Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1"

Transkript

1 Algoritmalar Arama Problemi ve Analizi Bahar 2016 Doç. Dr. Suat Özdemir 1

2 Arama Problemi Sıralama algoritmaları gibi arama algoritmaları da gerçek hayat bilgisayar mühendisliği problemlerinin çözümünde sıkça kullanılan algoritmalardır. Arama işlemi tek başına bir problem teşkil edebileceği gibi (örneğin veri tabanlarında kayıt arama işlemi) bir problemin çözümünde ara bir işlem de olabilir (işletim sistemlerin de işlem yapılabilmek için anahtar kelimelerin hafıza üzerinde bulunması). Bilgisayar mühendisliğinin temel bir problemi olması nedeni ile bir çok arama algoritması geliştirilmiştir. Arama işlemi ağaç gibi, çizge (graph) gibi daha gelişmiş veri yapıları üzerinde yapılabilmesine rağmen bu bölümde arama işleminin diziler üzerinde yapıldığı varsayılmıştır. Bahar 2016 Doç. Dr. Suat Özdemir 2

3 Arama Problemi Bu ders kapsamındaki temel arama problemi Farklı sayısal değerlerden oluşan a 1, a 2, a 3,, a n dizisi içinde herhangi bir x değerinin olup olmadığının ve varsa yerinin öğrenilmesi şeklinde tanımlanabilir. Problemin çözümü içinse x elemanına eşit olan a i elemanın bulunup indeks değerinin döndürülmesi gerekmektedir. Eğer x = a i ise x söz konusu dizinin i. elemandır. Problemin çözümü için akla gelebilecek ilk fikir kaba kuvvet yöntemine dayalı doğrusal veya sıralı arama yöntemidir (Linear/sequential search). Bahar 2016 Doç. Dr. Suat Özdemir 3

4 Arama Problemi Insertion Sort algoritmasında olduğu gibi çoğu insanın küçük boyutlu dizilerde kullandığı içgüdüsel bir çözümdür. Doğal olarak böyle bir çözümden çok iyi bir çalışma zamanı performansı beklemek mümkün değildir. Geçtiğimiz derslerde öğrendiğimiz problem çözme yaklaşımları kullanılarak performans artışı sağlanabilir. Bu bağlamda böl-ve-yönet problem çözme tekniği uygulanarak arama işleminin performansı artırılabilir. Ancak, doğrusal arama algoritmasının avantajı arama yapılacak dizinin sırasız olduğu durumlarda da çalışabilmesidir. Böl-ve-yönet problem çözme tekniğine dayalı yöntemler ise arama yapılacak olan dizinin sıralı olmasını gerektirir. Bahar 2016 Doç. Dr. Suat Özdemir 4

5 Doğrusal (Sıralı) Arama Algoritması En basit arama biçimi doğrusal aramadır. En baştan başlayarak teker teker bütün dizi, aranan eleman bulunana kadar taranır. Eğer aranan eleman dizide bulunursa bulunduğu pozisyonun indeks değeri sonuç olarak döndürülür. Aranan değer dizi içinde bulunamazsa buna ait bir mesaj sonuç olarak döndürülür. A 0.. n 1 dizisinde doğrusal arama yapacak algoritmaya ait sözde kod ve bir örnek aşağıda verilmiştir. Bahar 2016 Doç. Dr. Suat Özdemir 5

6 Doğrusal (Sıralı) Arama Algoritması Bahar 2016 Doç. Dr. Suat Özdemir 6

7 Örnek: Doğrusal Arama Yukarıda verilen dizide x=22 elemanı aranıyor olsun. Verilen sözde koda göre x değeri sıra ile 7, 12, 5 ve 22 değerleri ile karşılaştırılacaktır. 22 değeri ile olan karşılaştırma eşitlik sağlandığı için algoritma 22 nin indeks değeri olan 3 döndürecektir. Eğer x=40 için bir arama yapılsaydı hiç bir zaman eşleşme olmayacağı için algoritma 40 dizide bulunamadı mesajını döndürürdü. Bahar 2016 Doç. Dr. Suat Özdemir 7

8 Doğrusal Arama Çalışma Zamanı Analizi Oldukça basit bir algoritma olan Doğrusal Arama algoritması aranan değerin girdi dizisindeki pozisyonuna (veya varlığına) göre çok farklı performans gösterebilir. Bu nedenle en iyi, en kötü ve ortalama çalışma zamanlarına bakılması gerekmektedir. Bahar 2016 Doç. Dr. Suat Özdemir 8

9 En İyi Çalışma Zamanı Analizi Algoritmadan elde edilebilecek en iyi çalışma zamanı aranan değerin A dizisinin ilk elemanı olması durumunda oluşur. Bu durumda algoritma sadece 1 karşılaştırma yapıp sonlanacaktır, bu nedenle çalışma zamanı Ω 1 olarak ifade edilir. Bahar 2016 Doç. Dr. Suat Özdemir 9

10 En Kötü Çalışma Zamanı Analizi Benzer şekilde algoritmadan elde edilebilecek en kötü çalışma zamanı aranan değerin A dizisinin son elemanı olması veya dizide olmaması durumunda oluşur. Bu durumda algoritma tüm diziyi aranan x değeri ile karşılaştırmak zorundadır, yani algoritma n karşılaştırma yapıp sonlanacaktır, bu nedenle çalışma zamanı O n olarak ifade edilir. Buradan anlaşılacağı üzere en iyi veya en kötü çalışma zamanı tamamen girdi dizisine ve aranan değere bağlı olup algoritmanın rasgele bir girdi dizisi ve aranan eleman için performansı konusunda fikir vermemektedir. Bu nedenle ortalama çalışma zamanı analizi yapılmadır. Bahar 2016 Doç. Dr. Suat Özdemir 10

11 Ortalama Çalışma Zamanı Analizi Ortalama çalışma zamanı analizini yapmak için önce aşağıdaki iki kabulün yapılması gerekir. başarılı bir aramanın olma olasılığı p dir (0 p 1) aramada eşleşmenin herhangi bir i indeksinde olma olasılığı her i değeri için eşittir Bu kabuller dahilinde Doğrusal Arama algoritmasının ortalama çalışma zamanı analizi aşağıdaki gibi yapılabilir. Başarılı bir aramanın dizinin herhangi bir i. pozisyonunda olma olasılığı p/n dir. Ayrıca bu işlem için gerekli olan karşılaştırma sayısı da i dir. Bahar 2016 Doç. Dr. Suat Özdemir 11

12 Ortalama Çalışma Zamanı Analizi Benzer şekilde yapılan aramanın başarısız bir arama olma olasılığı (1 p) dir ve toplam n karşılaştırma gerektirir. Buna göre herhangi bir arama işlemi için gerekli olan toplam karşılaştırma sayısı K aşağıdaki şekilde ifade edilir: Bahar 2016 Doç. Dr. Suat Özdemir 12

13 Ortalama Çalışma Zamanı Analizi Elde edilen son ifade bize algoritmanın çalışma zamanı hakkında net bilgi vermektedir. Başarılı bir arama için p=1 olacağı için K = (n + 1)/2 yani yaklaşık olarak n/2 dir (ortalama durumda algoritma dizinin yarısı ile aranan değeri karşılaştıracaktır). Aynı şekilde başarısız bir arama olma durumunda ise p=0 olacağı için K=n olacaktır (aranan değer tüm dizi ile karşılaştırılacaktır). Sonuç olarak ortalama durum için de elde edilen çalışma zamanı asimptotik olarak Θ(n) şeklinde ifade edilir ki bu da en kötü çalışma zamanına eşittir. Bahar 2016 Doç. Dr. Suat Özdemir 13

14 İkili Arama (Binary Search) Algoritması Arama işlemi sırasında arama yapılacak olan dizinin sıralanmış olması arama işlemini oldukça kolaylaştırmaktadır. Gerçek hayat uygulamalarında arama yapılacak olan diziler bir kere oluşturulup üzerlerinde çok defa arama yapıldığı için (örneğin bir telefon rehberi uygulamasındaki isimler dizisi) sıralanmış dizilerin bu özelliğinden faydalanılabilir. Bahar 2016 Doç. Dr. Suat Özdemir 14

15 İkili Arama (Binary Search) Algoritması Eğer dizi sıralanmışsa küçük bir değeri aramak için dizinin başından başlayarak tüm elemanlara bakmak yersiz olacaktır. Örneğin, sözlükte arama yaparken, m harfi ile başlayan bir kelime için sözlüğün bütün sayfalarını baştan sona doğru aramak zaman kaybı olacaktır. Sözlük alfabetik sıralı olduğunu için, sözlüğü ortaya yakın bir yerden açmak ve aranan sözcüğün ilk harfleri ile açılan sayfadaki sözcüklerin ilk harflerini karşılaştırarak ileri veya geri gitmek çok daha çabuk sonuca ulaşmamızı sağlayacaktır. Bahar 2016 Doç. Dr. Suat Özdemir 15

16 İkili Arama (Binary Search) Algoritması Bu gibi sıralanmış diziler için ikili arama (binary search) algoritması O(lgn) çalışma zamanı ile doğrusal aramadan çok daha iyi performans göstermektedir. Yukarıda açıklandığı gibi ikili arama algoritması diziyi parçalara bölerek arama bölgesini daraltmaktadır. Algoritmanın çalışma mantığı kısaca şöyle özetlenebilir: Arama yapılacak dizi önce ortadan ikiye bölünür. Bahar 2016 Doç. Dr. Suat Özdemir 16

17 İkili Arama (Binary Search) Algoritması Ortadaki eleman pivot olarak seçilir (eğer dizi çift sayıda elemandan oluşuyorsa ise ortadaki iki elemandan herhangi biri pivot olabilir). Aranan eleman pivot ile karşılaştırılır. Eğer aranan eleman bu pivot eleman ise işlem bitmiştir. Aranan elemanın pivottan büyük veya küçük olmasına göre dizinin alt veya üst bölümü ile ortadan bölüp arama işlemi yeniden yapılır ve böylece aranan eleman bulunana kadar devam edilir. Bahar 2016 Doç. Dr. Suat Özdemir 17

18 İkili Arama (Binary Search) Algoritması Bahar 2016 Doç. Dr. Suat Özdemir 18

19 İkili Arama (Binary Search) Algoritması Örnek: Aşağıda verilen dizide 33 Bahar 2016 Doç. Dr. Suat Özdemir 19

20 İKİLİ ARAMA sol sag Bahar 2016 Doç. Dr. Suat Özdemir 20

21 İKİLİ ARAMA sol orta sag Bahar 2016 Doç. Dr. Suat Özdemir 21

22 İKİLİ ARAMA sol sag Bahar 2016 Doç. Dr. Suat Özdemir 22

23 İKİLİ ARAMA sol orta sag Bahar 2016 Doç. Dr. Suat Özdemir 23

24 İKİLİ ARAMA sol sag Bahar 2016 Doç. Dr. Suat Özdemir 24

25 İKİLİ ARAMA sol orta sag Bahar 2016 Doç. Dr. Suat Özdemir 25

26 İKİLİ ARAMA sol sag Bahar 2016 Doç. Dr. Suat Özdemir 26

27 İKİLİ ARAMA sol sag orta Bahar 2016 Doç. Dr. Suat Özdemir 27

28 İKİLİ ARAMA lo hi mid Bahar 2016 Doç. Dr. Suat Özdemir 28

29 İkili Arama Algoritması Çalışma Zamanı Analizi İkili aramada da algoritmanın çalışma zamanı performansı aranan değerin girdi dizisindeki pozisyonuna (veya varlığına) göre farklılık gösterebilir. Bu nedenle İkili Arama algoritmasının analizi için en iyi ve en kötü çalışma zamanlarına bakmak gerekir. En iyi çalışma zamanı aranan değerin dizinin tam ortasında olması durumudur ki bu durumda sadece 1 karşılaştırma yaparak algoritma sonlandırılır. Asimptotik olarak çalışma zamanı Ω(1) şeklinde ifade edilir. En kötü çalışma zamanı aranan değerin dizi içerinde bulunamaması durumunda ortaya çıkar. Bu durumda yapılan her karşılaştırma işleminden sonra arama yapılacak dizi boyutu yarıya düşeceğinden, en kötü durum için yapılacak karşılaştırma sayısı Bahar 2016 Doç. Dr. Suat Özdemir 29

30 İkili Arama Algoritması Çalışma Zamanı Analizi şeklinde tekrarlı olarak ifade edilebilir. T(1) = 1 olduğuna dikkat ediniz. n=2 k olması durumunda n=1 olana kadar toplam k bölünme olur, bu durumda eşitlik T(n) = k + 1 = lgn + 1 olur. Bu ifade 2 nin üssü olmayan herhangi bir n değeri için aşağıdaki gibi yazılabilir: T(n) = floor(lgn) + 1 Bahar 2016 Doç. Dr. Suat Özdemir 30

31 İkili Arama Algoritması Çalışma Zamanı Analizi Sonuç olarak en kötü durumda algoritmanın çalışma zamanı Θ(lgn) olarak özetlenebilir. İkili arama algoritmasının ortalama durum çalışma zamanı ise en kötü duruma eşittir ve asimptotik olarak Θ(lgn) ifadesi ile gösterilir. Bahar 2016 Doç. Dr. Suat Özdemir 31

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036 atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİŞKEK 2012 Ahmet Atakan

Detaylı

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K);

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K); 2009-2010 BAHAR DÖNEMİ MC 689 ALGORİTMA TASARIMI ve ANALİZİ I. VİZE ÇÖZÜMLERİ 1. a) Böl ve yönet (divide & conquer) tarzındaki algoritmaların genel özelliklerini (çalışma mantıklarını) ve aşamalarını kısaca

Detaylı

VERİ YAPILARI VE PROGRAMLAMA

VERİ YAPILARI VE PROGRAMLAMA VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

BIP116-H14-1 BTP104-H014-1

BIP116-H14-1 BTP104-H014-1 VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Algoritmalara Giriş 6.046J/18.401J

Algoritmalara Giriş 6.046J/18.401J Algoritmalara Giriş 6.046J/18.401J DERS 1 Algoritmaların Çözümlemesi Araya yerleştirme sıralaması Asimptotik çözümleme Birleştirme sıralaması Yinelemeler Prof. Charles E. Leiserson Dersle ilgili bilgiler

Detaylı

Alıştırma 1: Yineleme

Alıştırma 1: Yineleme Alıştırma 1: Yineleme Alıştırma 2: Yineleme H10->H2 çevrimini yapınız 7 2 1 3 2 1 1 1 2 0 Hafta 3: Yineleme Alıştırmaları(1) E1. (44/174) S değerini yineleme kullanarak hesap ediniz S = 1 + 2 + 3 + n Hafta3:

Detaylı

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR Algoritmaların Karşılaştırılması Doç. Dr. Aybars UĞUR Giriş Bir programın performansı genel olarak programın işletimi için gerekli olan bilgisayar zamanı ve belleğidir. Bir programın zaman karmaşıklığı

Detaylı

BMB204. Veri Yapıları Ders 12. Dizgi Eşleme (String Matching) Algoritmaları İleri Veri Yapıları

BMB204. Veri Yapıları Ders 12. Dizgi Eşleme (String Matching) Algoritmaları İleri Veri Yapıları BMB204. Veri Yapıları Ders 12. Dizgi Eşleme (String Matching) Algoritmaları İleri Veri Yapıları Erdinç Uzun NKÜ Çorlu Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Dersin Planı Dizgi Eşleme Algoritmaları

Detaylı

Algoritmalar ve Karmaşıklık

Algoritmalar ve Karmaşıklık Algoritmalar ve Karmaşıklık Ders 11 Algoritma Ayrık matematikte karşılaşılan bir çok problem sınıfı mevcuttur. Örneğin, verilen tamsayı grubu içindeki en büyük olanının bulunması, verilen bir kümenin bütün

Detaylı

Sıralı Erişimli Dosyalar. Kütük Organizasyonu 1

Sıralı Erişimli Dosyalar. Kütük Organizasyonu 1 Sıralı Erişimli Dosyalar Kütük Organizasyonu 1 Dosya Fiziksel depolama ortamlarında verilerin saklandığı mantıksal yapılara dosya denir. Dosyalar iki şekilde görülebilir. Byte dizisi şeklinde veya Alanlar

Detaylı

Problem Set 1 Çözümler

Problem Set 1 Çözümler Algoritmalara Giriş Eylül 30, 2005 Massachusetts Institute of Technology 6.046J/18.410J Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 8 0J Professors Erik D. Demaine ve Charles E. Leiserson

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

BIL222 Veri Yapıları ve Algoritmalar

BIL222 Veri Yapıları ve Algoritmalar BIL222 Veri Yapıları ve Algoritmalar 1. ĠKĠLĠ AĞAÇLAR (BIARY TREES) Bütün düğümlerinin derecesi en fazla iki olan ağaca ikili ağaç denir. Yani bir düğüme en fazla iki tane düğüm bağlanabilir ( çocuk sayısı

Detaylı

VERİ YAPILARI VE PROGRAMLAMA (BTP104)

VERİ YAPILARI VE PROGRAMLAMA (BTP104) VERİ YAPILARI VE PROGRAMLAMA (BTP104) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Arama Algoritmaları. Doğrusal Arama ve Binary Arama

Arama Algoritmaları. Doğrusal Arama ve Binary Arama Arama Algoritmaları Doğrusal Arama ve Binary Arama Doğrusal Arama-Örnek Dizi (Array) sayilistesiiçerisindeki sayılar aşağıdaki gibidir: 17 23 5 11 2 29 3 11, verilen dizi içerisinde aranacaksa doğrusal

Detaylı

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Bilgisayar Programlama Ders 9 Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Dizileri Fonksiyonlara Dizileri Fonksiyonlara Bir dizi argümanını fonksiyon içinde bir değer olarak kullanabilmek

Detaylı

Graflar bilgi parçaları arasındaki ilişkileri gösterirler.

Graflar bilgi parçaları arasındaki ilişkileri gösterirler. Graflar (Graphs) Graf gösterimi Uygulama alanları Graf terminolojisi Depth first dolaşma Breadth first dolaşma Topolojik sıralama Yrd.Doç.Dr. M. Ali Akcayol Graflar Graflar bilgi parçaları arasındaki ilişkileri

Detaylı

Ders 4: Diziler (Arrays( Arrays) barisgokce.com

Ders 4: Diziler (Arrays( Arrays) barisgokce.com Ders 4: Diziler (Arrays( Arrays) Hazırlayan : Öğr. Grv.. Barış GÖKÇE Đletişim im : www.barisgokce barisgokce.com Diziler Aynı tipteki bir veri gurubunun bir değişken içinde saklanmasıdır. Veriler Hafızada

Detaylı

Mantıksal çıkarım yapmak. 9 ve üzeri

Mantıksal çıkarım yapmak. 9 ve üzeri Aktivite 6 Savaş gemileri Arama algoritmaları Özet Bilgisayarların sıklıkla bir yığın verinin içerisinde bilgi bulmaları gerekir. Hızlı ve verimli yöntemler kullanarak bunu becerirler. Bu aktivitede 3

Detaylı

10 LU SAYISAL SİSTEMİ İLE 2 Lİ SAYISAL SİSTEMİ ARASINDA ÇEVİRİM UYGULAMASI

10 LU SAYISAL SİSTEMİ İLE 2 Lİ SAYISAL SİSTEMİ ARASINDA ÇEVİRİM UYGULAMASI 10 LU SAYISAL SİSTEMİ İLE 2 Lİ SAYISAL SİSTEMİ ARASINDA ÇEVİRİM UYGULAMASI Sayısal Sistemler Sayısal sistem, sayıları temsil eden simgeler için bir yazma sistemi yani matematiksel bir gösterim sistemidir.

Detaylı

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2 PROGRAMLAMA Bir problemin çözümü için belirli kurallar ve adımlar çerçevesinde bilgisayar ortamında hazırlanan komutlar dizisine programlama denir. Programlama Dili: Bir programın yazılabilmesi için kendine

Detaylı

SQL (Structured Query Language)

SQL (Structured Query Language) SQL (Structured Query Language) Genel SQL SQL çok yüksek seviyeli bir dildir. Biraz ingilizce bilgisi gerektirir. Programlama dillerine göre öğrenilmesi çok daha kolaydır. Çünkü programlama dillerindeki

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN1002 BİLGİSAYAR PROGRAMLAMA 2 VERİ YAPILARI Sunu Planı Kendini-gösteren Yapılar Dinamik Bellek Tahsisi Bağlı Listeler Yığınlar Kuyruklar Ağaçlar 1 Veri Yapıları Şu ana kadar, diziler, matrisler ve yapılar

Detaylı

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip

Detaylı

PROGRAMLAMAYA GİRİŞ. Öğr. Gör. Ayhan KOÇ. Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay.

PROGRAMLAMAYA GİRİŞ. Öğr. Gör. Ayhan KOÇ. Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay. PROGRAMLAMAYA GİRİŞ Öğr. Gör. Ayhan KOÇ Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay., 2007 Algoritma ve Programlamaya Giriş, Ebubekir YAŞAR, Murathan Yay., 2011

Detaylı

Veri Yapıları. Yrd. Doç. Dr. Şadi Evren ŞEKER

Veri Yapıları. Yrd. Doç. Dr. Şadi Evren ŞEKER Veri Yapıları Yrd. Doç. Dr. Şadi Evren ŞEKER Not: Bu sunumun amacı, İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü, Bilgisayar Mühendisliğine Giriş Dersi için genel amaçlı veri yapıları hakkında

Detaylı

Algoritma ve Akış Diyagramları

Algoritma ve Akış Diyagramları Algoritma ve Akış Diyagramları Bir problemin çözümüne ulaşabilmek için izlenecek ardışık mantık ve işlem dizisine ALGORİTMA, algoritmanın çizimsel gösterimine ise AKIŞ DİYAGRAMI adı verilir 1 Akış diyagramları

Detaylı

Görsel Programlama DERS 03. Görsel Programlama - Ders03/ 1

Görsel Programlama DERS 03. Görsel Programlama - Ders03/ 1 Görsel Programlama DERS 03 Görsel Programlama - Ders03/ 1 Java Dili, Veri Tipleri ve Operatörleri İlkel(primitive) Veri Tipleri İLKEL TİP boolean byte short int long float double char void BOYUTU 1 bit

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır.

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır. KÜMELER Kümelerin birleşimi (A B ): Kümelerin bütün elemanlarından oluşur. Kümelerin kesişimi (A B): Kümelerin ortak elemanlarından oluşur. Kümelerin Farkı (A \ B ) veya (A - B ): Birinci kümede olup ikinci

Detaylı

Excel de Düşeyara Vlookup) Fonksiyonunun Kullanımı

Excel de Düşeyara Vlookup) Fonksiyonunun Kullanımı FARUK ÇUBUKÇU EXCEL AKADEMİ Excel de Düşeyara Vlookup) Fonksiyonunun Kullanımı Excel de arama ve veri işleme konusunda en önemli fonksiyonlardan birisi olan DÜŞEYARA (İngilizce sürümde VLOOKUP) fonksiyonu

Detaylı

KODLAMA VE HATA BULMA TEKNİKLERİ

KODLAMA VE HATA BULMA TEKNİKLERİ Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Sayısal Tasarım Laboratuvarı KODLAMA VE HATA BULMA TEKNİKLERİ Kodlama eleketronik dünyasında çok sık kullanılan, hatta

Detaylı

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

Dr. Musa KILIÇ Öğretim Görevlisi http://kisi.deu.edu.tr/musa.kilic

Dr. Musa KILIÇ Öğretim Görevlisi http://kisi.deu.edu.tr/musa.kilic Dr. Musa KILIÇ Öğretim Görevlisi http://kisi.deu.edu.tr/musa.kilic BİLGİSAYAR DONANIM Donanım birimleri ekran, klavye, harddisk, ram YAZILIM Yazılımlar ise bilgisayarın donanım yapısını kullanılır hale

Detaylı

Telefon Rehberi Uygulaması

Telefon Rehberi Uygulaması Sayfa1 Telefon Rehberi Uygulaması Uygulama, temel düzeyde, telefon rehberi üzerinedir. Kullanıcı, telefon rehberine eklediği her bir kayıt içi ad, soyad, ev telefonu ve üç adet cep telefonu bilgisi girebilmektedir.

Detaylı

6.046J/18.401J DERS 7 Kıyım Fonksiyonu (Hashing I) Prof. Charles E. Leiserson

6.046J/18.401J DERS 7 Kıyım Fonksiyonu (Hashing I) Prof. Charles E. Leiserson Algoritmalara Giriş 6.046J/8.40J DERS 7 Kıyım Fonksiyonu (Hashing I) Doğrudan erişim tabloları Çarpışmaları ilmekleme ile çözmek Kıyım fonksiyonu seçimi Açık adresleme Prof. Charles E. Leiserson October

Detaylı

Başlayanlara AKTİF MATEMATİK

Başlayanlara AKTİF MATEMATİK KPSS - YGS - DGS - ALES Adayları için ve 9. sınıfa destek 0 dan Başlayanlara AKTİF MATEMATİK MEHMET KOÇ ÖNSÖZ Matematikten korkuyorum, şimdiye kadar hiç matematik çözemedim, matematik korkulu rüyam! bu

Detaylı

DOSYA ORGANİZASYONU. Çarpışma çözümleme yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Çarpışma çözümleme yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Çarpışma çözümleme yöntemleri Sunum planı Bağlantıları kullanarak çarpışmaların çözümlenmesi. Coalesced Hashing (Birleştirilmiş

Detaylı

4- ALGORİTMA (ALGORITHM)

4- ALGORİTMA (ALGORITHM) (ALGORITHM) Algoritma: Bir Problemin çözümünün, günlük konuşma diliyle adım adım yazılmasıdır. Algoritma sözcüğü Ebu Abdullah Muhammed İbn Musa el Harezmi adındaki Türkistan'lı alimden kaynaklanır. Bu

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

BÖLÜM 6. ÇEŞİTLİ KONULARDA ALGORİTMA VE AKIŞ ŞEMALARI

BÖLÜM 6. ÇEŞİTLİ KONULARDA ALGORİTMA VE AKIŞ ŞEMALARI BÖLÜM 1. GİRİŞ BÖLÜM 2. ALGORİTMALARA GENEL BAKIŞ BÖLÜM 3. ALGORİTMALAR BÖLÜM 4. ALGORİTMA VE AKIŞ ŞEMALARI BÖLÜM 5. DOSYALAMA SİSTEMLERİ BÖLÜM 6. ÇEŞİTLİ KONULARDA ALGORİTMA VE AKIŞ ŞEMALARI ALGORİTMALARA

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri Veri modelleri, veriler arasında ilişkisel ve sırasal düzeni gösteren kavramsal tanımlardır. Her program en azından bir veri modeline dayanır. Uygun

Detaylı

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

2. (v+w+x+y+z) 8 ifadesinin açılımında kaç terim vardır? 3. log 5 0, 69897 olduğuna göre 50 10 sayısı kaç basamaklıdır?

2. (v+w+x+y+z) 8 ifadesinin açılımında kaç terim vardır? 3. log 5 0, 69897 olduğuna göre 50 10 sayısı kaç basamaklıdır? Ayrık Hesaplama Yapıları A GRUBU 3.03.0 Numarası Adı Soyadı : CEVAP : ANAHTARI SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem

Detaylı

Algoritmalara Giriş 6.046J/18.401J

Algoritmalara Giriş 6.046J/18.401J Algoritmalara Giriş 6.046J/18.401J DERS 14 Yarışmacı Çözümleme Kendini Düzenleyen Listeler Öne Taşıma - Buluşsal Yaklaşım Öne Taşımanın Yarışmacı Çözümlemesi Prof. Charles E. Leiserson Kendini Düzenleyen

Detaylı

Giriş MİKROİŞLEMCİ SİSTEMLERİ. Elektronik Öncesi Kuşak. Bilgisayar Tarihi. Elektronik Kuşak. Elektronik Kuşak. Bilgisayar teknolojisindeki gelişme

Giriş MİKROİŞLEMCİ SİSTEMLERİ. Elektronik Öncesi Kuşak. Bilgisayar Tarihi. Elektronik Kuşak. Elektronik Kuşak. Bilgisayar teknolojisindeki gelişme Giriş MİKROİŞLEMCİ SİSTEMLERİ Bilgisayar teknolojisindeki gelişme Elektronik öncesi kuşak Elektronik kuşak Mikroişlemci kuşağı Yrd. Doç. Dr. Şule Gündüz Öğüdücü 1 Bilgisayar Tarihi Elektronik Öncesi Kuşak

Detaylı

Aktivite 8. Saati Yen Sıralama ağları

Aktivite 8. Saati Yen Sıralama ağları Aktivite 8 Saati Yen Sıralama ağları Özet Bilgisayarlar hızlı olsalar da, problemleri çözme hızları sınırlıdır. Bu işleri hızlandırmanın bir yolu birkaç bilgisayar kullanarak problemin her bir parçasını

Detaylı

1. Excel Dönüşümü : 2. Rapor Master Tanımları :

1. Excel Dönüşümü : 2. Rapor Master Tanımları : Programın Amacı : Bu Program As/400 Sistemindeki herhangi bir veya birden fazla file ı kullanarak istenilen şekilde sorgulama yaparak elde edilen bilgileri Excel Formatında Pc deki istenilen bir yere kaydetmek.

Detaylı

Veritabanı. SQL (Structured Query Language)

Veritabanı. SQL (Structured Query Language) Veritabanı SQL (Structured Query Language) SQL (Structured Query Language) SQL, ilişkisel veritabanlarındaki bilgileri sorgulamak için kullanılan dildir. SQL, bütün kullanıcıların ve uygulamaların veritabanına

Detaylı

DOSYA ORGANİZASYONU. Doğrudan erişimli dosya organizasyonu ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Doğrudan erişimli dosya organizasyonu ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Doğrudan erişimli dosya organizasyonu Sunum planı Doğrudan erişimli dosyalar Anahtar değerin tek adres olması durumu Anahtar

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

ATATÜRK ÜNİVERSİTESİ BİLGISAYAR MÜHENDİSLİĞİ BÖLÜMÜ BM 104- NESNEYE YÖNELİK PROGRAMLAMA DERSİ 2013-2014 BAHAR DÖNEMİ ÖDEV-3

ATATÜRK ÜNİVERSİTESİ BİLGISAYAR MÜHENDİSLİĞİ BÖLÜMÜ BM 104- NESNEYE YÖNELİK PROGRAMLAMA DERSİ 2013-2014 BAHAR DÖNEMİ ÖDEV-3 ATATÜRK ÜNİVERSİTESİ BİLGISAYAR MÜHENDİSLİĞİ BÖLÜMÜ BM 104- NESNEYE YÖNELİK PROGRAMLAMA DERSİ 2013-2014 BAHAR DÖNEMİ ÖDEV-3 (Son Teslim Tarihi: 06.06.2014 17:30 a kadar ) Teslim: Arş. Gör. Ferhat Bozkurt

Detaylı

d) x TABAN ARĐTMETĐĞĐ

d) x TABAN ARĐTMETĐĞĐ YILLAR 00 00 00 00 00 007 008 009 010 011 ÖSS-YGS - 1 1 - - - - - - - TABAN ARĐTMETĐĞĐ Genel olarak 10 luk sayı sistemini kullanırız fakat başka sayı sistemlerine de ihtiyaç duyarız Örneğin bilgisayarın

Detaylı

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > =

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > = Week 9: Trees 1. TREE KAVRAMI 2. İKİLİ AĞAÇ VE SUNUMU 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI < 6 2 > = 1 4 8 9 1. TREES KAVRAMI Bir ağaç bir veya daha fazla düğümün (T) bir kümesidir : Spesifik olarak

Detaylı

Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları Veri yapısı, bilginin anlamlı sırada bellekte veya disk, çubuk bellek gibi saklama birimlerinde tutulması veya saklanması şeklini gösterir. Bilgisayar

Detaylı

Algoritmanın Hazırlanması

Algoritmanın Hazırlanması Algoritmanın Hazırlanması Algoritma, herhangi bir sorunun çözümü için izlenecek yol anlamına gelmektedir. Çözüm için yapılması gereken işlemler hiçbir alternatif yoruma izin vermeksizin sözel olarak ifade

Detaylı

MANTIK DEVRELERİ HALL, 2002) (SAYISAL TASARIM, ÇEVİRİ, LITERATUR YAYINCILIK) DIGITAL DESIGN PRICIPLES & PRACTICES (3. EDITION, PRENTICE HALL, 2001)

MANTIK DEVRELERİ HALL, 2002) (SAYISAL TASARIM, ÇEVİRİ, LITERATUR YAYINCILIK) DIGITAL DESIGN PRICIPLES & PRACTICES (3. EDITION, PRENTICE HALL, 2001) MANTIK DEVRELERİ DERSİN AMACI: SAYISAL LOJİK DEVRELERE İLİŞKİN KAPSAMLI BİLGİ SUNMAK. DERSİ ALAN ÖĞRENCİLER KOMBİNASYONEL DEVRE, ARDIŞIL DEVRE VE ALGORİTMİK DURUM MAKİNALARI TASARLAYACAK VE ÇÖZÜMLEMESİNİ

Detaylı

Problem Seti 2 Çözümler

Problem Seti 2 Çözümler Algoritmalara Giriş Ekim 7, 2005 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik D. Demaine ve Charles E. Leiserson Dağıtım 12 Problem Seti 2 Çözümler Problem 2-1. Bu (yaklaşık) sıralanmış

Detaylı

Selection Sort Insertion Sort

Selection Sort Insertion Sort Ozet Selection Sort Selection Sort Insertion Sort Linear Search.. Growth Rates. Implementation. Once dizinin en buyuk element ini bul ve bunu en son pozisyondaki element le degistir, daha sonra en buyuk

Detaylı

ÜNİT E ÜNİTE GİRİŞ. Algoritma Mantığı. Algoritma Özellikleri PROGRAMLAMA TEMELLERİ ÜNİTE 3 ALGORİTMA

ÜNİT E ÜNİTE GİRİŞ. Algoritma Mantığı. Algoritma Özellikleri PROGRAMLAMA TEMELLERİ ÜNİTE 3 ALGORİTMA PROGRAMLAMA TEMELLERİ ÜNİTE 3 ALGORİTMA GİRİŞ Bilgisayarların önemli bir kullanım amacı, veri ve bilgilerin kullanılarak var olan belirli bir problemin çözülmeye çalışılmasıdır. Bunun için, bilgisayarlar

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME Öğrenci başarısının veya başarısızlığının kaynağında; öğrenci, öğretmen, çevre ve program vardır. Eğitimde değerlendirme yapılırken bu kaynaklar dikkate alınmaz. Eğitimciler,

Detaylı

AKIŞ ŞEMASI AKIŞ ŞEMASI AKIŞ ŞEMASI ŞEKİLLERİ GİRİŞ

AKIŞ ŞEMASI AKIŞ ŞEMASI AKIŞ ŞEMASI ŞEKİLLERİ GİRİŞ GİRİŞ AKIŞ ŞEMASI Bir önceki ünitede algoritma, bilgisayarda herhangi bir işlem gerçekleştirmeden ya da program yazmaya başlamadan önce gerçekleştirilmesi düşünülen işlemlerin belirli bir mantık ve plan

Detaylı

III. Gizli Anahtar Kriptografi

III. Gizli Anahtar Kriptografi III. Gizli Anahtar Kriptografi http://akademikguvenlik.wordpress.com/ III.I Simetrik Şifreleme Kriptografi kullanıcılarının alet çantalarında şu altı araç bulunur: Simetrik şifreleme Hash fonksiyonları

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

EEM122SAYISAL MANTIK SAYICILAR. Elektrik Elektronik Mühendisliği Yrd. Doç. Dr. Hüseyin Sağkol

EEM122SAYISAL MANTIK SAYICILAR. Elektrik Elektronik Mühendisliği Yrd. Doç. Dr. Hüseyin Sağkol EEM122SAYISAL MANTIK BÖLÜM 6: KAYDEDİCİLER VE SAYICILAR Elektrik Elektronik Mühendisliği Yrd. Doç. Dr. Hüseyin Sağkol KAYDEDİCİLER VE SAYICILAR Flip-flopkullanan devreler fonksiyonlarına göre iki guruba

Detaylı

.. LİSESİ /.. ÖĞRETİM YILI SINIFI BİLGİSAYARDA OFİS PROGRAMLARI DERSİ 1.DÖNEM 2. SINAV SORULARIDIR Adı ve Soyadı: Sınıf ve No : 10 MUH.

.. LİSESİ /.. ÖĞRETİM YILI SINIFI BİLGİSAYARDA OFİS PROGRAMLARI DERSİ 1.DÖNEM 2. SINAV SORULARIDIR Adı ve Soyadı: Sınıf ve No : 10 MUH. .. LİSESİ /.. ÖĞRETİM YILI SINIFI BİLGİSAYARDA OFİS PROGRAMLARI DERSİ 1.DÖNEM 2. SINAV SORULARIDIR Adı ve Soyadı: Sınıf ve No : 10 MUH. A 1-a) Excel hangi işlemleri yapmada kullanılan bir programdır? Yazınız

Detaylı

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006 MC www.matematikclub.com, 2006 Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Permutasyon-Kombinasyon- Binom TEST I 1. Ankra'dan Đstanbul'a giden 10 farklı otobüs, Đstanbul'- dan Edirne'ye giden 6 farklı

Detaylı

BBM 231 Yazmaçların Aktarımı Seviyesinde Tasarım! Hacettepe Üniversitesi Bilgisayar Müh. Bölümü

BBM 231 Yazmaçların Aktarımı Seviyesinde Tasarım! Hacettepe Üniversitesi Bilgisayar Müh. Bölümü BBM 231 Yazmaçların Aktarımı Seviyesinde Tasarım! Hacettepe Üniversitesi Bilgisayar Müh. Bölümü Bu derste! Büyük, karmaşık sayısal sistemlerin tasarımı ele alınacaktır. ASM ve ASMD çizgeleri Tasarım Örnekleri

Detaylı

Temel Bilgisayar Programlama

Temel Bilgisayar Programlama Temel Bilgisayar Programlama Ders hakkında genel bilgi Dr. Tahir Emre Kalaycı 2012 Dr. Tahir Emre Kalaycı () Temel Bilgisayar Programlama 2012 1 / 12 İçerik 1 Ders hakkında bilgi Genel bilgiler Değerlendirme

Detaylı

KARİYER PLANLAMA Amaç ve Fayda Yayın Tarihi Kategori Ürün Grubu Modül Versiyon Önkoşulu Yükleme ve Gereken Dosyalar Yükleme Sonrası

KARİYER PLANLAMA Amaç ve Fayda Yayın Tarihi Kategori Ürün Grubu Modül Versiyon Önkoşulu Yükleme ve Gereken Dosyalar Yükleme Sonrası KARİYER PLANLAMA Amaç ve Fayda Yayın Tarihi Kategori Ürün Grubu Modül Versiyon Önkoşulu Yükleme ve Gereken Dosyalar Yükleme Sonrası İşlemler Bu doküman ile Netsis İnsan Kaynakları paketinde bulunan Kariyer

Detaylı

İnsan zekâsının çalışması sonucu ortaya çıkan düşünce ürünü, İletişim?

İnsan zekâsının çalışması sonucu ortaya çıkan düşünce ürünü, İletişim? Bilgi? İnsan zekâsının çalışması sonucu ortaya çıkan düşünce ürünü, İletişim? Kişilerin duygu, düşünce yada fikirlerini çeşitli yollarla başkasına aktarmasına iletişim denir. BİLGİ + İLETİŞİM = BİLİŞİM

Detaylı

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI Yrd. Doç. Dr. Uğur DAĞDEVİREN 2 3 Genel anlamda temel mühendisliği, yapısal yükleri zemine izin verilebilir

Detaylı

Özyineleme (Recursion)

Özyineleme (Recursion) C PROGRAMLAMA Özyineleme (Recursion) Bir fonksiyonun kendisini çağırarak çözüme gitmesine özyineleme (recursion), böyle çalışan fonksiyonlara da özyinelemeli (recursive) fonksiyonlar denilir. Özyineleme,

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

DOĞRU AKIM DEVRE ANALİZİ Ö. ŞENYURT - R. AKDAĞ ÜÇÜNCÜ BÖLÜM: OHM KANUNU, İŞ, ENERJİ VE GÜÇ

DOĞRU AKIM DEVRE ANALİZİ Ö. ŞENYURT - R. AKDAĞ ÜÇÜNCÜ BÖLÜM: OHM KANUNU, İŞ, ENERJİ VE GÜÇ ÜÇÜNCÜ BÖLÜM: OHM KANUNU, İŞ, ENERJİ VE GÜÇ Anahtar Kelimeler Enerji, ohm kanunu, kutuplandırma, güç,güç dağılımı, watt (W), wattsaat (Wh), iş. Teknik elemanların kariyerleri için ohm kanunu esas teşkil

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Saymanın Temelleri 1. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Ayşe nin Doğum Günü Partisi Saymanın Temelleri Ayşe

Detaylı

BÖLÜM 19 5. RAPORLAR. Şekil 5.1. Rapor sihirbazı ile rapor oluşturma 1. pencere.

BÖLÜM 19 5. RAPORLAR. Şekil 5.1. Rapor sihirbazı ile rapor oluşturma 1. pencere. BÖLÜM 19 5. RAPORLAR Raporlar; tablolardaki ve hazırlanan sorgulardaki bilgilerin istenilen düzenlemelere göre ekran veya yazıcıdan liste halinde alınabilmesi sağlayan bir ortamdır. Raporları hazırlayabilmek

Detaylı

DAO İLE SQL KOMUTLARI. Sql komutlarını artık veri tabanında kullanmaktan başka çaremiz yok arkadaşlar. Şimdi bu sql derslerimize başlayalım.

DAO İLE SQL KOMUTLARI. Sql komutlarını artık veri tabanında kullanmaktan başka çaremiz yok arkadaşlar. Şimdi bu sql derslerimize başlayalım. DAO İLE SQL KOMUTLARI Sql komutlarını artık veri tabanında kullanmaktan başka çaremiz yok arkadaşlar. Şimdi bu sql derslerimize başlayalım. SQL-1 SELECT En basit SQL cümleciği oluşturmak için SELECT sözcüğü

Detaylı

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25 1 İçindekiler 1. Bölüm: SIRALAMA (PERMÜTASYON)... 5 2. Bölüm: SEÇME (KOMBİNASYON)...13 3. Bölüm: BİNOM AÇILIMI...21 4. Bölüm: OLASILIK...25 5. Bölüm: FONKSİYONLARIN SİMETRİLERİ VE CEBİRSEL ÖZELLİKLERİ...37

Detaylı

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar Algoritma ve Programlamaya Giriş mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar İçerik Algoritma Akış Diyagramları Programlamada İşlemler o o o Matematiksel Karşılaştırma Mantıksal Programlama

Detaylı

TEMEL BİLGİTEKNOLOJİLERİ

TEMEL BİLGİTEKNOLOJİLERİ TEMEL BİLGİTEKNOLOJİLERİ Bilgiyi işlemekte kullanılan araçlar ikiye ayrılır. 1- Maddi cihazlar 2-Kavramsal araçlar. Kullanıcıve bilgisayarın karşılıklıetkileşimini sağlayan birimlerin genel adıgiriş-çıkışbirimleridir.

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

ELEKTRONİK TİCARETTE BİLGİ GÜVENLİĞİ TERİMLERİ

ELEKTRONİK TİCARETTE BİLGİ GÜVENLİĞİ TERİMLERİ ELEKTRONİK TİCARETTE BİLGİ GÜVENLİĞİ TERİMLERİ açık anahtar (public key): Açık anahtarlı bir kriptografik yöntem (algoritma) kullanan bir kullanıcının kendisine ait olan iki anahtarından kamuya açık olanı.

Detaylı

Dosyaların Özellikleri (Attribute) Dosya İşlemleri. İki Seviyeli Katalog Sistemleri. Tek Seviyeli Katalog Sistemleri. Hiyerarşik Katalog Sistemleri

Dosyaların Özellikleri (Attribute) Dosya İşlemleri. İki Seviyeli Katalog Sistemleri. Tek Seviyeli Katalog Sistemleri. Hiyerarşik Katalog Sistemleri Bilgilerin Uzun Vadeli Saklanması 8 DOSYA SİSTEMS STEMİ saklanacak veriler çok fazla olabilir veriler proses sonlandıktan sonra da kaybolmamalı bilgiye prosesler ortak olarak ulaşabilmeli 424 Dosya Sistemi

Detaylı

Yazarlar hakkında Editör hakkında Teşekkür

Yazarlar hakkında Editör hakkında Teşekkür İÇİNDEKİLER Yazarlar hakkında Editör hakkında Teşekkür XIII XIV XV Giriş 1 Kitabın amaçları 1 Öğretmen katkısı 2 Araştırma katkısı 2 Yansıma için bir ara 3 Sınıf etkinlikleri 3 Terminoloji üzerine bir

Detaylı

KÜTÜPHANE DEKİ KİTAPLARI ARAŞTIRMA KILAVUZU

KÜTÜPHANE DEKİ KİTAPLARI ARAŞTIRMA KILAVUZU KÜTÜPHANE DEKİ KİTAPLARI ARAŞTIRMA KILAVUZU Kütüphanede mevcut olan basılı ve elektronik bilgi kaynaklarını tarayabilmek için öncelikle http://kutuphane.ieu.edu.tr/ adresinden Kütüphane web sayfasına girmeniz

Detaylı

Java, Python ve Ruby Dillerinin Performans Karşılaştırması

Java, Python ve Ruby Dillerinin Performans Karşılaştırması Java, Python ve Ruby Dillerinin Performans Karşılaştırması Çanakkale Onsekiz Mart Üniversitesi Mustafa ŞAHİN Akademik Bilişim 2007 1 Dillerin seçim nedeni Java, Pyton ve Ruby Programlama dillerinin popülerliği

Detaylı

BİH 605 Bilgi Teknolojisi Bahar Dönemi 2015

BİH 605 Bilgi Teknolojisi Bahar Dönemi 2015 BİH 605 Bilgi Teknolojisi Bahar Dönemi 2015 Ders- 8 Dosya Sistemleri ve Dizinler Yrd. Doç. Dr. Burcu Can Buğlalılar Bilgisayar Mühendisliği Bölümü Bilgisayar Katmanları İçerik Dosya, dosya sistemi ve dizin

Detaylı

BİL 423 Bilgisayar Mimarisi 1. Ara Sınavı

BİL 423 Bilgisayar Mimarisi 1. Ara Sınavı MALTEPE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSİĞİ BÖLÜMÜ BİL 423 Bilgisayar Mimarisi 1. Ara Sınavı Öğrenci Adı Soyadı : Öğrenci no : Akademik yıl : 2015-2016 Dönem : Güz Tarih : 4.11.2015 Sınav yeri : MZ-4 Sınav

Detaylı

Giriş. İplik Modeli. geleneksel işletim sistemlerinde her prosesin özel adres uzayı ve tek akış kontrolü var.

Giriş. İplik Modeli. geleneksel işletim sistemlerinde her prosesin özel adres uzayı ve tek akış kontrolü var. Giriş 3 İPLİKLER geleneksel işletim sistemlerinde her in özel adres uzayı ve tek akış kontrolü var. aynı adres uzayında birden fazla akış kontrolü gerekebilir aynı adres uzayında çalışan paralel ler gibi

Detaylı

S. N ala l n n T OP OP A B Ğ Fatih i h A BL B AK K

S. N ala l n n T OP OP A B Ğ Fatih i h A BL B AK K DİJİTAL GÜVENLİK SİSTEMLERİ VE PGP S. Nalan TOPBAĞ nalan@turksis.com Fatih ABLAK fatih@turksis.com ŞİFRELEME VE ALGORİTMALARI Şifreleme : Bir bilginin içeriğini başkalarının anlayamayacağı hale getirilmesidir.

Detaylı

Bilgi Erişim Performans Ölçüleri

Bilgi Erişim Performans Ölçüleri Bilgi Erişim Performans Ölçüleri Yaşar Tonta Hacettepe Üniversitesi tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/ DOK324/BBY220 Bilgi Erişim İlkeleri DOK 220 Bahar 2005 2005.03.01 - SLAYT 1 Belge

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

Birliktelik Kuralları Analizi. Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT

Birliktelik Kuralları Analizi. Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT İş Zekası Çözümleri için i Çok Boyutlu Birliktelik Kuralları Analizi Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT İçerik 1 Veri Madenciliği 2 Birliktelik Kuralları Analizi 3 Uygulama 4 Algoritma 5 Sonuçlar

Detaylı