaltmaları Tablo 1 de ve eşyazımlı eklerle ilgili belirsizlik türlerine ait İngilizce-Türkçe gösterimler ve kısaltmalar ise Tablo 2 de yer almaktadır. Tablo 1 Eşyazımlı başsözcüklerin NooJ Türkçe Eklentisindeki İngilizce-Türkçe gösterimleri ve kısaltmaları İngilizce Noun Türkçe Ad Gösterim N Verb Eylem V Adjective Sıfat A Pronoun Adıl PN Adverb Belirteç AV Postposition İlgeç PP Determiner Belirleyici DT Tablo 2 Eşyazımlı eklerin NooJ Türkçe Eklentisindeki İngilizce-Türkçe gösterimleri ve kısaltmaları Biçimbirim Açıklama (Türkçe) Gösterim I Belirtme durumu acc In Tamlayan durumu gen Im Kişi Eki c1s m İyelik Eki p1s I(n) İyelik Eki p2s I İyelik Eki p3s mak Adlaştırıcı nz1 AcAk Adlaştırıcı pc1 A Yönelme Durumu dat da Kalma Durumu loc ile Araç Durumu ins DAn Çıkma Durumu abl Belirtecimsi AV0* r z Geniş Zaman aor DI Bitmişlik / Geçmiş past An Sıfatlaştırıcı pc3 DIr Koşaç cop In 2. çoğul Emir Kipi imp I Ara ses I bfi n Ara ses n bfn 6.1. Eşyazımlı Başsözcükler Çalışma sonucunda; eşyazımlı başsözcükler ulamında en sık belirsizlik oluşturan sözcük türleri; belirleyici (determiner) ve adıl (pronoun) olarak ortaya çıkmıştır. Eşyazımlı başsözcüklerle ilgili oluşan belirsizlik ulamında karşılaşılan belirsizliklerin gözlenen sıklık değeri tır. İkinci sırada; ad (N) - eylem (V) belirsizliği gelmektedir ve gözlenen sıklık değeri dir. Belirteç

5 (AV) ve belirleyici (DT) belirsizliği üçüncü sırada karşımıza çıkmış ve sıklık değerine sahiptir. Dördüncü sırada yer alan bir diğer belirsizlik türü ise sıfat(a) ve ad (N) belirsizliğidir. İlgili belirsizliğin gözlenen sıklık değeri dır. Eşyazımlı başsözcükler ulamında yer alan diğer belirsizlik türleri Şekil 1 de yer almaktadır. Şekil 1: Sözcük türlerine göre eşyazımlı başsözcükler Eşyazımlı başsözcükler ulamında 1. sırada yer alan belirleyici (DT) ve adıl (PN) belirsizliğine ait bağlam içi örnek (1) ve (2) de gösterilmektedir: (1) 1950 lerde liberal ekonomi anlayışının tekrar uygulanmaya konulması ile ilgili bir çaba sarfedilse de bu (PN) çok uzun sürmedi. (2) Maliye Bakanlığı bu (DT) konuda gerekli düzenlemeleri yapmaya yetkilidir. Eşyazımlı başsözcükler ulamında 2. sırada yer alan ad (N) ve eylem (V) belirsizliği ile ilgili belirsizliğin bağlam içi örneği ise (3) ve (4) te yer almaktadır: (3) İşte bunları duyunca ona yeniden yol göründü. Önce Marmaris, sonra Gökova Akyaka Köyü İzmir in kurtuluş günü 9 Eylül de oraya vardı (V). (4) Bu sefer aile üyeleri yerine sanatçı arkadaşları, Suna Yıldızoğlu, Çetin Alp, Perihan Sözen vardı (N) yanlarında Yukarıda adı geçen ve 4. sırada yer alan ad (N) ve sıfat (A) belirsizliğine ait bağlam içi örnekler (5) ve (6) daki gibidir: (5) Fonlar ın finansman dengesinin 1998 yılında 76 trilyon Türk lirası açık (N) vererek, GSMH ya oranının binde 1 düzeyinde olması beklenmektedir. (6) Birim hissesinin getirisi konusunda açık (A), şeffaf ve geniş katılım içeren usul ve esaslarla tamamen üniversitelerce yapılması öngörülmektedir Eşyazımlı Ekler Çalışmanın sonunda en sık karşılaşılan belirsizlik ulamı 3. tekil kişi iyelik eki (p3s) ve belirtme durum ekinde (acc) göze çarpmaktadır. İkinci sırada 2. tekil iyelik eki (p2s) ve 3. tekil kişi iyelik eki (p3s) belirsizliği gelmektedir. Bu bağlamda, eşyazımlı eklerin oluşturduğu belirsizlik türleri incelendiğinde Tablo 3 teki bulgulara erişilmiştir:

6 Tablo 3 Eşyazımlı eklerin oluşturduğu belirsizlik türleri ve sayıları 3. Tekil Kişi iyelik eki (p3s) belirtme durum eki (acc) Tekil Kişi iyelik eki (p2s) 3. Tekil Kişi iyelik eki (p3s) Tekil Kişi iyelik eki (p2s) Tamlayan durum eki (gen) Tekil Kişi iyelik eki (p2s) Ara ses n (bfn) Kişi eki (c1s) 1. Tekil Kişi iyelik eki (p1s) Bitmemişlik / sürerlilik eki (cont) - Adlaştırıcı (nz1) (-mak) Diğerleri Yukarıda adı geçen belirsizliklerden ilk sıradaki 3. tekil iyelik eki (p3s) ve belirtme durum ekinin (acc) oluşturduğu belirsizliğin bağlam içi örüntülerine aşağıdaki örnekler verilebilir: (7) Kimsenin işi (iş,n+ p3s (3. tekil iyelik eki) kimseyi ilgilendirmez. (8) İşi (iş,n+acc (belirtme durum eki) aldığımı biliyorum Ekleme Sonucu Oluşan Eşyazımlılıklar Ekleme sonucu oluşan eşyazımlılık ulamları incelendiğinde ise ilk üç sırada yer alan sözcüklerin yönelme durum eki (dat), 2. tekil kişi iyelik eki (p2s) ve 1. tekil kişi iyelik ekinin tek harfli morfemler ile çekimlenerek, 4. ve 5. sıradaki sözcüklerin ise kalma durum eki (loc) ve araç durum (ins) ekiyle çekimlenerek belirsizlik oluşturduğu söylenebilir. Şekil 3 ekleme sonucu oluşan eşyazımlılıkların dağılımını göstermektedir. Şekil 2: Ekleme sonucu oluşan eşyazımlılıkların belirsizlik türleri Ekleme sonucu oluşan belirsizlik türlerinden sıfatlaştırıcı (-An (pc3)) ekin sözcüğe eklendiğinde oluşturduğu belirsizlik türü aşağıdaki bağlam içi örnekte görünmektedir. (9) Birinci basamak sınavından (ÖSS) en az 120 puan alan (-An (pc3)) öğrenciler, ikinci basamak sınavı olarak bilinen Öğrenci Yerleştirme Sınavı'na (ÖYS) girmeye hak kazanmaktadırlar.

7 (10) Öğrenciler, çeşitli alan (Ad (N)) bilgisi testlerinden oluşan ikinci basamak sınavı sonuçlarına göre lisans düzeyindeki örgün öğretim programlarına (fakülteler ve 4 yıllık yüksekokullar) yerleştirilmektedir Eşyazımlı Ek-Ek Birleşimleri Son olarak; eşyazımlı ek-ek birleşimleri ulamları incelendiğinde ise belirtecimsi (AV08) ve adlaştırıcı+çıkma durum eki (nz2+abl) birleşimi saptanmıştır (Örneğin, bilmeden). Bu belirsizlik ulamının gözlenen sıklık değerinin toplamda 672, bitmemişlik/sürerlik eki ve adlaştırıcı+kalma durum eki+koşaç birleşiminin (Örneğin, taşımaktadır) gözlenen sıklık değerinin 330 olduğu çalışma sonunda ortaya çıkmıştır. Her iki belirsizlik türü toplamda olarak belirlenmiştir. Belirtecimsi (AV08) ve adlaştırıcı+çıkma durum ekinin (nz2+abl) oluşturduğu bağlam içi örnekler aşağıda yer almaktadır: (11) Batıdaki pek çok insan doğuyu, orada gerçekte ne olup bittiğini bilmeden (belirtecimsi (AV08)) ve anlamadan yargılıyor. (12) Biz Müslümanlar bu gerçekleri bilmeden (adlaştırıcı+çıkma durum eki (nz2+abl)) önce de iman edip misvağı kullandık. 6. BELİRGİNLEŞTİRME ÇALIŞMALARI Bu bölümde, yukarıda dizinlenen belirsizliklerin giderilmesi konusunda yararlanılan araçların kullanımına kısaca değinilecektir. Öncelikle eşyazımlı başsözcükler konusunda, elde edilen çoklu açımlamaların gözlenen sıklık değerleri arasında belirgin bir fark görüldüğünden (en, AV/N gibi) birden çok sözlük oluşturularak, işlemlemede öncelik sırası belirlemek uygun görünmektedir. Eşyazımlı ekler konusunda ise oluşturulan çizelgelerde belirleyici bağlam bulunmaması durumunda, sözdizimsel kural yazımına gidilmesi yolu benimsenmiştir. Kural yazımı Şekil 4 teki gibi çizelgelerle yapılmaktadır. Şekil 3. Örnek belirginleştirme çizelgesi

8 Yukarıdaki örnekte, öyle, böyle, şöyle sözcüklerinin belirteç ve belirleyici kullanımları arasındaki bağlam farklılığı gösterilerek, açımlamada söz konusu bağlamın gözetilmesi sağlanmaktadır. Yine aynı belirginleştirme, metinsel kural yazımı yoluyla (13) deki gibi gerçekleştirilebilmektedir. (13) A = (öyle böyle şöyle)/<av> (<V> <AJ>) ; B = (öyle böyle şöyle)/<dt> (<N> <PN>) ; NooJ v3 (Silberztein, 2003) te, belirsizliğin araştırmacı tarafından giderilmesi de mümkün olmaktadır. Böylece özellikle eğitici-derlem oluşturmada araştırmacılar tarafından kullanılabilir bir araç olmaktadır. 7. SONUÇ Bu çalışmada Doğal Dil İşleme çalışmaları için yararlı olabileceğini düşündüğümüz, Türkçedeki belirsizlik kaynaklarının bir dökümü sunulmuştur. Yine gözlenen sıklık değerlerine yer verilerek Türkçede odaklanılması gereken yapılar sunulmaya çalışılmıştır. Yapılan sınıflama kural-tabanlı belirsizlik giderme çalışmalarında kullanılabilecektir. Türkçe Ulusal Derlemi Oluşturma Projesi kapsamında yürütülen kural-tabanlı belirginleştirme çalışmalarında da bu bildiride ayrıntılandırılan bulgulardan yararlanılmıştır ve bu konudaki çalışmalar sürmektedir. Notlar Bu bildiri TÜBİTAK 108K242; BAP-FEF (SYA) A ve BAP-FEF İDE (MŞA) A no lu projeler kapsamında hazırlanmıştır. Katkılarından dolayı TÜBİTAK a ve Mersin Üniversitesi Bilimsel Araştırma Projeleri Birimine teşekkür ederiz. Kaynakça Baker, P. A. Hardie & T. McEnery A Glossary of Corpus Linguistics. Edinburgh University Press. Biber, D.,S. Conrad & V. Cortes If you look at Lexical Bundles in University Teaching and Textbooks. Applied Linguistics 25 (3), Daybelge, T. & İ. Çiçekli A Rule-Based Morphological Disambiguator for Turkish. Proceedings of Recent Advances in Natural Language Processing (RANLP 2007). Oflazer, K. & İ.Kuruöz Tagging and Morphological Disambiguation of Turkish Text. Proceedings of the 4th Applied Natural Language Processing Conference. Sak, H., T. Güngör & M. Saraçlar Morphological Disambiguation of Turkish Text with Perceptron Algorithm. Gelbukh, A. (Haz.), Proceedings of International Conference on Intelligent Text Processing and Computational Linguistics. Springer. Silberztein, M Nooj Manual. Erişim Tarihi: 13 Mayıs Tür, G Using Multiple Sources of Information for Constraint-Based Morphological Disambiguation. Yüksek Lisans Tezi. Bilkent Üniversitesi. Ankara. Yuret. D. & Türe, F Learning Morphological Disambiguation Rules for Turkish. Proceedings of HLT-NAACL 2006 Türkçe Ulusal Derlemi Oluşturma Projesi.

BİÇİMBİRİM AÇIMLAMA VE BELİRGİNLEŞTİRME. Ümit MERSİNLİ, Mustafa AKSAN Mersin Üniversitesi umit@mersinli.org, mustafa@aksan.org

BİÇİMBİRİM AÇIMLAMA VE BELİRGİNLEŞTİRME. Ümit MERSİNLİ, Mustafa AKSAN Mersin Üniversitesi umit@mersinli.org, mustafa@aksan.org BİÇİMBİRİM AÇIMLAMA VE BELİRGİNLEŞTİRME Ümit MERSİNLİ, Mustafa AKSAN Mersin Üniversitesi umit@mersinli.org, mustafa@aksan.org 1. GİRİŞ Doğal Dil İşleme alanlarından Sözcük Türü İşaretleme (Part-of-Speech

Detaylı

Yeşim AKSAN, Selma Ayşe ÖZEL, Yasin BEKTAŞ, Mustafa AKSAN, Umut Ufuk DEMİRHAN, Ümit MERSİNLİ, Hakan YILMAZER. Sunan : Yasin BEKTAŞ.

Yeşim AKSAN, Selma Ayşe ÖZEL, Yasin BEKTAŞ, Mustafa AKSAN, Umut Ufuk DEMİRHAN, Ümit MERSİNLİ, Hakan YILMAZER. Sunan : Yasin BEKTAŞ. Yeşim AKSAN, Selma Ayşe ÖZEL, Yasin BEKTAŞ, Mustafa AKSAN, Umut Ufuk DEMİRHAN, Ümit MERSİNLİ, Hakan YILMAZER Sunan : Yasin BEKTAŞ 5 Şubat 2014 1. Giriş 2. Alanyazın 3. Açık Kaynak / Ücretsiz Yazılımlarla

Detaylı

TÜRKÇENİN BİÇİMBİRİM VE SÖZCÜK TÜRÜ İŞARETLEMESİ 1. Ümit MERSİNLİ ve Mustafa AKSAN Mersin Üniversitesi umit@mersinli.org, mustafa@aksan.

TÜRKÇENİN BİÇİMBİRİM VE SÖZCÜK TÜRÜ İŞARETLEMESİ 1. Ümit MERSİNLİ ve Mustafa AKSAN Mersin Üniversitesi umit@mersinli.org, mustafa@aksan. TÜRKÇENİN BİÇİMBİRİM VE SÖZCÜK TÜRÜ İŞARETLEMESİ 1 Ümit MERSİNLİ ve Mustafa AKSAN Mersin Üniversitesi umit@mersinli.org, mustafa@aksan.org 1. GİRİŞ Türkçe bilgisayarlı dil işleme ve derlem dilbilim alanlarında

Detaylı

http://www.tnc.org.tr

http://www.tnc.org.tr http://www.tnc.org.tr Yeşim Aksan, Mustafa Aksan, S. Ayşe Özel, Hakan Yılmazer, Umut U. Demirhan, Ümit Mersinli, Yasin Bektaş, Serap Altunay Mersin Üniversitesi, Çukurova Üniversitesi Türkçe Ulusal Derlemi

Detaylı

TS Corpus Türkçe Derlemi *

TS Corpus Türkçe Derlemi * TS Corpus Türkçe Derlemi * Taner Sezer Mersin Üniversitesi admin@tscorpus.com taner@tanersezer.com Özet: Derlem dilbilim son yıllarda dilbilimin giderek ilgisini artırdığı bir alandır. Bilgisayar teknolojilerinde

Detaylı

Türkçe Tümcelerin Sonunu Belirlemede Açık Kaynak / Ücretsiz Yazılımlar ve Performans Analizleri

Türkçe Tümcelerin Sonunu Belirlemede Açık Kaynak / Ücretsiz Yazılımlar ve Performans Analizleri Akademik Bilişim 14 - XVI. Akademik Bilişim Konferansı Bildirileri 5-7 Şubat 2014 Mersin Üniversitesi Türkçe Tümcelerin Sonunu Belirlemede Açık Kaynak / Ücretsiz Yazılımlar ve Performans Analizleri Yeşim

Detaylı

Türkçe Dokümanlar Ġçin Yazar Tanıma

Türkçe Dokümanlar Ġçin Yazar Tanıma Türkçe Dokümanlar Ġçin Yazar Tanıma Özcan KOLYĠĞĠT, Rıfat AġLIYAN, Korhan GÜNEL Adnan Menderes Üniversitesi, Matematik Bölümü Bölümü, Aydın okolyigit@gmail.com, rasliyan@adu.edu.tr, kgunel@adu.edu.tr Özet:

Detaylı

Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı

Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı Hatice NİZAM İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü haticenizam@outlook.com Saliha Sıla AKIN ERS Turizm Yazılım Şirketi, Bilgisayar

Detaylı

VERİ MADENCİLİĞİ Metin Madenciliği

VERİ MADENCİLİĞİ Metin Madenciliği VERİ MADENCİLİĞİ Metin Madenciliği Yrd. Doç. Dr. Şule Gündüz Öğüdücü 1 2 Metin için Veri Madenciliği Metin Madenciliğinde Sorunlar Metin madenciliği: Veri madenciliği teknikleri ile yazılı belgeler arasındaki

Detaylı

VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI

VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI 10 Aralık 2011, Cumartesi Fen ve Mühendislik Alanlarındaki Çeşitli Araştırma Projelerinden Örneklemeler İçerik

Detaylı

Yeşim AKSAN ve Yılmaz YALDIR Mersin Üniversitesi yaksan@mersin.edu.tr, yilmazyaldir@hotrnail.com

Yeşim AKSAN ve Yılmaz YALDIR Mersin Üniversitesi yaksan@mersin.edu.tr, yilmazyaldir@hotrnail.com TÜRKÇE SÖZVARLIGININ NİcEL BETİMLEMESİ 1 Yeşim AKSAN ve Yılmaz YALDIR Mersin Üniversitesi yaksan@mersin.edu.tr, yilmazyaldir@hotrnail.com ı. GİRİş Bilgisayar bilimlerindeki son dönem gelişmeler, bilgisayarların

Detaylı

Türkçe için Karşılaştırmalı bir Kelime Anlamı Belirginleştirme Uygulaması

Türkçe için Karşılaştırmalı bir Kelime Anlamı Belirginleştirme Uygulaması Türkçe için Karşılaştırmalı bir Kelime Anlamı Belirginleştirme Uygulaması Özet: Kelime anlamı belirginleştirme (KAB), bir kelimenin bulunduğu bağlamda hangi anlamı ile kullanıldığının otomatik olarak belirlenebilmesidir.

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TÜRKÇE İÇİN BİÇİMBİRİMSEL BELİRSİZLİK GİDERİCİ. YÜKSEK LİSANS TEZİ Müh. Z.

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TÜRKÇE İÇİN BİÇİMBİRİMSEL BELİRSİZLİK GİDERİCİ. YÜKSEK LİSANS TEZİ Müh. Z. İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TÜRKÇE İÇİN BİÇİMBİRİMSEL BELİRSİZLİK GİDERİCİ YÜKSEK LİSANS TEZİ Müh. Z. İlknur KARADENİZ Anabilim Dalı : BİLGİSAYAR MÜHENDİSLİĞİ Programı : BİLGİSAYAR

Detaylı

İLKÖĞRETİM TÜRKÇE DERS KİTAPLARI DERLEMİ VE TÜRKÇE ULUSAL DİL DERLEMİ ÖRNEKLEMİNDEKİ SÖZCÜK SIKLIKLARI 1

İLKÖĞRETİM TÜRKÇE DERS KİTAPLARI DERLEMİ VE TÜRKÇE ULUSAL DİL DERLEMİ ÖRNEKLEMİNDEKİ SÖZCÜK SIKLIKLARI 1 İLKÖĞRETİM TÜRKÇE DERS KİTAPLARI DERLEMİ VE TÜRKÇE ULUSAL DİL DERLEMİ ÖRNEKLEMİNDEKİ SÖZCÜK SIKLIKLARI 1 Yeşim Aksan Ümit Mersinli Yılmaz Yaldır Mersin Üniversitesi yesim.aksan@gmail.com umit@mersinli.org

Detaylı

YÖK tarafından ülkemizdeki yükseköğretim kurumlarının akademik ve idari hizmetlerinin kalite düzeylerinin iyileştirilmesine yönelik olarak

YÖK tarafından ülkemizdeki yükseköğretim kurumlarının akademik ve idari hizmetlerinin kalite düzeylerinin iyileştirilmesine yönelik olarak YÖK tarafından ülkemizdeki yükseköğretim kurumlarının akademik ve idari hizmetlerinin kalite düzeylerinin iyileştirilmesine yönelik olarak Yükseköğretim Kurumlarında Akademik Değerlendirme ve Kalite Geliştirme

Detaylı

DİZİN. Not: Koyu harfle yazılan sayfalar ilgili terimin yoğun olarak geçtiği sayfaları göstermektedir.

DİZİN. Not: Koyu harfle yazılan sayfalar ilgili terimin yoğun olarak geçtiği sayfaları göstermektedir. DİZİN Not: Koyu harfle yazılan sayfalar ilgili terimin yoğun olarak geçtiği sayfaları göstermektedir. A ağırlıklandırma bkz. terim ağırlıklandırma AltaVista, 6, 31, 37, 45-47, 93, 135 anahtar sözcükler,

Detaylı

YÖK DOKÜMANTAYON MERKEZİ HİZMETLERİ

YÖK DOKÜMANTAYON MERKEZİ HİZMETLERİ TÜBİTAK-ULAKBİM CAHİT ARF BİLGİ MERKEZİ DANIŞMA HİZMETLERİ NDEKİ GELİŞMELER VE MAKALE FOTOKOPİ İSTEK SİSTEMİ Filiz YÜCEL Internet ve bilgi teknolojisindeki hızlı gelişmeler bilgi merkezlerinin verdiği

Detaylı

BĠYOLOJĠ EĞĠTĠMĠ LĠSANSÜSTÜ ÖĞRENCĠLERĠNĠN LĠSANSÜSTÜ YETERLĠKLERĠNE ĠLĠġKĠN GÖRÜġLERĠ

BĠYOLOJĠ EĞĠTĠMĠ LĠSANSÜSTÜ ÖĞRENCĠLERĠNĠN LĠSANSÜSTÜ YETERLĠKLERĠNE ĠLĠġKĠN GÖRÜġLERĠ 359 BĠYOLOJĠ EĞĠTĠMĠ LĠSANSÜSTÜ ÖĞRENCĠLERĠNĠN LĠSANSÜSTÜ YETERLĠKLERĠNE ĠLĠġKĠN GÖRÜġLERĠ Osman ÇİMEN, Gazi Üniversitesi, Biyoloji Eğitimi Anabilim Dalı, Ankara, osman.cimen@gmail.com Gonca ÇİMEN, Milli

Detaylı

SÖZCÜK TÜRLERİNDEKİ BELiRSiZLİKLER ÜZERİNE DERLEM TEMELLi BAGLAM-İÇİ GÖZLEMLER Aygül UÇAR & Özlem KURTOGLU & İpek YILDIZ Mersin Vniversitesi aygulucar@ gmail.com, ozlemkurtoglu77@ hotmail.com, ipekyildiz09@

Detaylı

TS Corpus: Herkes için Türkçe derlem. Taner Sezer * Bengü Sever Sezer ** Mersin Ünivesitesi

TS Corpus: Herkes için Türkçe derlem. Taner Sezer * Bengü Sever Sezer ** Mersin Ünivesitesi TS Corpus: Herkes için Türkçe derlem Özet Taner Sezer * Bengü Sever Sezer ** Mersin Ünivesitesi TS Corpus un ilk versiyonu 1 Mart 2012, ikinci versiyonu 30 Ağustos 2012 de yayınlanmıştır. TS Corpus 491M+

Detaylı

İLKÖCRETİM TÜRKÇE DERS KİTAPLARI DERLEMİ VE TÜRKÇE ULUSAL DİL DERLEMİ ÖRNEKLEMİNDEKİ SÖZCÜK SIKLIKLARı i

İLKÖCRETİM TÜRKÇE DERS KİTAPLARI DERLEMİ VE TÜRKÇE ULUSAL DİL DERLEMİ ÖRNEKLEMİNDEKİ SÖZCÜK SIKLIKLARı i İLKÖCRETİM TÜRKÇE DERS KİTAPLARI DERLEMİ VE TÜRKÇE ULUSAL DİL DERLEMİ ÖRNEKLEMİNDEKİ SÖZCÜK SIKLIKLARı i Yeşim Aksan yesi m.aksan@gmail.com Ümit Mersinli Mersin Üniversitesi umit@mersinli.org Yılmaz Yaldır

Detaylı

Yönetim Anasayfa : Tanımlar : Parametreler : Seo yolu izlenerek dinamik seo modülüne erişebilirsiniz.

Yönetim Anasayfa : Tanımlar : Parametreler : Seo yolu izlenerek dinamik seo modülüne erişebilirsiniz. Güncelleme Dokümanı Versiyon 3.00 Dinamik SEO Modülü Dinamik SEO modülü site sayfalarının arama motoru sitelerinde daha üst sıralarda çıkabilmesine yönelik yapılan optimizasyon modülüdür. Yeni eklentiler

Detaylı

Sözlük Kullanarak Türkçe için Kavram Madenciliği Metotları Geliştirme

Sözlük Kullanarak Türkçe için Kavram Madenciliği Metotları Geliştirme 1 Cem Rıfkı Aydın, 1 Ali Erkan, 1 Tunga Güngör, 2 Hidayet Takçı 1 Boğaziçi Üniversitesi, 2 Cumhuriyet Üniversitesi Sözlük Kullanarak Türkçe için Kavram Madenciliği Metotları Geliştirme AB 14 7 Şubat 2014

Detaylı

Türkçe ve Doğal Dil İşleme Turkish Natural Language Processing. Özet. Kemal Oflazer Carnegie Mellon Üniversitesi - Katar Doha, Katar ko@cs.cmu.

Türkçe ve Doğal Dil İşleme Turkish Natural Language Processing. Özet. Kemal Oflazer Carnegie Mellon Üniversitesi - Katar Doha, Katar ko@cs.cmu. Türkçe ve Doğal Dil İşleme Turkish Natural Language Processing Kemal Oflazer Carnegie Mellon Üniversitesi - Katar Doha, Katar ko@cs.cmu.edu Özet Bu makalede Türkçe nin doğal dil işleme açısından ilginç

Detaylı

ÖZGEÇMİŞ Doç. Dr. BÜLENT ÖZKAN

ÖZGEÇMİŞ Doç. Dr. BÜLENT ÖZKAN ÖZGEÇMİŞ Doç. Dr. BÜLENT ÖZKAN TC Kimlik No / Pasaport No: 18773153342 Doğum Yılı: 1977 Yazışma Adresi : Telefon : e posta : MERSİN ÜNİVERSİTESİ, EĞİTİM FAKÜLTESİ, BÖLÜMÜ, YENİŞEHİR KAMPUSU/MERSİN Mersin/Türkiye

Detaylı

Deneysel Verilerin Değerlendirilmesi. Dersi Veren Öğretim Üyeleri: Yrd. Doç. Dr. Özge ANDİÇ ÇAKIR. Prof. Dr. Murat ELİBOL FİNAL SINAVI

Deneysel Verilerin Değerlendirilmesi. Dersi Veren Öğretim Üyeleri: Yrd. Doç. Dr. Özge ANDİÇ ÇAKIR. Prof. Dr. Murat ELİBOL FİNAL SINAVI Deneysel Verilerin Değerlendirilmesi Dersi Veren Öğretim Üyeleri: Yrd. Doç. Dr. Özge ANDİÇ ÇAKIR Prof. Dr. Murat ELİBOL FİNAL SINAVI Ödevi Hazırlayan: Özge AKBOĞA 91100019124 (Doktora) Güz,2012 İzmir 1

Detaylı

Uygur Tümcesinin Bilgisayar ile Çözümlenmesi

Uygur Tümcesinin Bilgisayar ile Çözümlenmesi Uygur Tümcesinin Bilgisayar ile Çözümlenmesi Murat Orhun İstanbul Bilgi Üniversitesi, Bilgisayar Mühendisliği Bölümü,İstanbul murat.orhun@bilgi.edu.tr Özet: Bilgisayarlı çeviride, kaliteli çevirinin yapılabilinmesi

Detaylı

3. sınıf. Bilgisayarla kataloglamanın doğuşu gelişimi ve bugünkü durum ele alınmaktadır. Bu derste

3. sınıf. Bilgisayarla kataloglamanın doğuşu gelişimi ve bugünkü durum ele alınmaktadır. Bu derste 3. sınıf 5. Yarıyıl (Güz Dönemi) Bilgi Kaynaklarının Tanımlanması ve Erişimi I (AKTS 5) 3 saat Bilgisayarla kataloglamanın doğuşu gelişimi ve bugünkü durum ele alınmaktadır. Bu derste Kütüphane Otomasyon

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

Dağıtık Sistemler CS5001

Dağıtık Sistemler CS5001 Dağıtık Sistemler CS5001 Th. Letschert Çeviri: Turgay Akbaş TH Mittelhessen Gießen University of Applied Sciences Biçimsel model nedir Biçimsel model matematiksel olarak tanımlanmış olan bir modeldir.

Detaylı

DİYETİSYEN OTOMASYONU ÖĞRETİM TASARIMI RAPORU ÜYELER 1) BÜŞRA KORKMAZ 2) NURCAN YILDIRIM

DİYETİSYEN OTOMASYONU ÖĞRETİM TASARIMI RAPORU ÜYELER 1) BÜŞRA KORKMAZ 2) NURCAN YILDIRIM DİYETİSYEN OTOMASYONU ÖĞRETİM TASARIMI RAPORU ÜYELER 1) BÜŞRA KORKMAZ 2) NURCAN YILDIRIM 1. Analiz 1.1. Öğretim Ortamının Analizi 1.2. Öğretim Analizi 1.3. Medya Analizi 1.4. İçerik Analizi 1.5. İhtiyaç

Detaylı

Açıköğretim Uygulamaları ve Araştırmaları Dergisi AUAd

Açıköğretim Uygulamaları ve Araştırmaları Dergisi AUAd Açıköğretim Uygulamaları ve Araştırmaları Dergisi AUAd auad.anadolu.edu.tr Başlarken AUAd Yazım Kuralları sayfasından size uygun olan şablonu seçiniz. Microsoft Word 2010 ortamı ya da üstü sürümü kullanınız.

Detaylı

TÜRKİYE DEKİ ÜNİVERSİTE KÜTÜPHANELERİNDE KULLANILAN TÜRKÇE KONU BAŞLIKLARI UYGULAMASI. ŞULE YILMAZ Kadir Has Üniversitesi

TÜRKİYE DEKİ ÜNİVERSİTE KÜTÜPHANELERİNDE KULLANILAN TÜRKÇE KONU BAŞLIKLARI UYGULAMASI. ŞULE YILMAZ Kadir Has Üniversitesi TÜRKİYE DEKİ ÜNİVERSİTE KÜTÜPHANELERİNDE KULLANILAN TÜRKÇE KONU BAŞLIKLARI UYGULAMASI ŞULE YILMAZ Kadir Has Üniversitesi ÜNAK'04 "Bilgide Kaybolmamak İçin Bilgiyi Yönetmek" ( 23-25 Eylül 2004 ) Maltepe

Detaylı

BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR

BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR İÇİNDEKİLER BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR I. Öğretimde Ölçme ve Değerlendirmenin Gerekliliği... 2 II. Ölçme Kavramı... 3 1. Tanımı ve Unsurları... 3 2. Aşamaları... 3 2.1. Ölçülecek

Detaylı

Koşullu Rastgele Alanlar ile Türkçe Haber Metinlerinin Etiketlenmesi (Labelling Turkish News Stories with Conditional Random Fields)

Koşullu Rastgele Alanlar ile Türkçe Haber Metinlerinin Etiketlenmesi (Labelling Turkish News Stories with Conditional Random Fields) Koşullu Rastgele Alanlar ile Türkçe Haber Metinlerinin Etiketlenmesi (Labelling Turkish News Stories with Conditional Random Fields) Seda KAZKILINÇ İTÜ Bilgisayar Mühendisliği Bölümü kazkilinc@itu.edu.tr

Detaylı

BÖLÜM 2 VERİ SETİNİN HAZIRLANMASI VE DÜZENLENMESİ

BÖLÜM 2 VERİ SETİNİN HAZIRLANMASI VE DÜZENLENMESİ 1 BÖLÜM 2 VERİ SETİNİN HAZIRLANMASI VE DÜZENLENMESİ Veri seti; satırlarında gözlem birimleri, sütunlarında ise değişkenler bulunan iki boyutlu bir matristir. Satır ve sütunların kesişim bölgelerine 'hücre

Detaylı

İRİSTEN KİMLİK TANIMA SİSTEMİ

İRİSTEN KİMLİK TANIMA SİSTEMİ ÖZEL EGE LİSESİ İRİSTEN KİMLİK TANIMA SİSTEMİ HAZIRLAYAN ÖĞRENCİLER: Ceren KÖKTÜRK Ece AYTAN DANIŞMAN ÖĞRETMEN: A.Ruhşah ERDUYGUN 2006 İZMİR AMAÇ Bu çalışma ile, güvenlik amacıyla kullanılabilecek bir

Detaylı

Şekil 1. Sitiller ve biçimlendirme

Şekil 1. Sitiller ve biçimlendirme ŞABLONUN KULLANILMASI Şablon yazım kuralları belirli olan metinlerin yazımında kolaylık sağlayan araçlardır. Bu şablonlarda yazım kuralları ile ilgili detaylar tanımlanarak kullanıcının detaylarla uğraşmadan

Detaylı

KOCAELİ ÜNİVERSİTESİ UZAKTAN EĞİTİM ARAŞTIRMA VE UYGULAMA MERKEZİ DESTEK DOKÜMANLARI

KOCAELİ ÜNİVERSİTESİ UZAKTAN EĞİTİM ARAŞTIRMA VE UYGULAMA MERKEZİ DESTEK DOKÜMANLARI KOCAELİ ÜNİVERSİTESİ UZAKTAN EĞİTİM ARAŞTIRMA VE UYGULAMA MERKEZİ DESTEK DOKÜMANLARI 1. Şartlı İçerikler Oluşturma Ders içerisinde oluşturulan herhangi bir etkinliğe erişime belirli şartlar dâhilinde kısıtlama

Detaylı

Moodle-IST Kullanım Klavuzu

Moodle-IST Kullanım Klavuzu Moodle-IST Kullanım Klavuzu 1 İÇİNDEKİLER 1. ÖYS (Öğrenim Yönetim Sistemi) ve Moodle Nedir?...3 2. Sisteme Giriş...4 2. Ders Takibi...5 4. Ödev yükleme...7 2 1. ÖYS (Öğrenim Yönetim Sistemi) ve Moodle

Detaylı

EKLER VE SÖZCÜĞÜN YAPISI

EKLER VE SÖZCÜĞÜN YAPISI EKLER VE SÖZCÜĞÜN YAPISI *KÖK * YAPIM EKLERİ * ÇEKİM EKLERİ * YAPILARINA GÖRE SÖZCÜKLER K Ö K Sözcüğü oluşturan en küçük anlamlı dil birimine kök denir. Kök halinde bulunan sözcükler yapım eki almamıştır

Detaylı

ÖĞRETMEN ADAYLARININ PROBLEM ÇÖZME BECERİLERİ

ÖĞRETMEN ADAYLARININ PROBLEM ÇÖZME BECERİLERİ ÖĞRETMEN ADAYLARININ PROBLEM ÇÖZME BECERİLERİ Doç. Dr. Deniz Beste Çevik Balıkesir Üniversitesi Necatibey Eğitim Fakültesi Güzel Sanatlar Eğitimi Bölümü Müzik Eğitimi Anabilim Dalı beste@balikesir.edu.tr

Detaylı

adresinden ÖĞRETİM ÜYESİ GİRİŞİ

adresinden ÖĞRETİM ÜYESİ GİRİŞİ Sisteme giriş yapabilmek için butonunu tıklayınız. http://turtep.yesevi.edu.tr/ adresinden ÖĞRETİM ÜYESİ GİRİŞİ Açılan pencerede ilgili kısımlara kullanıcı adınızı ve şifrenizi girip Giriş butonunu tıklayınız.

Detaylı

sayıda soru için hiçbir ilgili belgeye erişemediklerinden soru başına erişilen ortalama ilgili belge sayıları düşüktür (1,5). Arama motorlarının

sayıda soru için hiçbir ilgili belgeye erişemediklerinden soru başına erişilen ortalama ilgili belge sayıları düşüktür (1,5). Arama motorlarının 6 SONUÇ VE ÖNERİLER Bu çalışmada ülkemizde yaygın olarak kullanılan Arabul, Arama, Netbul ve Superonline'a çeşitli türde 17 soru yöneltilmiş ve bu sorulara karşılık erişilen ilgili ve ilgisiz belgelere

Detaylı

Veri Madenciliği Karar Ağacı Oluşturma

Veri Madenciliği Karar Ağacı Oluşturma C4.5 Algoritması Veri Madenciliği Karar Ağacı Oluşturma Murat TEZGİDER 1 C4.5 Algoritması ID3 algoritmasını geliştiren Quinlan ın geliştirdiği C4.5 karar ağacı oluşturma algoritmasıdır. ID3 algoritmasında

Detaylı

ÜNİBİLGİ. Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı

ÜNİBİLGİ. Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı ÜNİBİLGİ Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Elektronik kütüphanemizde yer alan yeni veri tabanlarının daha aktif olarak kullanımına olanak sağlamak amacıyla yaptığımız tanıtım

Detaylı

AÇIKÖĞRETİMİN 30 YILI: E-ÖĞRENMENİN YÜKSELİŞİ İnternet Destekli Öğrenme ve İnternete Dayalı Eğitim Dönemi

AÇIKÖĞRETİMİN 30 YILI: E-ÖĞRENMENİN YÜKSELİŞİ İnternet Destekli Öğrenme ve İnternete Dayalı Eğitim Dönemi AÇIKÖĞRETİMİN 30 YILI: E-ÖĞRENMENİN YÜKSELİŞİ İnternet Destekli Öğrenme ve İnternete Dayalı Eğitim Dönemi Hazırlayan Öğr. Gör. Özlem ÖZÖĞÜT ERORTA Akademik Bilişim 2014, 5-7 Şubat 2014, Mersin Açıköğretimin

Detaylı

FIRAT ÜNİVERSİTESİ ENFORMATİK LABORATUVARLARI OTOMASYONU

FIRAT ÜNİVERSİTESİ ENFORMATİK LABORATUVARLARI OTOMASYONU FIRAT ÜNİVERSİTESİ ENFORMATİK LABORATUVARLARI OTOMASYONU Erhan Akbal Mustafa Ulaş Aytuğ Boyacı Gürkan Karabatak Ayhan Akbal Hasan H. Balık Fırat Üniversitesi Fırat Üniversitesi Fırat Üniversitesi Fırat

Detaylı

T.C. ACIBADEM ÜNİVERSİTESİ ÖĞRETİM ÜYELİĞİNE YÜKSELTİLME ve ATAMA KRİTERLERİ YÖNERGESİ

T.C. ACIBADEM ÜNİVERSİTESİ ÖĞRETİM ÜYELİĞİNE YÜKSELTİLME ve ATAMA KRİTERLERİ YÖNERGESİ T.C. ACIBADEM ÜNİVERSİTESİ ÖĞRETİM ÜYELİĞİNE YÜKSELTİLME ve ATAMA KRİTERLERİ YÖNERGESİ AMAÇ Madde 1 Bu Yönergenin amacı, Acıbadem Üniversitesi Fakülte, Enstitü ve Yüksekokullarında öğretim üyesi adaylarında

Detaylı

Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir

Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir Eğiticisiz (unsupervised) öğrenme: Kümeleme (clustering) Hangi nesnenin hangi

Detaylı

Ulusal Yeterlilikler Çerçevesine Dayalı AKTS Uygulamaları. Prof. Dr. Oğuz ESEN

Ulusal Yeterlilikler Çerçevesine Dayalı AKTS Uygulamaları. Prof. Dr. Oğuz ESEN Ulusal Yeterlilikler Çerçevesine Dayalı AKTS Uygulamaları Prof. Dr. Oğuz ESEN İzmir Ekonomi Üniversitesi Türkiye nin Bologna sürecine paralel olarak İEÜ de 2005 de DE verilmeye başlanmış 2010 yılında tüm

Detaylı

Anlam Belirsizliği İçeren Türkçe Sözcüklerin Hesaplamalı Dilbilim Uygulamalarıyla Belirginleştirmesi

Anlam Belirsizliği İçeren Türkçe Sözcüklerin Hesaplamalı Dilbilim Uygulamalarıyla Belirginleştirmesi Anlam Belirsizliği İçeren Türkçe Sözcüklerin Hesaplamalı Dilbilim Uygulamalarıyla Belirginleştirmesi Zeynep Altan Maltepe Üniversitesi Bilgisayar Mühendisliği Bölümü zaltan@maltepe.edu.tr Zeynep Orhan

Detaylı

IŞIK ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ SONUÇ RAPORU

IŞIK ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ SONUÇ RAPORU IŞIK ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ SONUÇ RAPORU 10A303 ANLAMSAL TÜRKÇE ARAMA MOTORU Doç.Dr. Olcay Taner YILDIZ İÇİNDEKİLER 1. GENEL ÖZET 2. HARCAMALAR LİSTESİ 3. TEKNİK RAPOR 4. ÜRÜNLER LİSTESİ

Detaylı

Sosyal Bilimler İçin Veri Analizi El Kitabı

Sosyal Bilimler İçin Veri Analizi El Kitabı 292 Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18 (2012) 292-297 KİTAP İNCELEMESİ Sosyal Bilimler İçin Veri Analizi El Kitabı Editör Doç. Dr. Şener BÜYÜKÖZTÜRK Dilek SEZGİN MEMNUN 1 Bu çalışmada,

Detaylı

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2 Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 5, Sayı:2, 2003 YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI Sibel SELİM 1 Efe SARIBAY

Detaylı

T.C. HACETTEPE ÜNĐVERSĐTESĐ Sosyal Bilimler Enstitüsü

T.C. HACETTEPE ÜNĐVERSĐTESĐ Sosyal Bilimler Enstitüsü GENEL BĐLGĐLER T.C. HACETTEPE ÜNĐVERSĐTESĐ Sosyal Bilimler Enstitüsü Mütercim-Tercümanlık Anabilim Dalı Đngilizce Mütercim-Tercümanlık Bilim Dalı YÜKSEK LĐSANS PROGRAMI Mütercim-Tercümanlık Bölümü, Edebiyat

Detaylı

Ders İ zlencesi. Ders Başlığı. Dersin amacı. Önceden sahip olunması gereken beceri ve bilgiler. Önceden alınması gereken ders veya dersler

Ders İ zlencesi. Ders Başlığı. Dersin amacı. Önceden sahip olunması gereken beceri ve bilgiler. Önceden alınması gereken ders veya dersler Ders Başlığı İnternette Güvenliğinizi Arttırın Dersin amacı Ders İ zlencesi Bu dersin amacı, katılımcıların İnternet'te karşılaşılabilecek kullanıcı, donanım ve bilgisayar ağı kaynaklı tehditler ve bu

Detaylı

UZAKTAN EĞİTİM MERKEZİ

UZAKTAN EĞİTİM MERKEZİ ÜNİTE 2 VERİ TABANI İÇİNDEKİLER Veri Tabanı Veri Tabanı İle İlgili Temel Kavramlar Tablo Alan Sorgu Veri Tabanı Yapısı BAYBURT ÜNİVERSİTESİ UZAKTAN EĞİTİM MERKEZİ BİLGİSAYAR II HEDEFLER Veri tabanı kavramını

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Olcay Taner Yıldız. 2. Doğum Tarihi : 15.05.1976. 3. Unvanı : Doç. Dr. 4. Öğrenim Durumu :

ÖZGEÇMİŞ. 1. Adı Soyadı : Olcay Taner Yıldız. 2. Doğum Tarihi : 15.05.1976. 3. Unvanı : Doç. Dr. 4. Öğrenim Durumu : ÖZGEÇMİŞ 1. Adı Soyadı : Olcay Taner Yıldız 2. Doğum Tarihi : 15.05.1976 3. Unvanı : Doç. Dr. 4. Öğrenim Durumu : Derece Alan Üniversite Yıl Lisans Bilgisayar Mühendisliği Boğaziçi Üniversitesi 1997 Y.

Detaylı

Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma. Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu. Sunan : Esra Nergis Güven

Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma. Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu. Sunan : Esra Nergis Güven Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu Sunan : Esra Nergis Güven İçerik Giriş Amaç ve Kapsam Sınıflandırma Geliştirilen Sistem

Detaylı

TEMEL BİLGİTEKNOLOJİLERİ

TEMEL BİLGİTEKNOLOJİLERİ TEMEL BİLGİTEKNOLOJİLERİ Bilgiyi işlemekte kullanılan araçlar ikiye ayrılır. 1- Maddi cihazlar 2-Kavramsal araçlar. Kullanıcıve bilgisayarın karşılıklıetkileşimini sağlayan birimlerin genel adıgiriş-çıkışbirimleridir.

Detaylı

T. C. TRAKYA ÜNİVERSİTESİ SOSYAL BİLİMLER DERGİSİ YAYIN İLKELERİ

T. C. TRAKYA ÜNİVERSİTESİ SOSYAL BİLİMLER DERGİSİ YAYIN İLKELERİ T. C. TRAKYA ÜNİVERSİTESİ SOSYAL BİLİMLER DERGİSİ YAYIN İLKELERİ T.Ü. Sosyal Bilimler Dergisi nde, aşağıda belirtilen şartlara uyan eserler yayınlanır. 1. Makalelerin, Trakya Üniversitesi Sosyal Bilimler

Detaylı

Doküman dili tanıma için ikili örüntüler tabanlı yeni bir yaklaşım

Doküman dili tanıma için ikili örüntüler tabanlı yeni bir yaklaşım Doküman dili tanıma için ikili örüntüler tabanlı yeni bir yaklaşım Yılmaz KAYA 1, Ömer Faruk ERTUĞRUL 2, Ramazan TEKİN 3 1 Siirt Üniversitesi, Bilgisayar Mühendisliği Bölümü 2 Batman Üniversitesi, Elektrik-Elektronik

Detaylı

Resim 7.20: Yeni bir ileti oluşturma

Resim 7.20: Yeni bir ileti oluşturma F İLETİLER Konuya Hazırlık 1. E-posta adresinden yeni bir ileti nasıl oluşturulur? 1. İLETI GÖNDERME a. Yeni bir ileti oluşturma: Yeni bir ileti oluşturmak için Dosya/Yeni/E-posta iletisi seçilebileceği

Detaylı

DERS TANITIM BİLGİLERİ. Dersin Adı Kodu Yarıyıl Teori (saat/hafta) Laboratuar (saat/hafta) Uygulama (saat/hafta) AKTS. Yerel Kredi

DERS TANITIM BİLGİLERİ. Dersin Adı Kodu Yarıyıl Teori (saat/hafta) Laboratuar (saat/hafta) Uygulama (saat/hafta) AKTS. Yerel Kredi DERS TANITIM BİLGİLERİ Dersin Adı Kodu Yarıyıl Teori (saat/hafta) Uygulama (saat/hafta) Laboratuar (saat/hafta) Yerel Kredi AKTS Temel Bilgi ve İletişim BEB650 Güz / 0 2 0 1 2 Teknolojileri Kullanımı Bahar

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

Gramer Geliştirilmesi

Gramer Geliştirilmesi Altsözcüksel Birimlerle Türkçe için Sözcüksel İşlevsel Gramer Geliştirilmesi Özlem Çetinoğlu ve Kemal Oflazer Mühendislik ve Doğa Bilimleri Fakültesi Sabancı Üniversitesi İstanbul, 34956, Türkiye ozlemc@su.sabanciuniv.edu,

Detaylı

MALTEPE ÜNİVERSİTESİ TIP FAKÜLTESİ 2011-2012 AKADEMİK YILI İNGİLİZCE DERS PROGRAMI

MALTEPE ÜNİVERSİTESİ TIP FAKÜLTESİ 2011-2012 AKADEMİK YILI İNGİLİZCE DERS PROGRAMI MALTEPE ÜNİVERSİTESİ TIP FAKÜLTESİ 2011-2012 AKADEMİK YILI İNGİLİZCE DERS PROGRAMI Dersin adı: İngilizce Dersin kodu: E N G 2 5 1 AKTS Kredisi: 2 2.yıl - 1.yarıyıl Lisans Seçmeli 14h/ 30s Teorik: 14h/30s

Detaylı

TS Corpus: Herkes için Türkçe Derlem

TS Corpus: Herkes için Türkçe Derlem TS Corpus: Herkes için Türkçe Derlem Taner Sezer Bengü Sever Sezer Mersin Ünivesitesi Çalışmanın Amacı Derlemdilbilim ülkemizde son dönemde oldukça ilgi görmeye başlamış bir alandır. Bu alanda çeşitli

Detaylı

1. VERİ TABANI KAVRAMLARI VE VERİ TABANI OLUŞTUMA

1. VERİ TABANI KAVRAMLARI VE VERİ TABANI OLUŞTUMA BÖLÜM15 D- VERİ TABANI PROGRAMI 1. VERİ TABANI KAVRAMLARI VE VERİ TABANI OLUŞTUMA 1.1. Veri Tabanı Kavramları Veritabanı (DataBase) : En genel tanımıyla, kullanım amacına uygun olarak düzenlenmiş veriler

Detaylı

WADA 2014 TEST RAKAMLARI RAPORU (I)

WADA 2014 TEST RAKAMLARI RAPORU (I) WADA 2014 TEST RAKAMLARI RAPORU (I) 1-) WADA 2014 TEST RAKAMLARI RAPORU NE ANLATMAKTADIR? WADA 2014 TEST RAKAMLARI RAPORU, Laboratuvarlar Raporu ( 15 sayfa), Spor Dalları Raporu (47 sayfa), Test Yapan

Detaylı

Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme

Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme Doç. Dr. Bilge Karaçalı Biyomedikal Veri İşleme Laboratuvarı Elektrik-Elektronik

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

TÜBİTAK ULAKBİM EKUAL 8. Yıllık Toplantısı Mayıs 2012, Antalya. Uzman Halise ÖZDEMİRCİ

TÜBİTAK ULAKBİM EKUAL 8. Yıllık Toplantısı Mayıs 2012, Antalya. Uzman Halise ÖZDEMİRCİ TÜBİTAK ULAKBİM EKUAL 8. Yıllık Toplantısı 28-30 Mayıs 2012, Antalya Uzman Halise ÖZDEMİRCİ "Ülkemizin rekabet gücünü ve refahını artırmak ve sürekli kılmak için toplumun her kesimi ve ilgili kurumlarla

Detaylı

Ekonometri Ders Notları İçin Önsöz

Ekonometri Ders Notları İçin Önsöz Ekonometri Ders Notları İçin Önsöz Yrd. Doç. Dr. A. Talha YALTA Ekonometri Ders Notları Sürüm 2,0 (Ekim 2011) Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0

Detaylı

TrizSOFT. S.P.A.C Altı Sigma Danışmanlık

TrizSOFT. S.P.A.C Altı Sigma Danışmanlık 2009 TrizSOFT S.P.A.C Altı Sigma Danışmanlık İçerik Tanıtım... 3 TRIZ nedir?... 3 Çelişkiler Matrisi... 4 Parametreler... 5 Prensipler... 6 İnovasyon Haritası... 7 Radar Şeması... 8 Ürün Karşılaştırma...

Detaylı

Daha komplike uygulamalar elektronik ticaret, elektronik kimlik belgeleme, güvenli e-posta,

Daha komplike uygulamalar elektronik ticaret, elektronik kimlik belgeleme, güvenli e-posta, Çift Anahtarlı (Asimetrik Şifreleme) Bilgi Güvenliği: Elektronik iletişim, günümüzde kağıt üzerinde yazı yazarak yapılan her türlü iletişimin yerine geçmeye adaydır. Çok uzak olmayan bir gelecekte kişi/kuruluş/toplumların,

Detaylı

Bİ LGİ SAYARDA, JEODEZİ VE FOTOGRAMETRİ MESLEKİ TERİ MLERİ SÖ ZLÜĞ Ü

Bİ LGİ SAYARDA, JEODEZİ VE FOTOGRAMETRİ MESLEKİ TERİ MLERİ SÖ ZLÜĞ Ü Bİ LGİ SAYARDA, JEODEZİ VE FOTOGRAMETRİ MESLEKİ TERİ MLERİ SÖ ZLÜĞ Ü İ.Bülent GÜNDOĞ DU Yabancı bir dilde oluşturulmuş yayınları mümkün olduğ unca incelemek ve içeriğ i hakkında bilgi sahibi olmak, çok

Detaylı

TAGEM AÇIK ARŞİV SİSTEMİ BİLGİ NOTU

TAGEM AÇIK ARŞİV SİSTEMİ BİLGİ NOTU TAGEM AÇIK ARŞİV SİSTEMİ BİLGİ NOTU Elektronik açık arşivler Üniversite ve Enstitülerin bilimsel ürünlerini kaydeden ve koruyan dijital derlemelerdir. Bilimsel yayınlara açık erişim düşüncesinin bir ürünü

Detaylı

Springer E-book Collection http://www.springerlink.com/home/main.mpx. Springer E-book Collection Kullanım Kılavuzu

Springer E-book Collection http://www.springerlink.com/home/main.mpx. Springer E-book Collection Kullanım Kılavuzu E-Bülten Bilgi Merkezi E-Bülten in bu sayısında Bilgi Merkezi mizin abone olduğu Springer Ebook Collection ve Ebrary Academic Complete elektronik kitap veritabanları tanıtılmaktadır. Aralık 2007 Sayı:

Detaylı

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir.

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir. ÇELĐK YÜZEYLERĐN SINIFLANDIRILMASI * Cem ÜNSALAN ** Aytül ERÇĐL * Ayşın ERTÜZÜN *Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü unsalan@boun.edu.tr **Boğaziçi Üniversitesi, Endüstri Mühendisliği

Detaylı

T.C. KARABÜK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİĞİ BÖLÜMÜ. Karabük Üniversitesi Mühendislik Fakültesi Tez Hazırlama Kılavuzudur

T.C. KARABÜK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİĞİ BÖLÜMÜ. Karabük Üniversitesi Mühendislik Fakültesi Tez Hazırlama Kılavuzudur T.C. KARABÜK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİĞİ BÖLÜMÜ Karabük Üniversitesi Mühendislik Fakültesi Tez Hazırlama Kılavuzudur Öğrencinin İsmi Öğrenci Numarası Tez Danışmanı Prof./Doç./Yrd. Doç.

Detaylı

Pardus Temel Seviye Kullanıcı Eğitimi. Sürüm 1.0 13 Ağustos 2012 Pardus 2011.3K Fatih Akıllı Tahta sürümüne göre hazırlanmıştır.

Pardus Temel Seviye Kullanıcı Eğitimi. Sürüm 1.0 13 Ağustos 2012 Pardus 2011.3K Fatih Akıllı Tahta sürümüne göre hazırlanmıştır. Pardus Temel Seviye Kullanıcı Eğitimi Sürüm 1.0 13 Ağustos 2012 Pardus 2011.3K Fatih Akıllı Tahta sürümüne göre hazırlanmıştır. Bu bölümde, Pardus projesinin ne şekilde ortaya çıktığı ve amaçları açıklanacaktır.

Detaylı

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması 1 Emre DANDIL Bilecik Ş. Edebali Üniversitesi emre.dandil@bilecik.edu.tr +90228 214 1613 Sunum İçeriği Özet Giriş

Detaylı

ORDU ÜNİVERSİTESİ AÇIK ERİŞİM SİSTEMİ YÖNERGESİ

ORDU ÜNİVERSİTESİ AÇIK ERİŞİM SİSTEMİ YÖNERGESİ ORDU ÜNİVERSİTESİ AÇIK ERİŞİM SİSTEMİ YÖNERGESİ Amaç Madde 1 - (1) Bu yönerge, Ordu Üniversitesi adresli bilimsel ve entelektüel çalışmaların, Ordu Üniversitesi Açık Erişim Sistemi nde depolanarak bilim

Detaylı

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K);

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K); 2009-2010 BAHAR DÖNEMİ MC 689 ALGORİTMA TASARIMI ve ANALİZİ I. VİZE ÇÖZÜMLERİ 1. a) Böl ve yönet (divide & conquer) tarzındaki algoritmaların genel özelliklerini (çalışma mantıklarını) ve aşamalarını kısaca

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

ÜNİTE 14 ŞEKİL BİLGİSİ-II YAPIM EKLERİ. TÜRK DİLİ Okt. Aslıhan AYTAÇ İÇİNDEKİLER HEDEFLER. Çekim Ekleri İsim Çekim Ekleri Fiil Çekim Ekleri

ÜNİTE 14 ŞEKİL BİLGİSİ-II YAPIM EKLERİ. TÜRK DİLİ Okt. Aslıhan AYTAÇ İÇİNDEKİLER HEDEFLER. Çekim Ekleri İsim Çekim Ekleri Fiil Çekim Ekleri ŞEKİL BİLGİSİ-II YAPIM EKLERİ İÇİNDEKİLER BAYBURT ÜNİVERSİTESİ UZAKTAN EĞİTİM MERKEZİ Çekim Ekleri İsim Çekim Ekleri Fiil Çekim Ekleri HEDEFLER TÜRK DİLİ Okt. Aslıhan AYTAÇ Bu üniteyi çalıştıktan sonra;

Detaylı

Sisteme giriş yapıldığında ana sayfa üzerinde işlem menüleri, Hızlı erişim butonları ve mail gönderim istatistikleri yer alır.

Sisteme giriş yapıldığında ana sayfa üzerinde işlem menüleri, Hızlı erişim butonları ve mail gönderim istatistikleri yer alır. Kullanım Kılavuzu 1. Sisteme Giriş... 2 2. JetMail Ana Sayfa... 2 3. Kişi Listesi Ekleme... 3 3.1. Özel Alan Ekleme... 3 3.2. Segment Görüntüleme... 4 3.3. Bounced Kabul Edilen Mailler... 5 4. Kişi Ekleme...

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

İnternet Destekli Temel Bilgisayar Bilimleri Dersinde Anket Uygulaması

İnternet Destekli Temel Bilgisayar Bilimleri Dersinde Anket Uygulaması İnternet Destekli Temel Bilgisayar Bilimleri Dersinde Anket Uygulaması Yalçın Ezginci Selçuk Üniversitesi Elk.-Elt.Mühendisliği Konya ANKET Anket, insanlardan fikirleri, duyguları, sağlıkları, planları,

Detaylı

İstanbul Bilgi Üniversitesi Kredili Lisans ve Önlisans Öğretim ve Sınav Yönetmeliği ne Tâbi Öğrencilerin Üniversite İçi Yatay Geçiş Yönergesi 1

İstanbul Bilgi Üniversitesi Kredili Lisans ve Önlisans Öğretim ve Sınav Yönetmeliği ne Tâbi Öğrencilerin Üniversite İçi Yatay Geçiş Yönergesi 1 İstanbul Bilgi Üniversitesi Kredili Lisans ve Önlisans Öğretim ve Sınav Yönetmeliği ne Tâbi Öğrencilerin Üniversite İçi Yatay Geçiş Yönergesi 1 Kabul eden makam, tarih ve sayı : Akademik Kurul, 30.06.2009,

Detaylı

İŞ VE MESLEK DANIŞMANLIĞI HİZMETLERİ

İŞ VE MESLEK DANIŞMANLIĞI HİZMETLERİ İŞ VE MESLEK DANIŞMANLIĞI HİZMETLERİ 2 BİREYSEL GÖRÜŞME Yüz yüze yapılan görüşmelerdir. Danışanın yeterlilikleri ve yetkinlikleri doğrultusunda İşe yönlendirme Aktif programlara yönlendirme Ya da diğer

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : YABANCI DİL I (İNGİLİZCE) Ders No : 0350040003 Teorik : 2 Pratik : 0 Kredi : 2 ECTS : 3 Ders Bilgileri Ders Türü Öğretim

Detaylı

YÜZÜNCÜ YIL ÜNİVERSİTESİ ÖN LİSANS VE LİSANS DÜZEYİNDEKİ YATAY GEÇİŞ YÖNERGESİ

YÜZÜNCÜ YIL ÜNİVERSİTESİ ÖN LİSANS VE LİSANS DÜZEYİNDEKİ YATAY GEÇİŞ YÖNERGESİ YÜZÜNCÜ YIL ÜNİVERSİTESİ ÖN LİSANS VE LİSANS DÜZEYİNDEKİ YATAY GEÇİŞ YÖNERGESİ Amaç Madde 1- (1) Bu yönergenin amacı, başka Yükseköğretim Kurumlarındaki önlisans ve Lisans düzeyindeki öğrencilerin Yüzüncü

Detaylı

Akdeniz Üniversitesi

Akdeniz Üniversitesi F. Ders Tanıtım Formu Dersin Adı Öğretim Dili Akdeniz Üniversitesi Bilgi Teknolojileri Kullanımı Türkçe Dersin Verildiği Düzey Ön Lisans ( ) Lisans (x) Yüksek Lisans( ) Doktora( ) Eğitim Öğretim Sistemi

Detaylı

SMTP Protokolü ve Spam Mail Problemi

SMTP Protokolü ve Spam Mail Problemi SMTP Protokolü ve Spam Mail Problemi M. Erkan YÜKSEL, Şafak Durukan ODABAŞI İstanbul Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Bu çalışmada, Özet Antispam/antivirüs programı filtresinden

Detaylı

CORINE 1990 ve 2006 Uydu Görüntüsü Yorumlama Projesi. Kurum adı : T.C. Orman ve Su İşleri Bakanlığı. Proje durumu : Tamamlandı.

CORINE 1990 ve 2006 Uydu Görüntüsü Yorumlama Projesi. Kurum adı : T.C. Orman ve Su İşleri Bakanlığı. Proje durumu : Tamamlandı. CORINE 1990 ve 2006 Uydu Görüntüsü Yorumlama Projesi Kurum adı : T.C. Orman ve Su İşleri Bakanlığı Proje durumu : Tamamlandı. Uygulama adresleri: http://aris.cob.gov.tr/crn/ http://aris.cob.gov.tr/csa/

Detaylı

BİLKENT ÜNİVERSİTESİ KÜTÜPHANESİ TEZLER VERİTABANI

BİLKENT ÜNİVERSİTESİ KÜTÜPHANESİ TEZLER VERİTABANI BİLKENT ÜNİVERSİTESİ KÜTÜPHANESİ TEZLER VERİTABANI 1- Kütüphane ve BLISS in tarihçesi Bilkent Üniversitesi Kütüphanesi 1986 yılında 300 adet yabancı dergi aboneliği ve 5000 e yakın kitap koleksiyonu ile

Detaylı