Ebat: px
Şu sayfadan göstermeyi başlat:

Download ""

Transkript

1 ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ METAL/TiO 2 /c-si/metal YAPILARINDA YÜZEY ŞARTLARININ ELEKTRİKSEL BELİRTKENLER ÜZERİNDEKİ ETKİSİ Osman PAKMA FİZİK MÜHENDİSLİĞİ ANABİLİM DALI ANKARA 2008 Her hakkı saklıdır

2 TEZ ONAYI Osman PAKMA tarafından hazırlanan Metal/TiO 2 /c-si/metal Yapılarında Yüzey Şartlarının Elektriksel Belirtkenler Üzerindeki Etkisi adlı tez çalışması 30/06/2008 tarihinde aşağıdaki jüri tarafından oy birliği ile Ankara Üniversitesi Fen Bilimleri Enstitüsü Fizik Mühendisliği Anabilim Dalı nda DOKTORA TEZİ olarak kabul edilmiştir. Danışman : Prof. Dr. Necmi SERİN Jüri Üyeleri: Başkan: Prof. Dr. Necmi SERİN, Ankara Üniversitesi Üye : Prof. Dr. Basri ÜNAL, Ankara Üniversitesi Üye Üye Üye : Prof. Dr. D. Mehmet ZENGİN, Ankara Üniversitesi : Prof. Dr. Necati YALÇIN, Gazi Üniversitesi : Prof. Dr. Bora ALKAN, Ankara Üniversitesi Yukarıdaki sonucu onaylarım. Prof.Dr. Orhan ATAKOL Enstitü Müdürü

3 ÖZET Doktora Tezi METAL/TiO 2 /c-si/metal YAPILARINDA YÜZEY ŞARTLARININ ELEKTRİKSEL BELİRTKENLER ÜZERİNDEKİ ETKİSİ Osman PAKMA Ankara Üniversitesi Fen Bilimleri Enstitüsü Fizik Mühendisliği Anabilim Dalı Danışman: Prof. Dr. Necmi SERİN Bu çalışmanın amacı yalıtkan tabakası sol-jel yöntemiyle hazırlanmış Al/TiO 2 /p-si (MIS) yapılarında yüzey şartlarının elektriksel belirtkenler üzerindeki etkisinin araştırılmasıdır. Öncelikli olarak cam yüzeyine farklı sıcaklıklarda hazırlanmış TiO 2 ince filmlerin optiksel, yapısal ve elektriksel özellikleri incelenerek hazırlama şartları hakkında bilgi edinilmiştir. Bu özellikleri incelemek üzere FTIR spektrumlarından, UV- VIS spektrumlarından, XRD desenlerinden, AFM görüntülerinden ve akım-gerilim (I- V) ölçümlerinden yararlanılmıştır. Daha sonra aynı şartlar altında hazırlanmış TiO 2 ince filmleri p-tipi silisyum alt tabakalar üzerine kaplanarak, bu yapılardan Al/TiO 2 /p-si metal/yalıtkan/yarıiletken (MIS) yapıları elde edilmiştir. Elde edilen Al/TiO 2 /p-si (MIS) yapılarının oda sıcaklığında I-V ve kapasite-gerilim (C-V) ölçümleri gerçekleştirilmiş ve yapıların temel elektriksel belirtkenleri tayin edilmiştir. Bu temel elektriksel belirtkenler yardımıyla yapıların ara yüzey enerji durumlarının değişimi tespit edilmiştir. Elde edilen bu veriler yardımıyla en iyi belirtkenlere sahip Al/TiO 2 /p-si (MIS) yapısı belirlenmiştir. Son olarak da belirlenmiş olan Al/TiO 2 /p-si (MIS) yapısının sıcaklığa bağımlı I-V ölçümleri yapılmıştır ve yapının akım-iletim kuramı hakkında bilgi edinilmiştir. Haziran 2008, 89 sayfa Anahtar Kelimeler: TiO 2, Sol-Jel, MIS, Ara yüzey durumları, Elektriksel belirtkenler. iii

4 ABSTRACT Ph. D. Thesis THE EFFECT OF SURFACE STATES ON THE ELECTRICAL CHARACTERISTICS OF METAL/TiO 2 /c-si/metal STRUCTURE Osman PAKMA Ankara University Graduate School of Natural and Applied Sciences Department of Physics Engineering Supervisor: Prof. Dr. Necmi SERİN The present study aims to investigate the effect of interface states on electrical parameters in Al/TiO 2 /p-si (MIS) structures whose insulator layers were prepared by the sol-gel method. Firstly, optical, structural, and electrical properties of TiO 2 thin films prepared on glass at different temperatures were examined to obtain information about their preparation conditions. In order to examine these conditions, their FT-IR spectra, UV-VIS spectra, XRD patterns, AFM images, and current-voltage (I-V) measurements were used. TiO 2 thin films prepared under the same conditions were then coated on p-type silicium wafers and from these structures, Al/TiO 2 /p-si metal/insulator/semi-conductor (MIS) structures were produced. The I-V and capacitance-voltage (C-V) measurements of the obtained Al/TiO 2 /p-si (MIS) structures were then performed at room temperature and the main electrical characteristics of the structures were determined. Using these main electrical characteristics, energy distribution profile of interface states of the structures was determined. Through the obtained data, the Al/TiO 2 /p-si (MIS) structure with the best characteristics was selected. Finally, temperature-dependent I-V measurements were conducted for the selected Al/TiO 2 /p-si (MIS) structure and information was obtained on the current transport theory of the structure. June 2008, 89 pages Key Words: TiO 2, Sol-Gel, MIS, Interface states, Electrical characteristics. iv

5 TEŞEKKÜR Tez çalışmam boyunca, çalışmalarımı yönlendiren, araştırmalarımın her aşamasında bilgi ve tecrübelerini esirgemeyerek katkıda bulunan sayın hocalarım Prof. Dr. Necmi SERİN ve Prof. Dr. Tülay SERİN e; çalışmalarımda birçok konuda yardımını gördüğüm sayın Doç. Dr. Şemsettin Altındal a; laboratuvar çalışmalarında yardımlarını esirgemeyen sayın Yrd. Doç. Dr. Hüseyin SARI ya, Dr. Tayfun UZUNOĞLU ya, Deniz Şener e, Özge HASANÇEBİ ye, Figen ÖZYURT KUŞ a, Nurcan YILDIRIM a ve Sibel GÜRAKAR a; FTIR ölçümlerindeki yardımlarından dolayı Doç. Dr. Meral Karakışla (Şahin) e; FTIR analizlerinde bilgilerine başvurduğum Arş. Gör. Cem TOZLU ya, Yrd. Doç. Dr. Ceylan ZAFER e; AFM ölçümlerindeki yardımlarından dolayı sayın Prof. Dr. Yalçın ELERMAN a; XRD ölçümlerindeki yardımlarından dolayı da Ercüment YÜZÜAK a; yardımlarından dolayı Prof. Dr. Ali Gencer e; desteklerinden dolayı sayın hocalarım Prof. Dr. Şener Oktik e ve Prof. Dr. Atilla Yücel e; çalışmalarım süresince birçok fedakârlık göstererek beni destekleyen eşime ve neşeleriyle hayatıma zevk katan sevgili kızlarıma; beni bu dünyaya getirip yetişmemde büyük emekleri olan rahmetle andığım annem ve babam a en derin duygularımla teşekkür ederim. Bu tez çalışması, 2005-K BİYEP numaralı ve AU-BAP numaralı proje kapsamında Ankara Üniversitesi Bilimsel Araştırma Projeleri (BAP) tarafından desteklenmiştir. Osman PAKMA Ankara, Haziran 2008 v

6 İÇİNDEKİLER ÖZET ABSTRACT TEŞEKKÜR SİMGELER DİZİNİ KISALTMALAR ŞEKİLLER DİZİNİ ÇİZELGELER DİZİNİ 1. GİRİŞ 1 2. KURAMSAL TEMELLER Metal/Yarıiletken Yapılar Metal/Yarıiletken Yapılarda Akım-İletim Kuramları Termoiyonik emisyon (TE) kuramı Alan emisyonu (AE) ve termoiyonik alan emisyonu (TAE) kuramı Akım iletiminde T 0 ın etkisi Metal/Yarıiletken Schottky Diyotların Engel Kapasitesi Metal/Yalıtkan/Yarıiletken (MIS) Yapılar Yığılma (accumulation) Tüketim (depletion) Terslenim (inversion) İdeallik Faktörü Engel Yüksekliği Ölçme Yöntemleri Akım-gerilim (I-V) belirtkenlerinden Kapasite-gerilim (C-V) belirtkenleri Seri Direnç ve Bulunma Yöntemleri Ara Yüzey Durumları Potansiyel Değişim Modeli Gaussian engel dağılımı P( φ b ) Akım ve kapasitans için etkin potansiyel engel yüksekliği Sıcaklığa bağlı potansiyel engel yüksekliği İdeallik faktörünün gerilim ve sıcaklığa göre değişimi 32 iii iv v ix xii xiii xvi vi

7 2.10 Sol-Jel Yöntemiyle İnce Film Kaplanması Daldırma yöntemi ile film kaplanması MATERYAL VE YÖNTEM Alt Tabakaların Hazırlanması KBr tablet alt tabakalarının hazırlanması Cam alt tabaka yüzeyinin temizlenmesi Silisyum yüzeylerinin temizlenmesi Sol-Jel Çözeltisinin Hazırlanması Filmlerin Kaplanması KBr Tabletler üzerine çözeltinin kaplanması Cam alt tabakasına film kaplanması Silisyum yüzeylerin film kaplanması Elektriksel ölçümler için cam yüzeylerin hazırlanması Yapıların Hazırlanması Al/p-Si/Al yapılarının hazırlanması Al/TiO 2 /p-si/al yapılarının hazırlanması Deneylerde Kullanılan Cihaz ve Düzenekler ARAŞTIRMA BULGULARI TiO 2 İnce Filmlerin Özellikleri Filmlerin optiksel özelliklerinin incelenmesi FTIR-spektrumlarının analizi Film kalınlığı ve enerji-bant aralığının bulunması Filmlerin yapısal özelliklerinin incelenmesi Yapısal özelliklerin X-ışını kırınım yöntemiyle incelenmesi Yapısal özelliklerin atomik kuvvet mikroskopu (AFM) ile incelenmesi Filmlerin elektriksel özelliklerinin incelenmesi Oda Sıcaklığındaki Elektriksel Belirtkenlerinin Belirlenmesi Al/p-Si yapısının elektriksel belirtkenlerinin belirlenmesi Akım-gerilim (I-V) ölçümleri Al/TiO 2 /p-si yapılarının elektriksel belirtkenlerinin belirlenmesi Akım-gerilim (I-V) ölçümleri Kapasite-gerilim (C-V) ölçümleri 60 vii

8 Ara yüzey durumlarının I-V ve C-V belirtkenlerinden tayini Düşük Sıcaklıklarda Elektriksel Belirtkenlerinin Belirlenmesi Al/TiO 2 /p-si Yapısının Düşük Sıcaklıklarda I-V Ölçümleri TARTIŞMA VE SONUÇ 77 KAYNAKLAR 85 ÖZGEÇMİŞ 88 viii

9 SİMGELER DİZİNİ A Al Å A * A ** C d C HF C LF C i C ma C 2 H 5 OH C 2 H 4 O 2 c 2 D n E g E c E v E F E(x) E 00 E a ε 0 ε i ε s G ma Hz H 2 O HF h Kontak alanı Alüminyum Angström Richardson sabiti Düzenlenmiş Richardson sabiti Geometrik kapasite Yüksek frekans kapasitesi Alçak frekans kapasitesi Yalıtkan tabaka kapasitesi Kuvvetli yığılma bölgesindeki ölçülen kapasite Etanol Glasiyel asetik asit Alıcı yoğunluğuna bağlı sabit Elektron difüzyon sabiti Yarıiletkenin yasak enerji bant aralığı İletkenlik bant kenarı enerjisi Değerlik bant kenarı enerjisi Fermi seviyesi Schottky bölgesindeki elektrik alanı Tünelleme parametresi Aktivasyon enerjisi Boşluğun elektrik geçirgenliği Yalıtkan tabakanın elektrik geçirgenliği Yarıiletkenin elektrik geçirgenliği Kuvvetli yığılma bölgesindeki ölçülen iletkenlik Frekans birimi Su Hidroflorik asit Planck sabiti ix

10 I I 0 J sm J ms J 0 J F K k KBr m m * m 0 N a N d N c N v N ss N sa N sb n(x) n i n f n s n N 2 P(V d ) p-si q Q sc Q ss Q m R s Akım Doyma akımı Yarıiletkenden metale doğru olan akım yoğunluğu Metalden yarıiletkene doğru olan akım yoğunluğu Doyma akım yoğunluğu Düz beslem akım yoğunluğu Termodinamik sıcaklık Boltzmann sabiti Potasyum bromür Buharlaşma oranı Elektronun etkin kütlesi Serbest elektron kütlesi Alıcı yoğunluğu Verici yoğunluğu İletkenlik bandındaki etkin taşıyıcı yoğunluğu Değerlik bandındaki etkin taşıyıcı yoğunluğu Yüzey durumları yoğunluğu Metal ile dengede olan ara yüzey durumlarının yoğunluğu Yarıiletken ile dengede olan ara yüzey durumlarının yoğunluğu Elektron yoğunluğu Gerçek taşıyıcı yoğunluğu Filmin kırılma indisi Camın kırılma indisi İdeallik faktörü Azot gazı Gaussian dağılım p-tipi silisyum Elektron yükü Yarıiletkendeki uzay yükü Yarıiletken üzerindeki yüzey yükü Metal üzerindeki yük Seri direnç x

11 Si SiO 2 SnO 2 Silisyum Silisyum dioksit Kalay dioksit (S 2 H 5 ) 3 N Trietilamin T T 0 T min TiO 2 Ti(OC 3 H 7 ) T min U V d V n V p V F V R V y V yi φ 0 Mutlak sıcaklık İdeallik faktörünün sıcaklık değişim katsayısı Minimum geçirgenlik Titanyum dioksit Titanium tetraispropoxide Minumum geçirgenlik Taşıyıcı hızı Difüzyon potansiyeli İletkenlik bandı ile Fermi seviyesi arasındaki enerji farkı Fermi seviyesi ile değerlik bandı arasındaki enerji farkı Düz beslem Ters beslem Yalıtkan üzerine düşen gerilim Yarıiletken üzerine düşen gerilim Yüzeydeki enerji seviyesi φ b Engel yüksekliği φ b0 Sıfır beslem engel yüksekliği φ m φ s Metalin iş fonksiyonu Yarıiletkenin iş fonksiyonu φ bn n-tipi yarıiletken için engel yüksekliği φ bp p-tipi yarıiletken için engel yüksekliği φ e φ b j φ b C φ b δ Etkin engel yüksekliği Ortalama Schottky engeli I-V ölçümlerinden hesaplanan engel yüksekliği C-V ölçümlerinden hesaplanan engel yüksekliği Yalıtkan tabaka kalınlığı xi

12 φ b Ara yüzey potansiyeli Schottky engel alçalması µ e Elektron hareketliliği µ p Deşiklerin hareketliliği Ω σ σ s α ρ χ s η W d Ohm Elektriksel iletkenlik Standart sapma Soğurma katsayısı Özdirenç Elektron yakınlığı Sıvının akışkanlığı Tüketme bölgesi genişliği KISALTMALAR A.C. AE AFM C-V D.C. FTIR I-V MS MIS MOS RCA TAE TED UV-VIS XRD Alternatif akım Alan emisyonu Atomik kuvvet mikroskopu Kapasite-gerilim Doğru akım Fourier dönüşüm kırmızı altı Akım-gerilim Metal/Yarıiletken Metal/Yalıtkan/Yarıiletken Metal/Oksit/Yarıiletken Radio Corporation of America Termoiyonik alan emisyonu Termoiyonik Emisyon difüzyon Morüstü-görünür X-Işını Kırınımı xii

13 ŞEKİLLER DİZİNİ Şekil 2.1.a Şekil 2.2 Şekil 2.3.a Şekil 2.4 Şekil 2.5 Metal ve n-tipi yarıiletken kontak oluşmadan, b. doğrultucu metal/n-tipi kontağın oluştuktan sonraki, c. Metal ve p-tipi yarıiletken kontak oluşmadan, d. doğrultucu metal/p-tipi kontağın oluştuktan sonraki enerji-bant gösterimi 5 Doğrultucu metal/n tipi yarıiletken kontakta: a. düz belsemde, b. ters beslemde enerji-bant gösterimi 6 Kontak oluşmadan, b. kontak oluştuktan sonraki omik metal/n-tipi yarıiletkenin enerji-bant gösterimi 7 Doğru belsemde metal/n-tipi yarıiletken yapıların farklı akım-iletim kuramları 7 Schottky engeli içindeki AE ve TAE (n-tipi yarıiletken): a. düz, b. ters beslem 12 Şekil 2.6 Farklı akım-iletim kuramlarını gösteren ( nkt / q) ( kt / q) grafiği 13 Şekil 2.7 Metal/n-tipi yarıiletken doğrultucu kontağında enerji-bant diyagramı ve Schottky tabakası 15 Şekil 2.8 Metal/n-tipi yarıiletken yapısında: a. φ (x) potansiyelinin x e göre değişimi, b. uzay yükü yoğunluğu ρ (x) in x e göre değişimi 16 Şekil 2.9 Metal/Yalıtkan/Yarıiletken (MIS) Yapısı 18 Şekil 2.10 Şekil 2.11 İdeal MIS diyodunun üç değişik davranıştaki eşdeğer devresi: a. yığılma, b. tüketim, c. tersinim 19 Denge durumunda ideal bir MIS yapısının enerji-bant diyagramı: a. p-tipi yarıiletken, b. n-tipi yarıiletken 20 Şekil 2.12 V 0 durumunda ideal MIS yapının enerji-bant durumu: a. yığılma, Şekil 2.13 G b. tüketim, c. tersinim 21 Homojen olmayan Schottky kontaklarının 3-boyutlu enerji-bant durumu 28 Şekil 2.14 Daldırma yöntemi ile film oluşturma aşamaları 34 Şekil 3.1 Çözelti hazırlama ve film kaplama aşamaları 38 Şekil 3.2 İki nokta yöntemi ile akım-gerilim ölçmek üzere hazırlanan örnek 40 Şekil 3.3.a Al/p-Si (MS), b. Al/TiO 2 /p-si (MIS) yapıları 41 xiii

14 Şekil 3.4 Yapıların belirtkenlerinin ölçülmesinde kullanılan bakır levha tutucu 41 Şekil 3.5 Isısal işlemlerde kullanılan o C Vecstar VCTF-4 difüzyon fırını 43 Şekil 3.6 I-V ve C-V sıcaklık ölçümleri için kurulmuş düzenek 44 Şekil 4.1 KBr tabletler üzerindeki TiO 2 un IR spektrumları 45 Şekil 4.2 TiO 2 ince filmlerin geçirgenlik-dalgaboyu eğrileri 46 Şekil TiO 2 ince filmlerin ( αhv) - hv grafiği 48 Şekil 4.4 Şekil 4.5 Şekil 4.6 Şekil 4.7 Cam alt tabaka üzerindeki: a. 5, b. 10 katlı TiO 2 ince filmlerin X-ışını kırınım desenleri 49 Cam alt tabaka üzerindeki TiO 2 filmlerin 2-boyutlu AFM görüntüleri: a. S1, b. S4, c. S2, d. S5, e. S3, f. S6 51 Cam alt tabaka üzerindeki TiO 2 filmlerin 3-boyutlu AFM görüntüleri: a. S1, b. S4, c. S2, d. S5, e. S3, f. S6 52 Cam alt tabaka üzerindeki: a. 5, b. 10 katlı TiO 2 filmlerin lnσ grafikleri 54 Şekil 4.8 Al/p-Si yapısının I-V eğrisi 56 Şekil 4.9 Al/TiO 2 /p-si yapılarının: a. I-V, b. lni-v eğrileri 58 Şekil 4.10 Al/TiO 2 /p-si yapılarının oda sıcaklığındaki I-V eğrilerinden elde edilen: a. dv/d(lni)- I, b. H(I)-I eğrileri 59 Şekil 4.11 Farklı frekanslardaki OP3 yapısının oda sıcaklığında: a. C-V, b. G/ω-V eğrileri 61 Şekil 4.12 Farklı frekanslarda OP3 yapısının: a. R s -V, b. R s -ln(f) eğrileri 62 Şekil 4.13 Al/TiO 2 /p-si (MIS) yapılarının 1 MHz deki C -2 -V eğrileri 63 Şekil 4.14 OP1, OP2 ve OP3 örneklerinin ara yüzey durum enerji dağılım eğrileri 69 Şekil 4.15 Düz beslemde OP3 yapısının sıcaklığa bağlı lni-v eğrileri 70 Şekil 4.16 OP3 yapısının: a. sıfır beslem engel yüksekliğinin ve ideallik faktörünün sıcaklıkla değişimi, b. İdeallik faktörünün 1000/T ile değişimi 71 Şekil 4.17 OP3 (MIS) yapısının ln(i 0 /T 2 )-1000/T ve ln(i 0 /T 2 )-1000/nT eğrileri 73 Şekil 4.18 OP3 (MIS) yapısının değişik sıcaklıklardaki sıfır beslem engel 1 T xiv

15 Şekil 4.19 Şekil 4.20 yüksekliğine karşı ideallik faktörü değişimi 74 OP3 (MIS) yapısının φap -q/2kt eğrisi 75 OP3 (MIS) yapısının yeniden düzenlenmiş ln(i 0 /T 2 )-q 2 σ 0 2 /2(kT) 2 -q/kt grafiği 76 xv

16 ÇİZELGELER DİZİNİ Çizelge 2.1 Sol-jel yönteminin yararlı ve yararsız tarafları 33 Çizelge 3.1 Cam yüzeye kaplanmış TiO 2 filmlerin hazırlama işlemleri 39 Çizelge 3.2 Al/p-Si ve Al/TiO 2 /p-si yapılarının hazırlama işlemleri 42 Çizelge 4.1 Cam alt tabaka üzerindeki TiO 2 ince filmlerin X-ışını kırınım desenleri, AFM görüntüleri ve UV-VIS-NIR spektrumları yardımıyla Hesaplanmış kristal, ortalama tanecik, ortalama pürüz (roughness) boyutları ve film kalınlıkları 47 Çizelge 4.2 Cam alt tabaka üzerindeki TiO 2 ince filmlerin hesaplanmış aktivasyon enerjileri 53 Çizelge 4.3 Al/TiO 2 /p-si (MIS) yapılarının oda sıcaklığında ölçülmüş I-V ve C-V (1 MHz) ölçümlerinden elde edilmiş temel belirtken değerleri 67 Çizelge 4.4 OP3 (MIS) yapısının değişik sıcaklıklardaki düz beslem I-V eğrilerinden elde edilmiş belirtken değerleri 76 xvi

17 1. GİRİŞ Günümüz teknolojisinde oldukça önemli bir yere sahip olan metal/yarıiletken (MS) kontaklardan hızlı anahtar uygulamaları, güneş pilleri, mikrodalga karıştırıcı algılayıcılar (dedektörler), frekans-gerilim değişimli kondansatörler (varaktörler) ve Schottky engel tabakalı alan etkili transistörler yapılmaktadır. Bu yapılarda uygun fiziksel koşullarda oluşabilen Schottky engel yüksekliği en önemli parametredir. Son yıllarda, engel yüksekliğin daha fazla arttırılması için ciddi bilimsel çalışmalar yapılmaktadır. Metal ve yarıiletken arasına çok ince bir yalıtkan tabakanın yerleştirilmesi bu yöntemlerden birisidir. Bugüne kadar yapılan çalışmalarda metal ve yarıiletken arasında değişik yalıtkan tabakalar kullanılmıştır. Silisyum dioksit (SiO 2 ) ve kalay dioksit (SnO 2 ) bugüne kadar en çok kullanılan yalıtkan ince filmlerdir (Karadeniz et al. 2004, Kanbur et al. 2005). Bu adı geçen yalıtkan malzemelerin; düşük iletkenliğe, yüksek optiksel geçirgenliğe, yüksek dielektrik katsayısına ve çevresel şartlara karşı dayanırlıkları söz konusudur. Titanyum dioksit (TiO 2 ) dalga boyu spektrumunun çok geniş bir bölgesinde yüksek bir geçirgenlik değerine sahiptir. Bundan dolayı son yıllardaki araştırmalarda büyük önem kazanmıştır. Dielektrik sabiti filmin hazırlama şartlarına bağlı olarak 7 ile 86 arasında değişmektedir (Fuyuki and Matsunami 1986, Ha et al. 1996, Vydianathan et al. 2001). Bu da tüm devre (entegre devre) teknolojisinde SiO 2 yerine TiO 2 in kullanılmasını gündeme getirmektedir. TiO 2 hazırlama şartlarına bağlı olarak; anatez (tetragonal), rutil (tetragonal) ve amorf (brookite-orthorhombic) fazlarında olabilmektedir (Bach and Krause 1996). İnce filmlerin çeşitli büyütme yöntemleri vardır. Bunlar; püskürtme, buharlaştırma, kimyasal biriktirme, sputtering ve sol-jel yöntemleri olarak sıralanabilir (Czapla et al. 1989, Chatelon et al. 1994, Ha et al. 1996, Bach et al. 1997). Bu yöntemlerden; sol-jel yönteminde oluşturulan ince filmlerin optiksel, yapısal ve elektriksel özelliklerinin kontrolü daha kolaydır ve daha nitelikli filmler söz konusudur. Ayrıca kullanılan düzeneğin kurulması daha ekonomiktir. 1

18 Son yıllarda yalıtkan/yarıiletken ara yüzeyinin incelenmesi ve akım-gerilim (I-V) davranışının anlaşılabilmesi için çok sayıda bilimsel çalışma yapılmakta ve çeşitli I-V, kapasite-gerilim (C-V) kuramları geliştirilmektedir. Schottky yapılarındaki ara yüzey durumlarının elektriksel belirtkenleri üzerindeki etkisinin anlaşılması ve denetlenmesi ideal I-V karakteristiğine yaklaşan Schottky diyotlarının, yarıiletken diyotlarının, transistörlerinin oluşturulmasına, bunların ömürlerinin uzun olmasına ve daha hızlı anahtarlama yapan yapıların elde edilmesine neden olacaktır. Bu çalışmada sol-jel daldırma yöntemiyle TiO 2 ince filmlerin cam alt tabakalara kaplanması; bu ince filmlerin yapısal, optiksel ve elektriksel özelliklerinin sıcaklığa bağlı olarak incelenmesi amaçlanmıştır. Bu özellikleri incelemek üzere FTIR spektrumlarından, UV-VIS-NIR spektrumlarından, XRD desenlerinden, AFM görüntülerinden ve I-V ölçümlerinden yararlanılması öngörülmüştür. Çalışmanın daha ileri aşamasında aynı TiO 2 ince filmlerinin <111> yönünde kesilmiş tek kristalli p-tipi silisyum üzerine kaplanması, bu yapılardan Al/TiO 2 /p-si metal/yalıtkan/yarıiletken (MIS) yapıları elde edilmesi, bu Al/TiO 2 /p-si (MIS) yapılarının oda sıcaklığında I-V ve C-V belirtkenlerinin ölçülmesi planlanmıştır. I-V ölçümlerinden ideallik faktörleri (n), doyma akımları (I 0 ), sıfır beslem engel yükseklikleri ( φ b0 ), seri direncleri (R s ) ve tünelleme faktörlerinin bulunması, buna ilave olarak C-V ölçümlerinden kesme gerilimleri (V 0 ), difüzyon potansiyelleri (V d ), alıcı yoğunlukları (N a ), sıfır beslem engel yükseklikleri ( φ ), tüketme tabakası genişlikleri (W d ) ve Fermi enerji seviyeleri b0( C V ) ( φf ) bulunması hedeflenmiştir. Bu değerlerden yapıların ara yüzey enerji durumlarının değişiminin tayinin ve nedenlerinin tespit edilmesi, bu sonuçlardan en iyi fiziksel özelliklere sahip Al/TiO 2 /p-si (MIS) yapısı belirlenmesi düşünülmüştür. 2

19 2. KURAMSAL TEMELLER 2.1 Metal/Yarıiletken Yapılar Bir metal yarıiletkene temas ettirildiğinde; ara bölge, metal ve yarıiletkenin iş fonksiyonlarına göre iki değişik elektriksel davranış sergiler. Genel olarak yüzey durumlarının bulunmadığı, metal/n-tipi yarıiletken kontağında metalin iş fonksiyonu ( φ m ), yarıiletkenin iş fonksiyonu ( φ s ) den büyük ise ( φ m > φs ) ara bölgede bir potansiyel engeli oluşur ve bu temas bölgesi doğrultucu kontak veya diğer bir deyimle Schottky kontağı olarak isimlendirilir. Bu engel yüksekliği yapıya uygulanan gerilimin kutuplarına bağlı olarak akımın bir yönde geçmesine diğer yönde geçmemesine neden olur. Şayet metalin iş fonksiyonu ( φ m ), yarıiletkenin iş fonksiyonu ( φ s ) den küçük ise φ < φ ), o zaman potansiyel engel yüksekliği oluşmaz ve kontaktan her iki yönde ( m s akım geçer, bu durumda temas bölgesi omik kontak olarak isimlendirilir. Metal/p-tipi yarıiletken kontaklarda ise simetrik bir durum sözkonusudur. Metal ve yarıiletkenin arasında yüzey durumlarının mevcut olmasında yukarıdaki durumlardan sapmalar olur. Şekil 2.1.a da görüldüğü gibi, metalin iş fonksiyonunun n-tipi yarıiletkenin iş fonksiyonundan büyük olması ( φ > φ ) serbest elektron veya serbestçe çok yakın olan m s elektronların sayısının metalde daha az, yarıiletkende daha fazla olduğunu gösterir. Diğer bir deyimle, metaldeki Fermi seviyesi, yarıiletkeninkinden daha aşağıdadır. Metal n-tipi yarıiletkene temas ettirildiğinde yarıiletkendeki elektronlar metale geçerler ve bu geçişi yaparken arkalarında verici olarak adlandırılan iyonize yük merkezleri (donorlar) bırakırlar. Bu pozitif yük merkezleri bir uzay yükü dağılımı oluştururlar. Yarıiletken tarafındaki elektron sayısı azalırken metal tarafındaki artar. Metal tarafındaki elektron sayısının artması metalin Fermi enerji düzeyini değiştirmez. Yarıiletken tarafındaki elektron sayısının azalması Fermi enerji düzeyinin yarıiletken tarafında aşağıya doğru kaymasına neden olur. Bunun sonucu olarak Şekil 2.1.b de görüldüğü gibi yarıiletken içerisine doğru yayılan potansiyel engeli oluşur. Bu potansiyel engelin yarıiletken tarafındaki yüksekliği, 3

20 qvd = φ φ (2.1) m s ile verilir. Burada V d difüzyon potansiyeli veya engel yüksekliği olarak tanımlanır. Potansiyel engelinin metal tarafındaki yüksekliği ise, qφ bn = φ χ (2.2) m s ile verilir. Burada χ s yarıiletkenin elektron yakınlığıdır. Şekil 2.1.b de görüldüğü gibi yarıiletkenin iletim bandındaki elektronlar metale geçerken qvd = φ φ engeli ile karşılaşırlar. Metal tarafında dik olarak yükselen potansiyel engeli, yarıiletken içinde W d genişliğine sahiptir, böylece yarıiletken tarafında yüklerden arınmış bir bölge oluşur ve bu bölgeye Schottky bölgesi, engel bölgesi, uzay yükü bölgesi veya arınma bölgesi denir. Bu ara bölge sığa özelliği gösterir ve bir kondansatör gibi davranır. Buna Schottky kapasitesi denir. Engel tabakasının kalınlığı, iyonize olmuş vericilerin sayısına ve difüzyon engel yüksekliğine bağlıdır. m s Şekil 2.1.c ve d de ise metal ve p-tipi yarıiletkenin temas öncesi ve sonrası enerji-bant durumları görülmektedir. Kontak yapılmadan önce yarıiletkenin Fermi seviyesi metalin Fermi seviyesinden φ φ ) kadar aşağıdadır. Metal ve p-tipi yarıiletken temas ( s m ettrildiğinde elektronlar metal ve yarıiletkenin Fermi seviyeleri eşitleninceye kadar metalden yarıiletken içersine doğru akarlar. Uzay yük bölgesindeki deşiklerin yoğunluğu alıcıların yoğunluğuna nispeten çok küçüktür ve ihmal edilebilir. Bu sebeple kontağın yarıiletken tarafında kalınlığı W d olan tüketim tabakası oluşur. Böylece uzay yük bölgesi iyonize olmuş alıcı atomları ile dolar. Yarıiletken tarafındaki deşikler için engel yüksekliği qvd = φ φ şeklindedir. s m 4

21 Şekil 2.1.a. Metal ve n-tipi yarıiletken kontak oluşmadan, b. doğrultucu metal/n-tipi kontağın oluştuktan sonraki, c. Metal ve p-tipi yarıiletken kontak oluşmadan, d. doğrultucu metal/p-tipi kontağın oluştuktan sonraki enerji-bant gösterimi Şekil 2.2.a da görüldüğü gibi metal/n-tipi yarıiletken kontağın metale pozitif gerilim uygulandığında durum düz beslem olarak tanımlanır ve metal tarafındaki engel yüksekliği aynı kalırken yarıiletken tarafındaki potansiyel engeli bu bölgedeki uzay yükü yoğunluğundan dolayı azalır. İletkenlik bandındaki enerji seviyeleri qv F kadar yükselmiş olduğundan yarıiletkenden metale doğru giden elektronlar için potansiyel engeli qv kadar alçalır ve metalden yarıiletkene elektron geçişi kolaylaşır. Kontaktan geçen akım uygulanan gerilimle üstel olarak artar. Şekil 2.2.b de görüldüğü gibi, kontağın metal tarafına negatif gerilim uygulandığında bu durum ters beslem olarak adlandırılır. Engelin yarıiletken tarafındaki kısmı uygulanan gerilimle yükselir. Bu durum elektronların geçişini zorlaştırır ve kontak yarıiletkenden metale geçen akım azalır. Belirli bir ters beslemden sonra artık yarıiletkenden metale 5

22 elektron geçişi olmayacağından dolayı kontaktan geçen akımı sadece metalden yarıiletkene termoiyonik emisyon yoluyla geçen elektronlar oluşturur. Engeli geçen elektronların sayısı sabit olacağından akım doyuma ulaşır ve sadece doyma akımı gözlenir. Yüzey durumlarının olmaması durumunda bu doyma akımı çok keskin ve değeri çok düşüktür. Şekil 2.2 Doğrultucu metal/n tipi yarıiletken kontakta: a. düz belsemde, b. ters beslemde enerji-bant gösterimi Metalin iş fonksiyonu n-tipi yarıiletkenin iş fonksiyonundan küçük olması ( φ < φ ) durumunda ise, Şekil 2.3.a da görüldüğü gibi yarıiletkenin Fermi enerji düzeyi metalin Fermi enerji düzeyinden düşüktür. Metal/n-tipi yarıiletken temasında elektronlar metalden yarıiletkene doğru geçerler ve bu olay denge durumuna erişilinceye kadar devam eder. Metalden yarıiletkene elektron geçmesi sonucu metalin Fermi enerji düzeyi değişmez, fakat yarıiletken elektron kazandığıdan dolayı Fermi enerji düzeyi yukarı doğru kayar. Bu durumda metalden yarıiletkene geçen elektronlar arkalarında iyonize merkezler bırakmadıklarından ve yarıiletkene geçen elektronlarda iyonize merkezler gibi davranmadıklarından kontak bölgesinde uzay yükü oluşmaz. Metalden yarıiletkene ve yarıiletkenden metale kolayca yük akışı olur. m s 6

23 Şekil 2.3.a. Kontak oluşmadan, b. kontak oluştuktan sonraki omik metal/n-tipi yarıiletkenin enerji-bant gösterimi 2.2 Metal/Yarıiletken Yapılarda Akım-İletim Kuramları Metal-yarıiletken yapılardan geçen akımın uygulanan gerilimle değişimini ifade etmek için çeşitli kuramlar ortaya atılmıştır. Bunların başlıcaları: (i) Termoiyonik Emisyon (TE) Kuramı; (ii) Difüzyon Kuramı; (iii) Termoiyonik Emisyon-Difüzyon (TED) Kuramı; (iv) Alan Emisyonu (AE) Kuramı; (v) Termoiyonik Alan Emisyonu (TAE) Kuramı; (vi) Tüketim Bölgesinde Taşıyıcı Oluşması (Generation) ve Tekrar Birleşmesi (Recombination) Kuramı; (vii) Azınlık Taşıyıcı Enjeksiyonu ve (viii) T 0 Etkili Akım İletim Kuramıdır (Rhoderick 1980, Sharma 1984, Sze and Kwog 2007). Metal/yarıiletken yapısında akım çoğunluk taşıyıcılarından oluşur. Şekil 2.4 te metal/ntipi yarıiletken yapılarda doğru beslem altında temel akım-iletim kuramları gösterilmiştir. Şekil 2.4 Doğru beslemde metal/n-tipi yarıiletken yapıların farklı akım-iletim kuramları (1) termoiyonik emisyon, (2) tünelleme, (3) tekrar birleşme, (4) elektronların difüzyonu, (5) boşlukların difüzyonu 7

24 Bir Schottky kontağında hangi kuramın geçerli olduğunu saptamak çoğu kez kolay değildir. Akım-iletim kuramı; yüzey durumları, uygulanan gerilim ve kontak bölgesinde oluşan elektrik alan tarafından belirlenir Termoiyonik emisyon (TE) kuramı Schottky kontaklarında yeterli ısısal enerji kazanan taşıyıcıların yarıiletkenden metale, ya da metalden yarıiletkene geçmeleri termoiyonik emisyon (TE) olayı olarak tanımlanır. TE modeli Bethe tarafından ileri sürülmüştür (Rhoederick et al. 1988, Sze and Kwok 2007). Bu teoreme göre, (a) Engel yüksekliği ( qφ B ), kt / q enerji değerinden çok büyüktür. (b) Isısal denge kurulmuş olup, net akımın akması bu dengeye etki etmez. (c) Engel eğiliminin biçimi önemsiz olup, akım engel yüksekliğine bağlıdır. (d) Schottky bölgesinde taşıyıcı çarpışmaları olmamaktadır. Yani taşıyıcıların ortalama serbest yolları Schottky bölgesinin kalınlığından daha büyüktür. (e) Görüntü kuvvetlerinin (image force) etkisi ihmal edilmektedir. Bu varsayımlardan dolayı, engel deseninin (profilinin) şekli önemsizdir ve akım akışı yalnızca engel yüksekliğine bağlıdır. Yarıiletkenden metale doğru olan akım yoğunluğu, engel potansiyelini aşmak için yeterli enerjiye sahip elektron dağılımının enerjisine ve yönelimine bağlı olarak verilir. Yarıiletkenden metale doğru olan akım I s m, potansiyel engelini geçmeye yetecek kadar enerjiyi sahip elektronların sayısına ve bunların hızı ile ifade edilir; I = s m qvx φf + qφb Adn (2.3) Buradaki φ F + qφb, x v ve A sırasıyla, metale termoiyonik yayınım için gerekli minimum enerjiyi, iletim yönündeki taşıyıcı hızını ve kontak alanını verir. Bu ifadelerden yararlanarak yarıiletkenden metale geçen elektronlar için akım denklemi, 8

25 I s m * 4πqm k = 3 h = * AA T 2 2 AT 2 q( Vn + V exp kt qφ b qv exp exp kt kt d ) qv exp kt (2.4) olur. Burada * m, k, h ve φ b ; taşıyıcının etkin kütlesini, Boltzmann sabitini, Planck sabitini ve V n ve V d nin toplamı olan engel yüksekliğini vermektedir. A *, termoiyonik yayınım için Richardson etki sabiti olarak adlandırılır ve A * 2 πqm k = (2.5) 3 h * 4 şeklinde verilir. Bu etkide kuvantum mekaniksel etki ve optiksel fonon saçılımı ihmal edilmiştir. p-tipi silisyum yarıiletken için Richardson sabitinin değeri 32 A/cm 2 K 2 dir. Metalden, yarıiletkene hareket eden elektronlar için engel yüksekliği aynı kaldığından dolayı, yarıiletkene akan akım yoğunluğu, uygulanan gerilimden etkilenmez. Bu akım yoğunluğu dengede (V=0 iken), yarıiletkenden metale geçen akım yoğunluğuna eşittir. Buna göre metalden yarıiletkene doğru akan akım, I m s = * AA T 2 qφ b exp kt (2.6) şeklinde ifade edilir. Toplam akım yoğunluğu 2.4 ve 2.6 bağıntısının toplamı olup, I n = * 2 qφ exp b qv qv AA T exp 1 = I 0 exp 1 kt kt kt (2.7) şeklinde ifade edilir. Buradaki I 0 doyma akımı olup, 9

26 φ b = * 2 q I 0 AA T exp (2.8) kt şeklinde ifade edilir Alan emisyonu (AE) ve termoiyonik alan emisyonu (TAE) kuramı Yüksek sıcaklık işlemlerinde veya yarıiletken çok fazla katkılandırıldığında tünel akımı baskındır. Termoiyonik emisyon kuramının yanında elektronlar, kuvantum mekaniğindeki tünelleme ile engel boyunca geçiş yaparlar. Bu durum Şekil 2.5 te görüldüğü gibi TE yanında iki şekilde gerçekleşir. Burada yarıiletken aşırı katkılanmıştır ve Fermi seviyesi iletim bandının altındadır. Az katkılı yarıiletkenlerde de tünelleme işlemi düz beslemde ortaya çıkar. Aşırı katkı nedeniyle tüketme bölgesi oldukça incedir. Düşük sıcaklıklarda, Fermi seviyesine çok yakın elektronlar yarıiletkenden metale doğru tünelleme yapabilir. Bu işleme alan emisyonu (AE) kuramı adı verilir. Yüksek sıcaklıklarda, elektronların önemli bir kısmı Fermi seviyesinin üstüne doğru yükselir. Bu elektronlar engelin üst seviyesine ulaşmadan metale tünelleme yapabilirler. Isısal olarak uyarılmış bu elektronların tünellemesi tünel alan emisyonu (TAE) olarak bilinir. Fermi seviyesi üzerindeki enerjiye sahip elektronları sayısı hızlıca azalır. Aynı zamanda engel kalınlığı ve yüksekliği de azalır. Bu yüzden bir enerji ( E m ) oluşur. TAE katkısı maksimum hale gelir. Sıcaklık yükselirse elektronlar yüksek enerjilere uyartılmış olurlar ve böylece tünelleme ihtimali hızlıca artar. Çünkü elektronların gördüğü engel daha ince ve düşüktür. Eğer sıcaklık daha da artarsa bütün elektronlar engelin üst kısmına ulaşırlar ve bu kez de termoiyonik emisyon kuramı baskınlık kazanır. Schottky engellerindeki tünellemeyi kuramsal olarak Padovani ve Stratton ve Rideout inceledi (Padovani and Stratton 1966, Sze and Kwok 2007). Alan emisyon sadece saf olmayan yarıiletkenlerde, düz beslem altında oluşur. Çok küçük düz beslemler dışında tünelleme söz konusu ise I-V belirtkeni, qv I = I exp s (2.9) E 0 10

27 şeklinde yazılabilir. Burada, ve E00 E0 = E00 coth (2.10) kt E 00 = qh N a * 4π m ε s 1/ 2 (2.11) şeklindedir. Burada * m ve N a sırasıyla elektronun etkin kütlesi ve alıcı yoğunluğudur. I s zayıf bir şekilde gerilime bağlı olup engel yüksekliğinin ve sıcaklığının bir fonksiyonudur. E 00 enerjisi, tünelleme işleminde önemli bir belirtken olup, kt / E00 tünelleme emisyonunun ve tünellemenin önemli bir ölçüsüdür. Düşük sıcaklıklarda E 00, kt ye nazaran büyük değer alır ve E0 E00 dır. ln I V eğrisinin eğimi sabit ve T den bağımsız olur. Bu durum alan emisyonu demektir. Yüksek sıcaklıklarda ( E 0 << kt), E 0 = kt olur. ln I V eğrisinin eğimi q / kt olur ki, bu da termoiyonik emisyona karşılık gelir. Orta sıcaklık değerleri için eğimi, Burada, q / nkt şeklinde yazabiliriz. n = E00 E00 coth (2.12) kt kt dir. TAE nun diyot akımına katkısı, E0 kt olduğu zaman mümkündür. TAE nun maksimum katkısı olduğu zamanki E m enerjisi, qv Em = (2.13) d 2 00 cos E kt 11

28 şeklindedir. Burada V d, toplam bant bükülme gerilimine karşılık gelir. bölgesi kıyısında iletim bandının altında ölçülür. E m ise, tüketim Şekil 2.5 Schottky engeli içindeki AE ve TAE (n-tipi yarıiletken): a. Düz, b. ters beslem Akım İletiminde T 0 ın Etkisi İdeallik faktörünün n >1 olması ara yüzey durumlarından ortaya çıkıyorsa, n sıcaklıktan bağımsız olmalıdır. Fakat n >1 olması eğer TAE dan veya tüketim bölgesindeki yeniden birleşme akımlarından kaynaklanıyorsa, n sıcaklığa bağlıdır. Schottky diyotlarının çoğunluğunda n sıcaklığa bağlıdır. T 0 etkili akım denklemi, I ** 2 qφ qv = AA T exp b exp 1 k( T + T0 ) k( T + T0 ) (2.14) şeklinde ifade edilir (Saxena 1969, Sharma 1984). Burada T 0 geniş bir sıcaklık aralığında sıcaklık ve gerilimden bağımsız olan sabit bir parametredir. n'nin sıcaklığa bağlılığı deneysel olarak n = 1+ ( T0 / T ) olarak ifade edilir. Eğer I akımı, gerilimin fonksiyonu olarak değişik sıcaklıklarda ölçülürse ve nt de T nin fonksiyonu olarak çizilirse değişik akım-iletim kuramları Şekil 2.6'da görüldüğü gibi belirlenebilir. I, II, III eğrileri, TE teorinin baskın olduğu mekanizmaları belirtir. Bunlar n=l, n >l ve T 0 etkili durumlarına karşılık gelir. I-V eğrisi TAE ve V eğrisi AE iletim mekanizmalarının etkin olduğu durumları gösterir (Visweswaran and Sharan 1979). 12

29 Şekil 2.6 Farklı akım-iletim kuramlarını gösteren ( nkt / q) ( kt / q) grafiği 2.3 Metal/Yarıiletken Schottky Diyotların Engel Kapasitesi Bir metal bir yarıiletkenle doğrultucu kontak yaptığında ara bölgede bir kapasite oluşur. Bu ara bölgede Poisson denklemi ve sınır şartları yardımıyla bilinmeyenler bulunabilir. Bir doğrultucu metal/yarıiletken kontaktaki potansiyel dağılım; φ( x, y, z) φ( x, y, z) φ( x, y, z) x y z ρ( x, y, z) = εε 0 (2.15) çözüldüğünde bu geçiş bölgesindeki engel yüksekliği ve dolayısıyla bu bölgenin kapasitesi bulunabilir. Bunun x, y ve z düzleminde çözümü karmaşıktır, bu nedenle akımın bir doğrultuda geçtiği varsayımıyla 2.15 bağıntısı 2 φ ρ( x) = 2 x εε 0 (2.16) eşitliğine indirgenir. Buna göre Poisson denkleminin çözümünün sınırdaki φ (x) potansiyel dağılımı bulunur. Şekil 2.7 deki enerji-bant diyagramında W d (tüketilmiş 13

30 bölge) engel bölgesinin genişliği, V uygulanan gerilim ve V d difüzyon potansiyeli olmak üzere x = 0 ' da φ(x) = 0 (2.17a) x = d φ (d) = q(v V) (2.17b) d = dφ(d) x d dx = 0 (2.17c) bulunur. ρ (x) uzay yükü yoğunluğunun verici ( N d ) ve iletim bandındaki elektron yoğunluğu farkına eşit olduğu düşünülürse ρ ( x) = q( N N) (2.18) d bağıntısı yazılır. Şekil 2.8.a da görüldüğü gibi x > d bölgesi için potansiyel sabit olduğundan, ρ ( x) = q( N N) = 0 (2.19) d yazılabilir. Bağıntı 2.19 da x > d bölgesi için N = N d bulunur. 0 < x < d bölgesi için q( V d + V ) >> kt ve oda sıcaklığında vericilerin tamamının iyonlaştığı düşünülürse ρ (x) ρ ( x ) qn (2.20) d şeklindedir. Bu bağıntı vericilerin tamamının oda sıcaklığında iyonlaşmış olmasına karşılık gelir. Bağıntı 2.20, 2.16 bağıntısında yerine konulursa elektrik alanını ifade eden 0 < x < d bölgesindeki dφ( x) E( x) = dx = qn εε d 0 ( x d) (2.21) 14

31 bağıntısı elde edilir. Bağıntı 2.21 in integralinin alınmasından metal/n-tipi yarıiletken yapısının potansiyelini veren qn d 1 2 φ ( x) = x xd (2.22) εε 0 2 bağıntısı bulunur. φm χ s qvd = ( φm s φ ) E C E F E V W d Schottky Tabakası x=0 x=d Şekil 2.7 Metal/n-tipi yarıiletken doğrultucu kontağında enerji-bant diyagramı ve Schottky tabakası 15

32 Şekil 2.8 Metal/n-tipi yarıiletken yapısında: a. φ (x) potansiyelinin x e göre değişimi, b. uzay yükü yoğunluğu ρ (x) in x e göre değişimi 2.17a, 2.17b ve 2.17c bağıntılarındaki sınır koşulları 2.21 ve 2.22 bağıntılarında kullanılırsa Schottky bölgesinin genişliğini engel gerilimine bağlayan W d = 2εε 0 ( V V ) qn d d (2.23) bağıntısı elde edilir. Bu bağıntı düz beslem için geçerlidir. Ters beslemde V yerine V konulmalıdır. Bağıntıya göre Schottky engel genişliği uygulanan gerilim ve gerilimin yönüyle (polaritesiyle) veya yarıiletkenin safsızlık sayısıyla değiştirilebilir. Ayrıca Schottky tabakasının genişliği kullanılan yarıiletkenin safsızlık miktarı ayarlanarak istenilen değere getirilebilir. Geçiş bölgesindeki uzay yükü; iyonize verici sayısı, bölgenin genişliği ve elektron yükünün çarpımına Q = qn W (2.24) sc d d eşittir bağıntısı, 2.24 bağıntısında yerine konulursa Q sc = 2εε 0 qn ( V V ) (2.25) d d 16

33 bağıntısı elde edilir. Diğer taraftan kapasitenin Q dq C = = (2.26) V dv şeklinde olduğu hatırlanır ve 2.25 bağıntısında Q sc nun V ye göre türevi alınırsa Schottky kapasitesini veren ve küçük ac sinyali yardımıyla ölçülen diferansiyel kapasite olarak da isimlendirilen C d ε s = W d = qεε N 2( V d 0 d V ) (2.27) kapasite ifadesi bulunur bağıntısı dikkat edilirse Schottky kapasitesinin düz beslemde uygulanan gerilimle arttığı, ters beslemde azaldığı görülür. Schottky kapasitesi belirli bir ters beslem geriliminden sonra εε C = 0 (2.28) d geometrik kapasite değerine ulaşır bağıntısı 1 2( V V ) d = (2.29a) 2 C qεε N d 0 d veya 2 d d(1/ C ) 2 = (2.29b) dv qεε N 0 d N d 2 1 = 2 qεε 0 d(1/ Cd ) / dv (2.29c) 17

34 şekillerinde de yazılabilir. N sabit olmak koşuluyla, d 2 1/ C nin V ye karşı çizilmiş grafiği çizgiseldir ve eğiminden N d yi bulabiliriz. Eğer N d sabit değil ise, 2.29c bağıntısında olduğu gibi değişen kapasiteye bağlı olarak katkı eğilimini belirleyebiliriz. 2.4 Metal/Yalıtkan/Yarıiletken (MIS) Yapılar Metal/yarıiletken arasında bazen kendiliğinden, bazende isteyerek yalıtkan bir tabaka oluşur. Böyle yapılar genelde metal/yalıtkan/yarıiletken (MIS) yapıları olarak isimlendirilir. Bu yapılar yarıiletken yüzeylerini, diğer bir deyimle yüzey durumlarını incelemek için çok yararlıdır. MIS yapılar genelde silisyum bir alt tabaka, bu alt tabakaya kontak yapılmış bir arka omik kontak ve bir oksit (yalıtkan) tabakası üzerine yer alan bir metal kontaktan oluşur. δ V Metal Yalıtkan veya oksit tabaka Silisyum alt tabaka Omik Kontak Şekil 2.9 Metal/Yalıtkan/Yarıiletken (MIS) Yapısı MIS yapılarda iki ayrı bölgede ara yüzey söz konusudur. Bunlardan biri metal/yalıtkan ara yüzeyi ve diğeri de yalıtkan/yarıiletken ara yüzeyidir. İdeal bir durumda yükler yarıiletkende ve yalıtkana yakın olan metal yüzeyinde bulunur. dc gerilim uygulandığında yalıtkan içinden akım geçmez. İdeal bir MIS diyotta Şekil 2.10 da görüldüğü gibi üç eşdeğer devre söz konusudur. Bu sistemler yığılma (accumulation), tüketim (depletion) ve tersinim (inversion) adını alır. Gerçekte MIS diyotlarında, yerleşmiş durumlar yarıiletken/yalıtkan ara yüzeyinde bulunur ve bu yüzden, ideal durumdan farklılıklar gösterir. Bazı durumlarda MIS diyotlarda yalıtkan tabakadan da akım geçer. 18

35 C yalıtkan (a) (b) C yalıtkan C tüketim (c) C yalıtkan C tüketim C tersinim Şekil 2.10 İdeal MIS diyodunun üç değişik davranıştaki eşdeğer devresi: a. yığılma, b. tüketim, c. tersinim İdeal MIS yapısının, V=0 durumunda enerji-bant diyagramı Şekil 2.11'de gösterilmiştir. Aşağıdaki özellikleri taşıyan yapı ideal MIS olarak tanımlanmaktadır: - Denge durumunda metalin iş fonksiyonu ( φ m ) ile yarıiletkenin iş fonksiyonu ( φ s ) arasındaki fark sıfırdır ( φ = 0 ) ve, ms Eg φ = + = 0 2 ms φm χ φb (n-tipi) (2.30a) q E g φ = + + = 0 2 ms φm χ φb (p-tipi) (2.30b) q şeklindedir. Buradaki φ B Fermi seviyesi ile saf yarıiletken Fermi enerji seviyesi arasındaki enerji farkıdır. - Metal ve yarıiletken tabakalar arasındaki yalıtkan veya oksit tabakanın bant genişliği büyük olduğu için ideal bir dielektrik gibi davranır. Yalıtkan içerisinde ve yalıtkan/yarıiletken ara yüzeyinde tuzaklar, sabit ve hareketli yükler bulunmaz. Aynı zamanda yalıtkan/yarıiletken ara yüzeyinde ara yüzey durumları ve ara yüzey yükleri de bulunmaz. 19

36 - Yalıtkanın bant aralığı o kadar büyüktür ki yalıtkanın iletkenlik bandındaki yük taşıyıcı yoğunluğu ihmal edilebilecek kadar küçüktür. - dc gerilim altında yalıtkan içerisinde yük aktarımı olmayıp sonsuz özdirenç gibi davranır. - Herhangi bir beslem altında, yapıdaki yükler yalıtkan ile bitişik, metal yüzeyindekiler ile yarıiletkendekiler eşit miktarda fakat zıt yüklüdür. Şekil 2.11 Denge durumunda ideal bir MIS yapısının enerji-bant diyagramı: a. p-tipi yarıiletken, b. n-tipi yarıiletken Yığılma (accumulation) Metal/yalıtkan/p-tipi yarıiletken (MIS) yapısının metal elektroduna negatif gerilim ( V < 0 ) uygulandığı zaman, bu gerilimden dolayı oluşan elektrik alan yarıiletkenin G çoğunluk yük taşıyıcısı olan boşlukları yarıiletken ara yüzeyine doğru çekecektir (Şekil 2.12.a). İdeal bir diyotta yük akışı olmadığı zaman Fermi enerji seviyesi yarıiletkende sabit kalır. Taşıyıcı yoğunluğu üstel olarak enerji farkına ( E E ) bağlı olduğundan, bant bükülmesi yarıiletken yüzeyinin yakınında çoğunluk taşıyıcı olan boşlukların yığılmasına sebep olur. Değerlik bandının yarıiletken ara yüzeyinde Fermi seviyesine yaklaştığı iletkenlik bandının da buna bağlı olarak yukarı doğru büküldüğü bu duruma, çoğunluk yük taşıyıcıların ara yüzeyde birikmelerinden dolayı "yığılma" adı verilir. Bu durumda ara yüzeyde biriken yükün yüzey yükü olması sebebiyle eşdeğer kapasite C COX olur. F V CSC dolayısıyla 20

37 Şekil 2.12 VG 0 durumunda ideal MIS yapının enerji-bant durumu: a. Yığılma, b. tüketim, c. tersinim Tüketim (depletion) Metal/yalıtkan/p-tipi yarıiletken (MIS) yapısının metal elektrotuna küçük bir pozitif gerilim ( V > 0 ) uygulandığı zaman yalıtkan içinde oluşan elektrik alan yarıiletken ara G yüzeyindeki boşlukları yüzeyden uzaklaştırır. Bu durumda yarıiletken yüzeyindeki boşluk yoğunluğu, yarıiletkenin iç kısımlarındaki boşluk yoğunluğundan küçük olmaya başlar ve bantlar aşağı doğru bükülür. İletkenlik bandının yarıiletken yüzeyine yakın bölgelerinde, elektronlar toplanmaya başlar. Yarıiletken yüzeyinde, uygulanan gerilimle değişen W genişliğinde bir bölgede, boşlukların azaldığı bir tüketim bölgesi oluşur. Boşlukların azaldığı bu bölgeye tüketim bölgesi, bu olaya "tüketim" olayı denir (Şekil 2.12.b). 21

38 2.4.3 Tersinim (inversion) Metal/yalıtkan/p-tipi yarıiletken (MIS) yapısının metal elektrotuna daha büyük pozitif bir gerilim ( V >> 0 ) uygulandığı zaman bantlar aşağı doğru bükülür. Saf durumdaki G enerji seviyesi ( E ), Fermi enerji seviyesinin altına geçer. Bu durumda yarıiletken i yüzeyinde azınlık taşıyıcılar olan elektronlar artmaya başlar. Elektron yoğunluğu boşluk yoğunluğundan büyük olur. Bu aşamadan sonra p-tipi yarıiletken yüzeyi n-tipi yarıiletken gibi davranır. Bu olay, yarıiletken yüzeyinin tersinimi olarak adlandırılır. Şekil 2.12.c'de enerji-bant durumu gösterilmiştir. Bu durumda MIS kapasitesini, elektron yoğunluğunun uygulanan gerilimin ac sinyalini takip edebilme yeteneği belirler. Elektron yoğunluğu ac sinyalini küçük frekanslarda takip edebilir ve buna bağlı olarak kapasite artan gerilimle yalıtkan kapasite değerine ulaşır. Ara frekanslarda daha yavaş takip edebilir, dolayısıyla frekansın değerine bağlı olarak ara frekans eğrileri görülür. Yüksek frekanslarda ise takip edemez. Sabit yük uzay yükü gibi etki eder ve kapasite C min 'da kalır. Yüksek frekansta eğer gerilim ani olarak değiştirilirse, azınlık taşıyıcıların yeniden-birleşme (rekombinasyon) hızına bağlı olarak tersinim yükü daha geç birikir. Bu da eğrinin C min 'un altında değerler almasına sebep olur. 2.5 İdeallik Faktörü İdeallik faktörü ara yüzey durumlarının yoğunluğuna (N ss ) ve yalıtkan kalınlığına (δ) bağlı olarak (Card and Rhoderick 1971, Card 1976), n = δ ε s ε W + qn + δ 1+ qn sa ε i i d sb 1 (2.31) ifadesiyle verilir. Burada ε i, ε s, N sa, N sb, W d sırasıyla oksit tabakasının geçirgenliği, yarıiletkenin geçirgenliği, metal ile denge de olan ara yüzey durumlarının yoğunluğu, yarıiletken ile dengede olan durumlarının yoğunluğu ve tüketim bölgesinin genişliğidir. 22

39 Bu bağıntı ara yüzey durumlarına göre üç değişik şekilde ifade edilir; (i) ara yüzey durumları yoğunluğu küçük olması durumunda n δε s = 1 + (2.32) W ε d i şeklindedir, (ii) tüm ara yüzey durumları metal ile dengede olduğunda, δε s n = 1+ (2.33) W ( ε + δqn ) d i sa şeklindedir, (iii) ara yüzey durumları yarıiletken ile dengede olması durumunda ise, δ ε s n = 1 + (2.34) ε i Wd + qn sb ile ifade edilir. (i) ve (ii) durumlarında ara yüzey durumlarının ve oksit tabakasının n ideallik faktörüne katkısı küçüktür ve numune ideal bir Schottky diyodu davranışı sergiler. (iii) durumunda ise oksit tabakasının kalınlaşması ve ara yüzey durumlarının artmasıyla n artar (Card and Rhoderick 1971). Bunların dışında sıcaklığın artması ile n değeri azalır. Bu durum ise toplam MIS akımındaki difüzyon bileşeninin artmasından kaynaklanır (Krawczyk et al. 1981). 2.6 Engel Yüksekliği Ölçme Yöntemleri Akım-gerilim (I-V) belirtkenlerinden Schottky diyotlarında düz beslem çok büyük olmadıkça, akım-iletim kuramı termoiyonik emisyon (TE) kuramına uyar. Bu kurama göre, akım-gerilim bağlılığı, qv I = I 0 exp 1 (2.35) kt 23

40 bağıntısıyla verilir. Burada I 0 ** = AA T 2 q( φ 0 φb exp kt b ) (2.36) şeklinde verilen doyma akımıdır. Burada φ φ b0 b etkin engel yüksekliğidir ve e φ ile ifade edilir. ** A ve A ; engeli geçen elektronların kuantum mekanik yansımaları, metal yüzeyi ile engel tepesi arasındaki elektronların fonon saçılması dikkate alınarak düzenlenmiş etkin Richardson sabiti ve kontak alanıdır. Pratikte üretilen diyotlar için I- V belirtkeni Bağıntı 2.35 deki ideal durumdan önemli sapmalar gösterebilir ve bu durumda akım ifadesi, I qv qv = I 0 exp 1 exp (2.37) nkt kt şeklinde verilir. Burada n gerilime ve sıcaklığa bağlı olan ve değeri 1 den büyük olan ideallik faktörüdür. İdeallik faktörünün 1 den büyük olmasının birçok nedeni vardır ve bunlardan en çok karşılaşılanı φ b0 ve φb nin gerilime bağlı olmasıdır. Bağıntı 2.37, V > 3kT / q için, I qv = I 0 exp (2.38) nkt şeklinde yazılabilir Kapasite-gerilim (C-V) belirtkenlerinden Ters beslemde kapasite ifadesi, C = qn aε s A 2 1/ 2 φb V p + V R kt q 1/ 2 (2.39) 24

41 ile verilir. Burada V R ve V p sırasıyla ters beslem gerilimi ve Fermi seviyesi ile yarıiletkenin değerlik bandı arasındaki farktır. Bu ifade 2 C için çözülür ve yazılırsa, C = A qn a φb V ε s p + V R kt q (2.40) elde edilir. Bir ara yüzey tabakası yoksa ( φ, V den bağımsız) b R C 2 VR grafiği, bir doğru verir. Bu doğrunun yatay ekseni kestiği nokta ile ( φ kt / q) terimini buluruz. Buradan da engel yüksekliğini, b V p kt φ b = Vo + Vp + (2.41) q ifadesi ile buluruz. 2.7 Seri Direnç ve Bulunma Yöntemleri Metal/yarıiletken ve metal/yarıiletken/yalıtkan yapılarının elektriksel belirtkenlerini saptanırken ideal durumdan sapmalar meydana gelmesi söz konusudur. Bu sapmaların nedenlerinden bir tanesi de seri direnç etkisidir. Bu çeşitli sebeplerden dolayı meydana gelebilir. Bunlar (i) doğrultucu kontaktan ölçüm için alınmış iletken tel, (ii) silisyum kristaline temas ettirilmiş arka (omik) kontak, (iii) gövde ile arka kontak arasına yerleştirilmiş kirli bir film tabakası veya yabancı madde, (iv) doğrultucu kontak altındaki silisyum yüzeyi kıyısında bulunan tüketim tabakası ve arka kontak arasındaki gövde direnci ve (v) doğrultucu kontak altında bulunan silisyum içerisindeki düzgün olmayan katkı dağılımıdır. Bu etki çeşitli yöntemlerle azaltılabilir. Bunun en çok kullanılan yöntemi arka kontağa ısısal işlem uygulayarak metalin yarıiletken yüzeyine çöktürülmesidir. Bu yarıiletken teknolojisinde alloy işlemi olarak bilnir. Son yıllarda seri direnç hesapları için daha modern yöntemler kullanılmaktadır. Bunlardan ilki Norde tarafından geliştirilmiş olup, n = 1 durumu için seri direnç ve 25

42 engel yüksekliğini, tanımlanan orijinal bir F (V ) fonksiyonu yardımıyla elde edilmesini amaçlamaktadır (Norde 1979). Bu yöntem durumlara uygulandığı için sadece bir sıcaklıktaki R s ve φ b nin sıcaklıkla değişmediği I V eğrisine ihtiyaç vardır. Daha sonraları Sato ve Yasamura, Norde tarafından sunulan yöntemi geliştirerek ideallik faktörünün 1 den büyük olduğu ( 1 < n < 2) durumlarda da n, Rs ve φ b değerlerinin hesaplanabileceğini gösterdiler (Sato and Yasamura 1985). Bu yöntem R s ve φ b nin sıcaklık ile değiştiği durumlarda da uygulanabilir ve en az iki farklı sıcaklıktaki I V eğrisine ihtiyaç vardır. Benzer bir yöntemde McLean tarafından da geliştirilmiştir (McLean 1986). Bohlin ise, ideallik faktörünün 1 < n < δ olması durumunda (1 den çok büyük) Schottky engel diyodunun I-V ölçümünden elde edilen Rs, φ ve n nin belirlenmesini olası kılan Norde fonksiyonunu yeniden düzenlemiştir (Bohlin 1986). Bununla beraber bu yöntemde bazı parametreleri belirlemek zordur. Cheung ler tarafından I-V belirtkenlerinden türetilen fonksiyonlar yardımıyla seri direnci belirlemek daha kolaydır (Cheung and Cheung 1986). Uygulanan gerilimin tümü diyot üzerine düşmediğinden, ideal durumdan bazı sapmalar söz konusudur. Buna göre Bağıntı 2.38 ile verilen bağıntıya seri direç etkisi de ilave edildiğinde akım ifadesi, b I q V IR = I ( ) S 0 exp (2.42) nkt şeklini alır. Burada IR S uygulanan gerilimin seri direnç üzerine düşen kısmıdır. Bağıntı 2.42 nin logaritması alınıp gerekli düzeltmeler yapılırsa, nkt I V = + n b + IR S q ln φ * 2 AA T (2.43) elde edilir. Bağıntı 2.43 ün lni ya göre diferansiyeli alınırsa, d( V ) d(ln I) = nkt q + IR S (2.44) 26

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ Yrd. Doç. Dr. Özhan ÖZKAN MOSFET: Metal-Oksit Yarıiletken Alan Etkili Transistor (Geçidi Yalıtılmış

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

Yarıiletken devre elemanlarında en çok kullanılan maddeler;

Yarıiletken devre elemanlarında en çok kullanılan maddeler; 1.. Bölüm: Diyotlar Doç.. Dr. Ersan KABALCI 1 Yarı iletken Maddeler Yarıiletken devre elemanlarında en çok kullanılan maddeler; Silisyum (Si) Germanyum (Ge) dur. 2 Katkı Oluşturma Silisyum ve Germanyumun

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

İÇİNDEKİLER 1: KRİSTALLERDE ATOMLAR...

İÇİNDEKİLER 1: KRİSTALLERDE ATOMLAR... İÇİNDEKİLER Bölüm 1: KRİSTALLERDE ATOMLAR... 1 1.1 Katıhal... 1 1.1.1 Kristal Katılar... 1 1.1.2 Çoklu Kristal Katılar... 2 1.1.3 Kristal Olmayan (Amorf) Katılar... 2 1.2 Kristallerde Periyodiklik... 2

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM212 Elektronik-1 Laboratuvarı Deney Föyü Deney#8 Alan Etkili Transistör (FET) Karakteristikleri Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA,

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ. /p-si/al YAPILARINDA YÜZEY ŞARTLARININ ELEKTRONİKSEL İLETKENLİĞE ETKİSİ.

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ. /p-si/al YAPILARINDA YÜZEY ŞARTLARININ ELEKTRONİKSEL İLETKENLİĞE ETKİSİ. ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TR0500018 DOKTORA TEZİ Al/SnO 2 /p-si/al YAPILARINDA YÜZEY ŞARTLARININ ELEKTRONİKSEL İLETKENLİĞE ETKİSİ Serdar KARADENİZ FİZİK MÜHENDİSLİĞİ ANABİLİM DALI 2001

Detaylı

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken)

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken) KTÜ Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Sayısal Elektronik Laboratuarı DOĞRULTUCULAR Günümüzde bilgisayarlar başta olmak üzere bir çok elektronik cihazı doğru akımla çalıştığı bilinen

Detaylı

ALAN ETKİLİ TRANSİSTÖR

ALAN ETKİLİ TRANSİSTÖR ALAN ETKİLİ TRANİTÖR Y.oç.r.A.Faruk BAKAN FET (Alan Etkili Transistör) gerilim kontrollu ve üç uçlu bir elemandır. FET in uçları G (Kapı), (rain) ve (Kaynak) olarak tanımlanır. FET in yapısı ve sembolü

Detaylı

12. Ders Yarıiletkenlerin Elektronik Özellikleri

12. Ders Yarıiletkenlerin Elektronik Özellikleri 12. Ders Yarıiletkenlerin lektronik Özellikleri T > 0 o K c d v 1 Bu bölümü bitirdiğinizde, Yalıtkan, yarıiletken, iletken, Doğrudan (direk) ve dolaylı (indirek) bant aralığı, tkin kütle, devingenlik,

Detaylı

İletken, Yalıtkan ve Yarı İletken

İletken, Yalıtkan ve Yarı İletken Diyot, transistör, tümleşik (entegre) devreler ve isimlerini buraya sığdıramadağımız daha birçok elektronik elemanlar, yarı iletken malzemelerden yapılmışlardır. Bu kısımdaki en önemli konulardan biri,

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM212 Elektronik-1 Laboratuvarı Deney Föyü Deney#8 Alan Etkili Transistör (FET) Karakteristikleri Arş. Gör. Mustafa İSTANBULLU Doç. Dr. Mutlu AVCI ADANA,

Detaylı

Malzemelerin elektriksel özellikleri

Malzemelerin elektriksel özellikleri Malzemelerin elektriksel özellikleri OHM yasası Elektriksel iletkenlik, ohm yasasından yola çıkılarak saptanabilir. V = IR Burada, V (gerilim farkı) : volt(v), I (elektrik akımı) : amper(a) ve R(telin

Detaylı

İstatistiksel Mekanik I

İstatistiksel Mekanik I MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison Sensörler Öğr. Gör. Erhan CEMÜNAL Sıkı bir çalışmanın yerini hiç bir şey alamaz. Deha yüzde bir ilham ve yüzde doksandokuz terdir. Thomas Alva Edison İçerik TEMEL ELEKTRONİK KAVRAMLARI Transdüser ve Sensör

Detaylı

Ders 3- Direnç Devreleri I

Ders 3- Direnç Devreleri I Ders 3- Direnç Devreleri I Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik 2. Direnç Devreleri Ohm kanunu Güç tüketimi Kirchoff Kanunları Seri ve paralel dirençler Elektriksel

Detaylı

TEMEL ELEKTRONİK. Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır.

TEMEL ELEKTRONİK. Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır. BÖLÜM 2 KONDANSATÖRLER Önbilgiler: Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır. Yapısı: Kondansatör şekil 1.6' da görüldüğü gibi, iki iletken plaka arasına yalıtkan bir maddenin

Detaylı

DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT

DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT YALITKAN YARI- İLETKEN METAL DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT Amaç: Birinci deneyde Ohmik bir devre elemanı olan direncin uçları arasındaki gerilimle üzerinden geçen akımın doğru orantılı

Detaylı

T.C. MALTEPE ÜNİVERSİTESİ Elektronik Mühendisliği Bölümü. ELK232 Elektronik Devre Elemanları

T.C. MALTEPE ÜNİVERSİTESİ Elektronik Mühendisliği Bölümü. ELK232 Elektronik Devre Elemanları T.C. MALTEPE ÜNİVERSİTESİ ELK232 Elektronik Devre Elemanları DENEY 2 Diyot Karekteristikleri Öğretim Üyesi Yrd. Doç. Dr. Serkan TOPALOĞLU Elektronik Devre Elemanları Mühendislik Fakültesi Baskı-1 ELK232

Detaylı

MOSFET. MOSFET 'lerin Yapısı

MOSFET. MOSFET 'lerin Yapısı MOSFET MOSFET 'lerin Yapısı JFET 'ler klasik transistörlere göre büyük bir gelişme olmasına rağmen bazı limitleri vardır. JFET 'lerin giriş empedansları klasik transistörlerden daha fazla olduğu için,

Detaylı

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Kimya Mühendisliği Bölümü Kimya Mühendisliği Laboratuvarı Venturimetre Deney Föyü Hazırlayan Arş.Gör. Orhan BAYTAR 1.GİRİŞ Genellikle herhangi bir akış

Detaylı

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu Akım ve Direnç Elektriksel olaylarla ilgili buraya kadar yaptığımız tartışmalar durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik yüklerinin hareket halinde olduğu durumları inceleyeceğiz.

Detaylı

Enerji Band Diyagramları

Enerji Band Diyagramları Yarıiletkenler Yarıiletkenler Germanyumun kimyasal yapısı Silisyum kimyasal yapısı Yarıiletken Yapım Teknikleri n Tipi Yarıiletkenin Meydana Gelişi p Tipi Yarıiletkenin Meydana Gelişi Yarıiletkenlerde

Detaylı

4 ELEKTRİK AKIMLARI. Elektik Akımı ve Akım Yoğunluğu. Elektrik yüklerinin akışına elektrik akımı denir. Yük

4 ELEKTRİK AKIMLARI. Elektik Akımı ve Akım Yoğunluğu. Elektrik yüklerinin akışına elektrik akımı denir. Yük 4 ELEKTRİK AKIMLARI Elektik Akımı ve Akım Yoğunluğu Elektrik yüklerinin akışına elektrik akımı denir. Yük topluluğu bir A alanı boyunca yüzeye dik olarak hareket etsin. Bu yüzeyden t zaman aralığında Q

Detaylı

T.C. AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EEM207/ GEEM207 ELEKTRONİK-I LABORATUVARI DENEY RAPORU

T.C. AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EEM207/ GEEM207 ELEKTRONİK-I LABORATUVARI DENEY RAPORU T.C. AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EEM207/ GEEM207 DENEY RAPORU DENEY 1. YARI İLETKEN DİYOT KARAKTERİSTİĞİ Yrd.Doç.Dr. Engin Ufuk ERGÜL Ar.Gör. Ayşe AYDIN YURDUSEV

Detaylı

GÜNEŞ PİLLERİ (FOTOVOLTAİK PİLLER) I. BÖLÜM

GÜNEŞ PİLLERİ (FOTOVOLTAİK PİLLER) I. BÖLÜM GÜNEŞ PİLLERİ (FOTOVOLTAİK PİLLER) I. BÖLÜM Prof. Dr. Olcay KINCAY Y. Doç. Dr. Nur BEKİROĞLU Y. Doç. Dr. Zehra YUMURTACI İ ç e r i k Genel bilgi ve çalışma ilkesi Güneş pili tipleri Güneş pilinin elektriksel

Detaylı

Modern Fiziğin Teknolojideki Uygulamaları

Modern Fiziğin Teknolojideki Uygulamaları 40 Modern Fiziğin Teknolojideki Uygulamaları 1 Test 1 in Çözümleri 1. USG ve MR cihazları ile ilgili verilen bilgiler doğrudur. BT cihazı c-ışınları ile değil X-ışınları ile çalışır. Bu nedenle I ve II.

Detaylı

Zn/p-Si Schottky Diyotlarda Temel Elektriksel Parametrelerin Sıcaklığa Bağlı İncelenmesi *

Zn/p-Si Schottky Diyotlarda Temel Elektriksel Parametrelerin Sıcaklığa Bağlı İncelenmesi * KSÜ Fen ve Mühendislik Dergisi 8(1)-2005 26 KSU Journal of Science and Engineering 8(1)-2005 Zn/p-Si Schottky Diyotlarda Temel Elektriksel Parametrelerin Sıcaklığa Bağlı İncelenmesi * Şükrü KARATAŞ, Şemsettin

Detaylı

PV PANELLERİN YAPISI VE PANELLERDEN ELEKTRİK ÜRETİMİNE SICAKLIĞIN ETKİSİ

PV PANELLERİN YAPISI VE PANELLERDEN ELEKTRİK ÜRETİMİNE SICAKLIĞIN ETKİSİ PV PANELLERİN YAPISI VE PANELLERDEN ELEKTRİK ÜRETİMİNE SICAKLIĞIN ETKİSİ Taner ÇARKIT Elektrik Elektronik Mühendisi tanercarkit.is@gmail.com Abstract DC voltage occurs when light falls on the terminals

Detaylı

Al/TiO 2 /p-si (MIS) Yapılarında Temel Elektriksel Parametrelerin Akım-Gerilim (I-V) Karakteristiklerinden Hesaplanması

Al/TiO 2 /p-si (MIS) Yapılarında Temel Elektriksel Parametrelerin Akım-Gerilim (I-V) Karakteristiklerinden Hesaplanması KSÜ Fen ve Mühendislik Dergisi, 11(2), 28 67 KSU Journal of Science and Engineering, 11(2), 28 Al/TiO 2 /p-si (MIS) Yapılarında Temel Elektriksel Parametrelerin Akım-Gerilim (I-V) Karakteristiklerinden

Detaylı

SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH.

SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH. EM 420 Yüksek Gerilim Tekniği DÜZLEMSEL ELEKTROT SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH. Not: Tüm slaytlar, listelenen ders kaynaklarından alıntı yapılarak ve faydalanılarak

Detaylı

ZENER DİYOTLAR. Hedefler

ZENER DİYOTLAR. Hedefler ZENER DİYOTLAR Hedefler Bu üniteyi çalıştıktan sonra; Zener diyotları tanıyacak ve çalışma prensiplerini kavrayacaksınız. Örnek devreler üzerinde Zener diyotlu regülasyon devrelerini öğreneceksiniz. 2

Detaylı

Endüstriyel Sensörler ve Uygulama Alanları Kalite kontrol amaçlı ölçme sistemleri, üretim ve montaj hatlarında imalat sürecinin en önemli aşamalarındandır. Günümüz teknolojisi mükemmelliği ve üretimdeki

Detaylı

Şekil 5-1 Frekans modülasyonunun gösterimi

Şekil 5-1 Frekans modülasyonunun gösterimi FREKANS MODÜLASYONU (FM) MODÜLATÖRLERİ (5.DENEY) DENEY NO : 5 DENEY ADI : Frekans Modülasyonu (FM) Modülatörleri DENEYİN AMACI :Varaktör diyotun karakteristiğinin ve çalışma prensibinin incelenmesi. Gerilim

Detaylı

Elektronik cihazların yapımında en çok kullanılan üç yarıiletken şunlardır,

Elektronik cihazların yapımında en çok kullanılan üç yarıiletken şunlardır, YARIİLETKEN MALZEMELER Yarıiletkenler; iletkenlikleri iyi bir iletkenle yalıtkan arasında bulunan özel elementlerdir. Elektronik cihazların yapımında en çok kullanılan üç yarıiletken şunlardır, Ge Germanyum

Detaylı

Akım ve Direnç. Bölüm 27. Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç

Akım ve Direnç. Bölüm 27. Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç Bölüm 27 Akım ve Direnç Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç Öğr. Gör. Dr. Mehmet Tarakçı http://kisi.deu.edu.tr/mehmet.tarakci/ Elektrik Akımı Elektrik yüklerinin

Detaylı

6. Bölüm: Alan Etkili Transistörler. Doç. Dr. Ersan KABALCI

6. Bölüm: Alan Etkili Transistörler. Doç. Dr. Ersan KABALCI 6. Bölüm: Alan Etkili Transistörler Doç. Dr. Ersan KABALCI 1 FET FETler (Alan etkili transistörler) BJTlere çok benzer yapıdadır. Benzerlikleri: Yükselteçler Anahtarlama devreleri Empedans uygunlaştırma

Detaylı

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta Aysuhan OZANSOY Bölüm 6: Akım, Direnç ve Devreler 1. Elektrik Akımı ve Akım Yoğunluğu 2. Direnç ve Ohm Kanunu 3. Özdirenç 4. Elektromotor

Detaylı

YÜKSEK GERİLİM TEKNİĞİ BÖLÜM 7 DİELEKTRİK KAYIPLARI VE

YÜKSEK GERİLİM TEKNİĞİ BÖLÜM 7 DİELEKTRİK KAYIPLARI VE EM 420 Yüksek Gerilim Tekniği YÜKSEK GERİLİM TEKNİĞİ BÖLÜM 7 DİELEKTRİK KAYIPLARI VE KAPASİTE ÖLÇME YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H. Not: Tüm slaytlar, listelenen

Detaylı

Hazırlayan: Tugay ARSLAN

Hazırlayan: Tugay ARSLAN Hazırlayan: Tugay ARSLAN ELEKTRİKSEL TERİMLER Nikola Tesla Thomas Edison KONULAR VOLTAJ AKIM DİRENÇ GÜÇ KISA DEVRE AÇIK DEVRE AC DC VOLTAJ Gerilim ya da voltaj (elektrik potansiyeli farkı) elektronları

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 5: Fotovoltaik Hücre Karakteristikleri Fotovoltaik Hücrede Enerji Dönüşümü Fotovoltaik Hücre Parametreleri I-V İlişkisi Yük Çizgisi Kısa Devre Akımı Açık Devre Voltajı MPP (Maximum

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 4: Fotovoltaik Teknolojinin Temelleri Fotovoltaik Hücre Fotovoltaik Etki Yarıiletken Fiziğin Temelleri Atomik Yapı Enerji Bandı Diyagramı Kristal Yapı Elektron-Boşluk Çiftleri

Detaylı

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ Bölüm 3 SAF MADDENİN ÖZELLİKLERİ 1 Amaçlar Amaçlar Saf madde kavramının tanıtılması Faz değişimi işleminin fizik ilkelerinin incelenmesi Saf maddenin P-v-T yüzeylerinin ve P-v, T-v ve P-T özelik diyagramlarının

Detaylı

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRONİK-I LABORATUVARI DENEY 1: YARIİLETKEN DİYOT Yrd.Doç.Dr. Engin Ufuk ERGÜL Arş.Gör. Ayşe AYDIN YURDUSEV Arş.Gör. Alişan AYVAZ Arş.Gör. Birsen BOYLU AYVAZ ÖĞRENCİ

Detaylı

1. Yarı İletken Diyotlar Konunun Özeti

1. Yarı İletken Diyotlar Konunun Özeti Elektronik Devreler 1. Yarı İletken Diyotlar 1.1 Giriş 1.2. Yarı İletkenlerde Akım Taşıyıcılar 1.3. N tipi ve P tipi Yarı İletkenlerin Oluşumu 1.4. P-N Diyodunun Oluşumu 1.5. P-N Diyodunun Kutuplanması

Detaylı

Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar.

Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar. Valans Elektronları Atomun en dış kabuğundaki elektronlara valans elektron adı verilir. Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar. Bir atomun en dış kabuğundaki elektronlar,

Detaylı

Kimyasal Depolama Yöntemiyle Elde Edilen CdSe Filmlerinin Elektriksel Karakteristikleri

Kimyasal Depolama Yöntemiyle Elde Edilen CdSe Filmlerinin Elektriksel Karakteristikleri Kimyasal Depolama Yöntemiyle Elde Edilen CdSe Filmlerinin Elektriksel Karakteristikleri H. Metin, S. Erat * ME. Ü. Fen-Edebiyat Fakültesi Fizik Bölümü, Mersin, hmetin@mersin.edu.tr *ME. Ü. Fen-Edebiyat

Detaylı

AL/P-Sİ SCHOTTKY BARİYER DİYOTUN γ-işini RADYASYON ETKİSİ ÜZERİNDE ELEKTRİKSEL PARAMETRELERİNİN HESAPLANMASI. Serhat GÜLOĞLU

AL/P-Sİ SCHOTTKY BARİYER DİYOTUN γ-işini RADYASYON ETKİSİ ÜZERİNDE ELEKTRİKSEL PARAMETRELERİNİN HESAPLANMASI. Serhat GÜLOĞLU T.C. DİCLE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AL/P-Sİ SCHOTTKY BARİYER DİYOTUN γ-işini RADYASYON ETKİSİ ÜZERİNDE ELEKTRİKSEL PARAMETRELERİNİN HESAPLANMASI Serhat GÜLOĞLU YÜKSEK LİSANS TEZİ FİZİK ANABİLİMDALI

Detaylı

Yarım Dalga Doğrultma

Yarım Dalga Doğrultma Elektronik Devreler 1. Diyot Uygulamaları 1.1 Doğrultma Devreleri 1.1.1 Yarım dalga Doğrultma 1.1.2 Tam Dalga Doğrultma İki Diyotlu Tam Dalga Doğrultma Dört Diyotlu Tam Dalga Doğrultma Konunun Özeti *

Detaylı

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I FET KARAKTERİSTİKLERİ 1. Deneyin Amacı JFET ve MOSFET transistörlerin

Detaylı

DENEY 3 : TRANSİSTÖR KARAKTERİSTİKLERİ. Amaç : Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek.

DENEY 3 : TRANSİSTÖR KARAKTERİSTİKLERİ. Amaç : Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek. Ön Hazırlık: Deneyde yapılacaklar kısmının giriş aşamasındaki 1. adımda yapılacakları; multisim, proteus gibi simülasyon programı ile uygulayınız. Simülasyonun ekran çıktısı ile birlikte yapılması gerekenleri

Detaylı

Temel Elektrik Elektronik. Seri Paralel Devrelere Örnekler

Temel Elektrik Elektronik. Seri Paralel Devrelere Örnekler Temel Elektrik Elektronik Seri Paralel Devrelere Örnekler Temel Elektrik Elektronik Seri Paralel Devrelere Örnekler Temel Elektrik Elektronik Yarıiletken Elemanlar Kullandığımız pek çok cihazın üretiminde

Detaylı

tayf kara cisim ışınımına

tayf kara cisim ışınımına 13. ÇİZGİ OLUŞUMU Yıldızın iç kısımlarından atmosfere doğru akan ışınım, dalga boyunun yaklaşık olarak sürekli bir fonksiyonudur. Çünkü iç bölgede sıcaklık gradyenti (eğimi) küçüktür ve madde ile ışınım

Detaylı

GÜNEŞ ENERJĐSĐYLE HĐDROJEN ÜRETĐMĐ Kim. Müh. Serdar ŞAHĐN / Serkan KESKĐN

GÜNEŞ ENERJĐSĐYLE HĐDROJEN ÜRETĐMĐ Kim. Müh. Serdar ŞAHĐN / Serkan KESKĐN GÜNEŞ ENERJĐSĐYLE HĐDROJEN ÜRETĐMĐ Kim. Müh. Serdar ŞAHĐN / Serkan KESKĐN 1. GĐRĐŞ Güneş enerjisinden elektrik enerjisi üretilmesi işlemi, çeşitli alanlarda uygulanmıştır. Fakat güneş enerjisinin depolanması

Detaylı

ELEKTRİKSEL ÖZELLİKLER

ELEKTRİKSEL ÖZELLİKLER ELEKTRİKSEL ÖZELLİKLER İletkenlik Elektrik iletkenlik, malzeme içerisinde atomik boyutlarda yük taşıyan elemanlar (charge carriers) tarafından gerçekleştirilir. Bunlar elektron veya elektron boşluklarıdır.

Detaylı

Magnetic Materials. 7. Ders: Ferromanyetizma. Numan Akdoğan.

Magnetic Materials. 7. Ders: Ferromanyetizma. Numan Akdoğan. Magnetic Materials 7. Ders: Ferromanyetizma Numan Akdoğan akdogan@gyte.edu.tr Gebze Institute of Technology Department of Physics Nanomagnetism and Spintronic Research Center (NASAM) Moleküler Alan Teorisinin

Detaylı

DENEY 4 TRANSİSTÖR KARAKTERİSTİĞİ KOLLEKTÖR EĞRİSİ

DENEY 4 TRANSİSTÖR KARAKTERİSTİĞİ KOLLEKTÖR EĞRİSİ DENEY 4 TRANSİSTÖR KARAKTERİSTİĞİ KOLLEKTÖR EĞRİSİ AMAÇLAR: ir transistor ün kolektör e baz eğrilerinin görülmesi. Transistor ün beta ( β) değerinin belirlenmesi. Sıcaklığa bağlı değişimlerin belirlenmesi.

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

olduğundan A ve B sabitleri sınır koşullarından

olduğundan A ve B sabitleri sınır koşullarından TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi Merkezleri aynı, aralarında dielektrik madde bulunan iki küreden oluşur. Elektrik Alanı ve Potansiyel Yarıçapları ve ve elektrotlarına uygulanan

Detaylı

4/26/2016. Bölüm 7: Elektriksel Özellikler. Malzemelerin Elektriksel Özellikleri. Elektron hareketliliği İletkenlik Enerji bant yapıları

4/26/2016. Bölüm 7: Elektriksel Özellikler. Malzemelerin Elektriksel Özellikleri. Elektron hareketliliği İletkenlik Enerji bant yapıları Bölüm 7: Elektriksel Özellikler CEVAP ARANACAK SORULAR... Elektriksel iletkenlik ve direnç nasıl tarif edilebilir? İletkenlerin, yarıiletkenlerin ve yalıtkanların ortaya çıkmasında hangi fiziksel süreçler

Detaylı

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir.

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir. Bir fuel cell in teorik açık devre gerilimi: Formülüne göre 100 oc altinda yaklaşık 1.2 V dur. Fakat gerçekte bu değere hiçbir zaman ulaşılamaz. Şekil 3.1 de normal hava basıncında ve yaklaşık 70 oc da

Detaylı

GÜNEŞ ENERJİ SİSTEMLERİ

GÜNEŞ ENERJİ SİSTEMLERİ DENEY 1 GÜNEŞ ENERJİ SİSTEMLERİ YENİLEBİLİR ENERJİ SİSTEMLERİ LABORATUAR YRD. DOÇ. DR. BEDRİ KEKEZOĞLU DENEY 1 GÜNEŞ ENERJİSİ SİSTEMLERİ 1. GÜNEŞ ENERJİ SİSTEMLERİ Dünyamızın en büyük enerji kaynağı olan

Detaylı

Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün

Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün geçiş hızının, uygulanan voltaj V ile aşağıdaki şekilde

Detaylı

Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek.

Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek. DENEY 6 TRANSİSTOR KARAKTERİSTİKLERİ Deneyin Amacı Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek. Malzemeler ve Kullanılacak Cihazlar 1 adet BC547 transistör, 1 er adet 10 kω ve

Detaylı

ELEKTRONİK LAB. I DİYOT KARAKTERİSTİĞİ

ELEKTRONİK LAB. I DİYOT KARAKTERİSTİĞİ KURALLAR: Deneye isminizin bulunduğu grupla beraber, ilgili saat ve günde geliniz. Deney grubu değişiklikleri için (başka bir dersle çakışması vb. durumlarda) deneyden sorumlu öğretim elemanı ile görüşebilirsiniz.

Detaylı

8. FET İN İNCELENMESİ

8. FET İN İNCELENMESİ 8. FET İN İNCELENMESİ 8.1. TEORİK BİLGİ FET transistörler iki farklı ana grupta üretilmektedir. Bunlardan birincisi JFET (Junction Field Effect Transistör) ya da kısaca bilinen adı ile FET, ikincisi ise

Detaylı

Kristalizasyon Kinetiği

Kristalizasyon Kinetiği Kristalizasyon Kinetiği İçerik Amorf malzemeler amorf kristal Belirli bir kristal yapısı yoktur Atomlar rastgele dizilir Belirli bir kristal yapısı vardır Atomlar belirli bir düzende dizilir camlar amorf

Detaylı

PERİLENSİZ VE PERİLENLİ Al/p-Si SCHOTTKY ENGEL DİYOTLARIN ELEKTRİKSEL ÖZELLİKLERİNİN ODA SICAKLIĞINDA KARŞILAŞTIRILMASI.

PERİLENSİZ VE PERİLENLİ Al/p-Si SCHOTTKY ENGEL DİYOTLARIN ELEKTRİKSEL ÖZELLİKLERİNİN ODA SICAKLIĞINDA KARŞILAŞTIRILMASI. PERİLENSİZ VE PERİLENLİ Al/p-Si SHOTTKY ENGEL DİYOTLARIN ELEKTRİKSEL ÖZELLİKLERİNİN ODA SIAKLIĞINDA KARŞILAŞTIRILMASI Çiğdem BİLKAN YÜKSEK LİSANS TEZİ FİZİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AĞUSTOS

Detaylı

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB) ÖĞENME ALANI : FZKSEL OLAYLA ÜNTE 3 : YAŞAMIMIZDAK ELEKTK (MEB) B ELEKTK AKIMI (5 SAAT) (ELEKTK AKIMI NED?) 1 Elektrik Akımının Oluşması 2 Elektrik Yüklerinin Hareketi ve Yönü 3 ler ve Özellikleri 4 Basit

Detaylı

Atomlar, dış yörüngedeki elektron sayısını "tamamlamak" üzere, aşağıdaki iki yoldan biri ile bileşik oluştururlar:

Atomlar, dış yörüngedeki elektron sayısını tamamlamak üzere, aşağıdaki iki yoldan biri ile bileşik oluştururlar: ATOMUN YAPISI VE BAĞLAR Atomun en dış yörüngesinde dönen elektronlara valans elektronlara adi verilir (valance: bağ değer). Bir atomun en dış yörüngesinde 8'e yakın sayıda elektron varsa, örnek klor: diğer

Detaylı

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma Dielektrik malzeme DİELEKTRİK ÖZELLİKLER Dielektrik malzemeler; serbest elektron yoktur, yalıtkan malzemelerdir, uygulanan elektriksel alandan etkilenebilirler. 1 2 Dielektrik malzemeler Elektriksel alan

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Infrared (IR) ve Raman Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY TİTREŞİM Molekülleri oluşturan atomlar sürekli bir hareket içindedir. Molekülde: Öteleme hareketleri, Bir eksen

Detaylı

Atomdan e koparmak için az ya da çok enerji uygulamak gereklidir. Bu enerji ısıtma, sürtme, gerilim uygulama ve benzeri şekilde verilebilir.

Atomdan e koparmak için az ya da çok enerji uygulamak gereklidir. Bu enerji ısıtma, sürtme, gerilim uygulama ve benzeri şekilde verilebilir. TEMEL ELEKTRONİK Elektronik: Maddelerde bulunan atomların son yörüngelerinde dolaşan eksi yüklü elektronların hareketleriyle çeşitli işlemleri yapma bilimine elektronik adı verilir. KISA ATOM BİLGİSİ Maddenin

Detaylı

Fizik II Elektrik ve Manyetizma Akım, Direnç ve Elektromotor Kuvvet

Fizik II Elektrik ve Manyetizma Akım, Direnç ve Elektromotor Kuvvet Ders Hakkında Fizik-II Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik ve manyetizmanın temel kanunlarını lisans düzeyinde öğretmektir. Dersin İçeriği Hafta

Detaylı

dq I = (1) dt OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ

dq I = (1) dt OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ AMAÇLAR Ohm yasasına uyan (ohmik) malzemeler ile ohmik olmayan malzemelerin akım-gerilim karakteristiklerini elde etmek. Deneysel akım gerilim değerlerini kullanarak

Detaylı

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net MALZEME BİLGİSİ DERS 7 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA KRİSTAL KAFES NOKTALARI KRİSTAL KAFES DOĞRULTULARI KRİSTAL KAFES DÜZLEMLERİ DOĞRUSAL VE DÜZLEMSEL YOĞUNLUK KRİSTAL VE

Detaylı

ATMALI FİLTRELİ KATODİK VAKUM ARK DEPOLAMA YÖNTEMİYLE ÇİNKO NİTRÜR (Zn 3 N 2 ) ÜRETİMİ VE OPTİKSEL ÖZELLİKLERİ *

ATMALI FİLTRELİ KATODİK VAKUM ARK DEPOLAMA YÖNTEMİYLE ÇİNKO NİTRÜR (Zn 3 N 2 ) ÜRETİMİ VE OPTİKSEL ÖZELLİKLERİ * ATMALI FİLTRELİ KATODİK VAKUM ARK DEPOLAMA YÖNTEMİYLE ÇİNKO NİTRÜR (Zn 3 N 2 ) ÜRETİMİ VE OPTİKSEL ÖZELLİKLERİ * Production and Optical Properties of Zinc Nitride (Zn 3 N 2 ) By Pulsed Filtered Cathodic

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Atomsal Yapı ve Atomlararası Bağ1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin

Detaylı

RF PÜSKÜRTME METODU İLE HAZIRLANAN SiO 2 ARAYÜZEYLİ METAL-YARIİLETKEN KONTAKLARDA PARAMETRELERİN BELİRLENMESİ. Şule DEMİR YÜKSEK LİSANS TEZİ FİZİK

RF PÜSKÜRTME METODU İLE HAZIRLANAN SiO 2 ARAYÜZEYLİ METAL-YARIİLETKEN KONTAKLARDA PARAMETRELERİN BELİRLENMESİ. Şule DEMİR YÜKSEK LİSANS TEZİ FİZİK RF PÜSKÜRTME METODU İLE HAZIRLANAN SiO ARAYÜZEYLİ METAL-YARIİLETKEN KONTAKLARDA PARAMETRELERİN BELİRLENMESİ Şule DEMİR YÜKSEK LİSANS TEZİ FİZİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ EKİM 007 ANKARA

Detaylı

AC-DC Dönüştürücülerin Genel Özellikleri

AC-DC Dönüştürücülerin Genel Özellikleri AC-DC Dönüştürücülerin Genel Özellikleri U : AC girişteki efektif faz gerilimi f : Frekans q : Faz sayısı I d, I y : DC çıkış veya yük akımı (ortalama değer) U d U d : DC çıkış gerilimi, U d = f() : Maksimum

Detaylı

YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H.

YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H. EM 420 Yüksek Gerilim Tekniği EŞ MERKEZLİ KÜRESEL ELEKTROT SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H. Not: Tüm slaytlar, listelenen ders kaynaklarından alıntı yapılarak

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#6 İşlemsel Kuvvetlendiriciler (OP-AMP) - 2 Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR 1.1 Amaçlar AC nin Elde Edilmesi: Farklı ve değişken DC gerilimlerin anahtar ve potansiyometreler kullanılarak elde edilmesi. Kare dalga

Detaylı

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi Merkezleri aynı, aralarında dielektrik madde bulunan iki küreden oluşur. Elektrik Alanı ve Potansiyel Yarıçapları ve ve elektrotlarına uygulanan

Detaylı

Deney 3: Diyotlar ve Diyot Uygulamaları. Amaç: Araç ve Malzeme: Teori:

Deney 3: Diyotlar ve Diyot Uygulamaları. Amaç: Araç ve Malzeme: Teori: Deney 3: Diyotlar ve Diyot Uygulamaları Amaç: Diyot elemanını ve çeşitlerini tanımak Diyotun çalışma mantığını kavramak Diyot sağlamlık kontrolü İleri kutuplama, geri kutuplama ve gerilim düşümü. Araç

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI DENEY SORUMLUSU Arş. Gör. Şaban ULUS Şubat 2014 KAYSERİ

Detaylı

TRANSİSTÖR KARAKTERİSTİKLERİ

TRANSİSTÖR KARAKTERİSTİKLERİ Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * lektrik-lektronik Mühendisliği ölümü lektronik Anabilim Dalı * lektronik Laboratuarı 1. Deneyin Amacı TRANSİSTÖR KARAKTRİSTİKLRİ Transistörlerin yapısının

Detaylı

1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar. Konunun Özeti

1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar. Konunun Özeti Elektronik Devreler 1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar Konunun Özeti * Diyotlar yapım tekniğine bağlı olarak; Nokta temaslı diyotlar,

Detaylı

DENEYİN AMACI: Bu deneyde MOS kuvvetlendiricilerden ortak kaynaklı ve ortak akaçlı devreler incelenecektir.

DENEYİN AMACI: Bu deneyde MOS kuvvetlendiricilerden ortak kaynaklı ve ortak akaçlı devreler incelenecektir. DENEY NO: 9 MOSFET Lİ KUVVETLENDİRİCİLER DENEYİN AMACI: Bu deneyde MOS kuvvetlendiricilerden ortak kaynaklı ve ortak akaçlı devreler incelenecektir. DENEY MALZEMELERİ MOSFET: 1x4007 Kondansatör: 3x1 µf,

Detaylı

İstatistiksel Mekanik I

İstatistiksel Mekanik I MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

Au/SiO 2 /n-si (MIS) YAPININ ELEKTRİK VE DİELEKTRİK KARAKTERİSTİKLERİNİN SICAKLIĞA BAĞLI İNCELENMESİ. Ayşe Gül EROĞLU YÜKSEK LİSANS TEZİ FİZİK

Au/SiO 2 /n-si (MIS) YAPININ ELEKTRİK VE DİELEKTRİK KARAKTERİSTİKLERİNİN SICAKLIĞA BAĞLI İNCELENMESİ. Ayşe Gül EROĞLU YÜKSEK LİSANS TEZİ FİZİK Au/SiO 2 /n-si (MIS) YAPININ ELEKTRİK VE DİELEKTRİK KARAKTERİSTİKLERİNİN SICAKLIĞA BAĞLI İNCELENMESİ Ayşe Gül EROĞLU YÜKSEK LİSANS TEZİ FİZİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ EYLÜL 2011 ANKARA

Detaylı

GÜNEŞ PİLLERİ VE ÖZELLİKLERİ Batur BEKİROĞLU Dr. Vatan TUĞAL Marmara Üniversitesi Teknik Eğitim Fakültesi Elektrik Eğitimi Bölümü Göztepe, İstanbul

GÜNEŞ PİLLERİ VE ÖZELLİKLERİ Batur BEKİROĞLU Dr. Vatan TUĞAL Marmara Üniversitesi Teknik Eğitim Fakültesi Elektrik Eğitimi Bölümü Göztepe, İstanbul Özet: Bu çalışmada güneş ışığının güneş pilleri üzerindeki etkisi incelenmiştir. Ayrıca güneş pillerinde temel yapıtaşlarını oluşturan kısa-devre akımı ( ), açık-devre gerilimi ( ) ve dolum faktörü (FF)

Detaylı

DENEY 9: JFET KARAKTERİSTİK EĞRİLERİ

DENEY 9: JFET KARAKTERİSTİK EĞRİLERİ DENEY 9: JFET KARAKTERİSTİK EĞRİLERİ 9.1. Deneyin Amacı Bir JFET transistörün karakteristik eğrilerinin çıkarılıp, çalışmasının pratik ve teorik olarak öğrenilmesi 9.2. Kullanılacak Malzemeler ve Aletler

Detaylı

DİYOT KARAKTERİSTİKLERİ

DİYOT KARAKTERİSTİKLERİ Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı Elektronik I Dersi Laboratuvarı 1. Deneyin Amacı DİYOT KARAKTERİSTİKLERİ Diyot çeşitlerinin

Detaylı

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET EBE-211, Ö.F.BAY 1 Temel Elektriksel Nicelikler Temel Nicelikler: Akım,Gerilim ve Güç Akım (I): Eletrik yükünün zamanla değişim oranıdır.

Detaylı

CALLİSTER - SERAMİKLER

CALLİSTER - SERAMİKLER CALLİSTER - SERAMİKLER Atomik bağı ağırlıklı olarak iyonik olan seramik malzemeler için, kristal yapılarının atomların yerine elektrikle yüklü iyonlardan oluştuğu düşünülebilir. Metal iyonları veya katyonlar

Detaylı

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları Bölüm Elektriksel Büyüklükler ve Elektrik Devre Elemanları. Temel Elektriksel Büyüklükler: Akım, Gerilim, Güç, Enerji. Güç Polaritesi.3 Akım ve Gerilim Kaynakları F.Ü. Teknoloji Fak. EEM M.G. .. Temel

Detaylı