BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ"

Transkript

1 BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini tanımlayan dinamiğin koludur. Bu nedenle, kinematik genellikle hareketin geometrisi olarak ifade edilir. Tam bir kinematik bilgisi hareket ve harekete sebep olan veya eşlik eden kuvvetler arasındaki ilişkilerin incelendiği kinetik için ön şarttır. Bir maddesel nokta, en genel halde, doğrusal ya da eğrisel bir yörünge üzerinde hareket edebilir. Bu bölümde, ilk olarak, maddesel nokta hareketi kinematiğine giriş için doğrusal hareket incelenecektir. Hareketin kinematiğini, maddesel noktanın verilen herhangi bir andaki konum, hız ve ivmesinin belirlenmesi olarak tanımlayabiliriz Doğrusal Hareket Şekil 1.1 de bir doğru boyunca hareket eden bir maddesel noktanın hareketini dikkate alalım. Bu maddesel nokta herhangi bir t anında P noktasında bulunsun. O halde bu parçacığın konumu aynı doğru üzerindeki uygun sabit bir O referans noktasından ölçülen s mesafesi ile belirlenebilir. t +Δt anında parçacığın P' noktasına hareket etmekte ve konumu s +Δs olmaktadır. Δt zamanı boyunca parçacığın konumundaki değişim Δs yer değişimi olarak adlandırılır. Maddesel nokta O referans noktasının soluna yani negatif s yönünde hareket ediyor ise yer değiştirme negatif olacaktır. - s t anı t +Δt anı O P P' + s s Δs Şekil 1.1 1

2 Hız Δt süresi boyunca parçacın ortalama hızı, yer değiştirmenin zaman aralığına bölümüdür yani v ort = Δs / Δt. Δt giderek sıfıra yaklaştığında ( ), cismin ortalama hızı cismin anlık hızına yaklaşır bunu aşağıdaki gibi ifade edebiliriz: Bundan dolayı hız, yer değiştirme koordinatı s nin zamana göre değişme oranıdır (yani zamana göre türevidir). İvme Δt süresi boyunca parçacın ortalama ivmesi, hızın zaman aralığına bölümüdür yani a ort = Δv/Δt. Δt azalıp limit sıfıra yaklaşırken ( ), cismin ortalama ivmesi cismin anlık ivmesine yaklaşır bunu aşağıdaki gibi ifade edebiliriz: İvme, hızın artmasına veya azalmasına bağlı olarak pozitif veya negatif değerler alabilir. Maddesel nokta yavaşlıyor ise ivmesi negatiftir. Ancak, maddesel noktanın azalmakta olan negatif hıza sahip olması durumunda, maddesel noktanın ivmesinin pozitif olacağına dikkat ediniz. Hız ve ivme, bir sonraki konuda ele alacağımız eğrisel harekette göreceğimiz gibi, aslında vektörel büyüklüklerdir. Ancak, doğrusal harekette, hareketin doğrultusun da herhangi bir değişimi söz konusu değildir yalnızca hız ve ivmenin büyüklüğü değişir, bu yüzden vektörel gösterime ihtiyaç yoktur ve yalnızca skaler olarak işlem yapılabilir. Hareket doğrultusunda meydana gelebilecek yön değişimleri eksi ve artı işaretleri ile tanımlanır. 1.1 ve 1.2 denklemleri arasında dt yok edilerek, yer değiştirme, hız ve ivme için diferansiyel bir denklem elde edebiliriz: 2

3 1.1, 1.2 ve 1.3 denklemleri maddesel noktanın doğrusal hareketini temsil eden diferansiyel denklemlerdir. Hareket değişkenlerindeki sonlu değişimleri içeren doğrusal hareket problemleri bu temel diferansiyel denklemlerin integrasyonu ile çözülür. Hatırlatma: Doğrusal hareketi temsil eden diferansiyel denklemler Doğrusal hareketi temsil eden diferansiyel denklemleri daha iyi yorumlayabilmek için konum, hız, ivme ve zaman arasındaki ilişkilerin grafik olarak gösteriminin verildiği Şekil 1.2 yi incelemek yaralı olacaktır. Şekil 1.2a da bir doğrusal hareketin konum-zaman (s - t) grafiği verilmiştir. Herhangi bir t anında s - t eğrisine teğet çizerek o andaki hızı elde edebiliriz. Bu şekilde hız, eğrinin bütün noktalarında belirlenebilir ve Şekil 1.2b de gösterildiği gibi zamana göre çizilebilir. Benzer şekilde, v - t eğrisinin herhangi bir anındaki eğimi o andaki a ivmeyi verir ve buna bağlı olarak a - t eğrisi Şekil 1.2c deki gibi çizilebilir. Şekil 1.3b de dt süresince v - t eğrisi altında kalan alanın ds yer değişimine eşit olduğunu gözlemleyebiliriz (Denklem 1.1 den, ). Benzer şekilde, Şekil 1.2c den dt süresince a-t eğrisini altındaki alanın dv ye eşit olduğunu görüyoruz (Denklem 1.1 den, ). 3

4 Bir diğer gözlemimiz ise, Şekil 1.2d de ds yer değiştirmesi süresince a-s eğrisinin altında kalsan alanın Denklem 1.3 den v dv ye eşit olduğudur. (a) (b) (c) (d) Şekil 1.2 4

5 Doğrusal Hareket Türleri İvme a; hız v, konum s ve zaman t arasında ilişki aşağıdaki şekillerde verilmiş olabilir: Sabit ivme (a = sabit) verilebilir. İvme zamanın fonksiyonu olarak a = f (t) verilebilir. İvme hızın fonksiyonu olarak a = f (v) verilebilir. İvme konumun fonksiyonu a = f (s) verilebilir. I. Sabit ivme, a = sabit a sabit olduğunda, 1.2 ve 1.3 denklemleri doğrudan integre edilebilir 1 : Denklem 1.4 Denklem 1.1 de yerine yazılıursa: bağıntısı elde edilir. 1 0 alt indisi başlangıç büyüklüğünü ifade etmektedir. 5

6 II. Zamanın fonksiyonu olarak verilen ivme, a = f (t) İvmenin zamanın fonksiyonu olması durumunda Denklem 1.2, şeklini alır. Zamanın fonksiyonu olarak integre edilen v (t) bağıntısı Denklem 1.1 de yerine yazılırsa s konum koordinatı için, elde edilir. III. Hızın fonksiyonu olarak verilen ivme, a = f (v) İvme hızın bir fonksiyonu olarak verilmiş ise a = f (v) fonksiyonu Denklem 1.3 de yerine yazılırsa s konum koordinatı için, elde edilir. Bu denklemin, t ile belirli bir ilgisi olmadan, v cinsinden s yi verdiğine dikkat ediniz. IV. Konumun fonksiyonu olarak verilen ivme, a = f (s) Bu durumda a = f (s) fonksiyonu Denklem 1.3 de yerine yazılırsa s konum koordinatı için, elde edilir. 6

7 Örnek 1.1 7

8 Örnek 1.2 8

9 Örnek 1.3 s 9

10 Örnek

11 1.3. Düzlemde Eğrisel Hareket Bu bölümde, maddesel noktanın, tek bir düzlemde yer alan eğrisel bir yörünge boyunca olan hareketini yani 2-Boyutlu eğrisel hareketi inceleyeceğiz. Mühendislik uygulamalarında karşılaşılan maddesel nokta hareketinin büyük bir çoğunluğu düzlemsel hareket olarak gösterilebilir. Hatırlatma Doğrusal hareket ile ilgili kinematik incelemelerde hareketin doğrultusunda herhangi bir değişim meydana gelmediği için yalnızca skalar büyüklükler kullanılabilir. Ancak, eğrisel harekette hareketin doğrultusunda değişim olduğu için hız ve ivmenin de doğrultusunda değişim meydana gelecektir. Bu yüzden eğrisel hareket ile ilgili yapılacak kinematik incelemelerde vektörel büyüklüklerin kullanılması zaruridir. A noktasında yer alan bir maddesel noktanın, yol fonksiyonu (veya yörüngesi) s ile tanımlanan düzlemsel eğri boyunca hareketini göz önüne alalım (Şekil 1.3a). O sabit noktasından ölçülen maddesel noktanın konumu, konum vektörü r = r ( t ) ile belirtilir. Maddesel noktanın konum vektörü, eğri üzerinde hareket ettikçe büyüklüğü ve yönü değiştiği için zamanın bir fonksiyonudur. Küçük bir Δt zaman aralığında maddesel noktanın eğri üzerinde Δs yolunu alarak konumu r' = r + Δr ile tanımlanan A' noktasına geldiğini varsayalım. Δr yer değiştirmesi, maddesl noktanın konumundaki değişimi gösterir ve vektör farkı ile belirlenir, yani Δr = r' - r dir. (a) (b) (c) Şekil

12 Hatırlatma Maddesel nokta yörünge boyunca, A konumundan A' konumuna hareket ederken kat ettiği gerçek mesafe, yörünge boyunca ölçülen skaler Δs uzunluğudur. Bu nedenle, Δr yer değiştirme vektörü ile skaler Δs mesafesi birbirinden farklıdır. Hız Maddesel noktanın A ve A' noktaları arasındaki ortalama hızı v ort = Δr / Δt olarak tanımlanır. Maddesel noktanın anlık hızı, Δt sıfıra yaklaşırken ortamla hızın limit değeri olarak tanımlanır. (1.11) Hatırlatma Bir vektörün türevi, hem şiddeti hemde doğrultusu olan yine bir vektördür. Şekil 1.3a da, Δt sıfıra yaklaşırken, Δr nin doğrultusunun yörüngenin A noktasındaki teğetine yaklaştığını kolaylıkla gözlemleyebiliriz. Bu nedenle (hızın doğrultusu, yer değişimi ile aynı olacağı için) hız her zaman yörüngeye teğettir. Hızın şiddeti olarak tanımlanan v nin büyüklüğü ( v = v ), Δr yer değiştirmesinin büyüklüğünün ( Δr = Δr ) A ile A' birleştiren doğru parçasının uzunluğu olduğuna dikkat ederek, elde edilebilir. Şekil 1.3a da, Δr uzunluğu Δt 0 iken Δs yay uzunluğuna yaklaştığını görüyoruz. O halde, sürat olarak adlandırılan hızın büyüklüğü için; (1.12) elde edilir. Böylece, hızın şiddeti (sürat), s yol fonksiyonu zaman göre elde edildiğini görüyoruz. 12

13 Hatırlatma Hız ( v ) Vektörel büyüklük Sürat ( v ) Skaler büyüklük Şekil 1.3b ve c incelediğimzde açık bir şekilde, Δt süresince hızda vektörel bir değişim bulunduğunu görebiliriz. A noktasındaki v hızı ile Δv değişiminin vektörel toplamı, A' noktasındaki hıza eşittir. Yine, Şekil 1.3c bize, Δv nin, v nin hem büyüklüğündeki hem de doğrultusundaki değişime bağlı olduğunu açıkça göstermektedir. İvme Maddesel nokta, t zamanında v hızına ve t + Δt zamanıda ise v' = v + Δv hızına sahip ise maddesel noktanın ortalama ivmesi a ort = Δv / Δt olarak tanımlanır. Maddesel noktanın anlık ivmesi ise, zaman aralığı sıfıra yaklaşırken ortamla ivmenin limit değeri olarak tanımlanmaktadır. (1.13) Δt aralığı çok küçülüp sıfıra yaklaşırken, Δv değişiminin doğrultusu dv diferansiyel değişiminin dolayısıyla da a nın doğrultusuna yaklaşır. Bu nedenle, a ivmesi v hızının hem büyüklüğündeki hem de doğrultusundaki değişim etkilerini içermektedir. Hatırlatma a ivme vektörü v hız vektörünün hem büyüklüğündeki hem de doğrultusundaki değişim etkilerini içerir. 13

14 (a) Şekil 1.4 (b) İvme ile hız arasındaki Denklem 1.13 ile ilişkiyi daha iyi anlayabilmek için, Şekil 1.4 de inceleyelim. Şekil 1.4a da maddesel noktanın yörüngesi üzerinde üç keyfi konuma karşılık gelen vektörleri ve her konum vektörüne karşılık gelen yörüngeye teğet hız vektörleri gösterilmiştir. Bu hız vektörlerini yönü ve doğrultusu değiştirilmeden herhangi bir C noktasına taşıyalım (Şekil 1.4b). Başlangıç noktası C olan bu hız vektörlerinin uçlarını kesen bir eğri çizelim. Hız vektörlerinin uçlarının geometrik yeri olarak tanımlayacağımız bu eğriye hodograf adı verilir ve hız vektörlerinin türevleri (yani ivme vektörleri) bu eğriye teğet olacaktır. Ayrıca, Şekil 1.4 den, hızın konum vektörü ile ivenin ise hız ile ilgili olduğunu da görmekteyiz. Hatırlatma Hız vektörü ( İvme vektörü ( ) her zaman yörüngeye teğettir. ) her zaman hodografa teğettir Kartezyen (Dik) Koordinatlar ( x y ) Bu koordinat sistemi, özellikle ivmenin x ve y bileşenlerinin birbirinden bağımsız olduğu atış (ya da mermi) hareketi gibi problemlerin tanımlanmasında oldukça kullanışlıdır. Ortaya çıkan eğrisel hareket, konum, hız ve ivme vektörlerinin x ve y bileşenlerinin vektörel toplamları ile elde edilir. 14

15 Şekil 1.5 Şekil 1.5 de, Maddesel Noktanın, r konum, v hız ve a ivme vektörleri x ve y bileşenleri cinsinden gösterilmiştir. i ve j birim vektörler olmak üzere konum, hız ve ivmeyi x ve y bileşenleri cinsinden (1.14a) (1.14b) (1.14c) şeklinde yazılabilir. Hatırlatma Üzeri noktalı ( gibi) ifadeler zamana göre türevi göstermek için kullanılır. Hatırlatma Kartezyen koordinatlarda, birim vektörlerin (i ve j) şiddetlerinin yanında yönleri de sabit kaldığı, değişmediği için, zamana göreve türevleri sıfırdır. Daha öncede vurgulandığı gibi, hızı doğrultusu yörüngeye daima teğettir ve Şekil 1.5 den de açıkça görüldüğü gibi, 15

16 olmaktadır. Atış (Mermi) Hareketi Düzlemsel ( 2 - Boyutlu ) eğrisel hareketin en önemli uygulamalarından bir tanesi artış hareketidir. Atış hareketinde, ivme daima düşey doğrultuda olduğu için çoğunlukla dik bileşenler cinsinden yani kartezyen koordinatlarda inceleme yapılır. Kinematik analizde yer alan kavramları açıklamak için, yerçekimi ivmesinin sabit kabul edildiği, hava direncinin ihmal edildiği bir ortamda, bir merminin hareketini göz önüne alalım (Şekil 1.6). Hava direnci ihmal edildiğinde, mermiye etki eden tek kuvvet, merminin yaklaşık g = 9.81 m/s 2 lik aşağı yönlü sabit bir ivme kazanmasına neden olan ağırlığıdır. Buna göre ivme bileşenleri aşağıdaki gibidir; (1.15a) (1.15b) Şekil

17 Daha öncede belittiğimiz gibi, mermi hareketinin x ve y bileşenleri birbirinden bağımsız ve doğrusaldır. Bu nedenle, numaralı sabit ivme denklemleri uygulanabilir. Yatay Hareket (a x = 0) ( +) (1.16a) (1.16b) DüşeyHareket (a y = -g) ( +) (1.17a) (1.17b) (1.17c) v x ve v y bileşenleri elde edildikten sonra, yörüngeye daima teğet olan v bileşke hızı, v x ve v y hızlarının vektörel toplamına eşittir. 17

18 Örnek

19 Örnek

20 Örnek

21 Örnek

22 Normal ve Teğetsel Koordinatlar ( n - t ) 22

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

Dinamik. Fatih ALİBEYOĞLU -10-

Dinamik. Fatih ALİBEYOĞLU -10- 1 Dinamik Fatih ALİBEYOĞLU -10- Giriş & Hareketler 2 Rijit cismi oluşturan çeşitli parçacıkların zaman, konum, hız ve ivmeleri arasında olan ilişkiler incelenecektir. Rijit Cisimlerin hareketleri Ötelenme(Doğrusal,

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

Bölüm 4: İki Boyutta Hareket

Bölüm 4: İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Kavrama Soruları 1- Yerden h yüksekliğinde, yere paralel tutulan bir silah ateşleniyor ve aynı anda silahın yanında başka bir kurşun aynı h yüksekliğinden serbest düşmeye bırakılıyor.

Detaylı

Fizik 101-Fizik I 2013-2014. Nurdan Demirci Sankır Enerji Araştırmaları Laboratuarı- YDB Bodrum Kat Ofis: 325, Tel:4332. İçerik

Fizik 101-Fizik I 2013-2014. Nurdan Demirci Sankır Enerji Araştırmaları Laboratuarı- YDB Bodrum Kat Ofis: 325, Tel:4332. İçerik Fizik 101-Fizik I 2013-2014 İki Boyutta Hareket Nurdan Demirci Sankır Enerji Araştırmaları Laboratuarı- YDB Bodrum Kat Ofis: 325, Tel:4332 İçerik Yerdeğiştirme, hız ve ivme vektörleri Sabit ivmeli iki-boyutlu

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

DİNAMİK (2.hafta) Yatay Hareket Formülleri: a x =0 olduğundan ilk hız ile yatay bileşende hareketine devam eder.

DİNAMİK (2.hafta) Yatay Hareket Formülleri: a x =0 olduğundan ilk hız ile yatay bileşende hareketine devam eder. EĞİK ATIŞ Bir merminin serbest uçuş hareketi iki dik bileşen şeklinde, yatay ve dikey hareket olarak incelenir. Bu harekette hava direnci ihmal edilerek çözüm yapılır. Hava direnci ihmal edilince yatay

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir?

1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir? 1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir? A) -1/6 B) 1 C) 1/2 D) 1/5 E) 3 2) Durgun halden harekete geçen bir cismin konum-zaman grafiği şekildeki

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

G = mg bağıntısı ile bulunur.

G = mg bağıntısı ile bulunur. ATIŞLAR Havada serbest bırakılan cisimlerin aşağı doğru düşmesi etrafımızda her zaman gördüğümüz bir olaydır. Bu düşme hareketleri, cisimleri yerin merkezine doğru çeken bir kuvvetin varlığını gösterir.

Detaylı

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET AMAÇ: DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET Bir nesnenin sabit hızda, net kuvvetin etkisi altında olmadan, düzgün bir hat üzerinde hareket etmesini doğrulamak ve bu hızı hesaplamaktır. GENEL BİLGİLER:

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi 4. 4. Cismin ğırlığı Düzlemsel landa ğırlık erkezi - İntegrasyon Yöntemi Düzlemsel Eğride ğırlık erkezi - İntegrasyon Yöntemi 4.3 Bileşik Plak ve Teller 4.4 Pappus Guldinus Teoremleri 4.5 Üç Boyutlu Cisimlerde

Detaylı

Yrd. Doç. Dr. Mustafa GÜNGÖRMÜŞ mgungormus@turgutozal.edu.tr. Ders asistanı: Fatih Kaya

Yrd. Doç. Dr. Mustafa GÜNGÖRMÜŞ mgungormus@turgutozal.edu.tr. Ders asistanı: Fatih Kaya Yrd. Doç. Dr. Mustafa GÜNGÖRMÜŞ mgungormus@turgutozal.edu.tr Ders asistanı: Fatih Kaya Hareket düzleminde etki ederse Veya hareket düzleminde bir bileşeni varsa F F d Cisme etki eden d Kuvvet F F Veya

Detaylı

ŞEKİL DEĞİŞTİRME HALİ

ŞEKİL DEĞİŞTİRME HALİ ŞEKİL DEĞİŞTİRME HALİ GİRİŞ Önceki bölümde cisme etkiyen kuvvetlerin dengesi incelenerek gerilme kavramı geliştirildi. Bu bölümde ise şekil değiştiren cisim mekaniğinin en önemli kavramlarından biri olan

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi -Fizik I 2013-2014 Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi Nurdan Demirci Sankır Ofis: 325, Tel: 2924332 İçerik Açısal Yerdeğiştirme, Hız ve İvme Dönme Kinematiği Açısal ve Doğrusal Nicelikler

Detaylı

AERODİNAMİK KUVVETLER

AERODİNAMİK KUVVETLER AERODİNAMİK KUVVETLER Prof.Dr. Mustafa Cavcar Anadolu Üniversitesi, Sivil Havacılık Yüksekokulu, 26470 Eskişehir Bir uçak üzerinde meydana gelen aerodinamik kuvvetlerin bileşkesi ( ); uçağın etrafından

Detaylı

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ 1. BÖLÜM FİZİĞİN DĞASI - VEKÖRLER DENGE - MMEN - AĞIRLIK MERKEZİ FİZİĞİN DĞASI - VEKÖRLER - DENGE - MMEN - AĞIRLIK MERKEZİ SRULAR 1. I. ork (x) II. Güç (P) III. Açısal momentum (L) Yukarıdakilerden hangisi

Detaylı

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar ÖLÜM 29 Manyetik alanlar Manyetik alan Akım taşıyan bir iletkene etkiyen manyetik kuvvet Düzgün bir manyetik alan içerisindeki akım ilmeğine etkiyen tork Yüklü bir parçacığın düzgün bir manyetik alan içerisindeki

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II ZAMANA BAĞLI ISI İLETİMİ 1.Deneyin Adı: Zamana bağlı ısı iletimi. 2. Deneyin

Detaylı

MÜHENDİSLİK MEKANİĞİ DİNAMİK

MÜHENDİSLİK MEKANİĞİ DİNAMİK i MÜHENDİSLİK MEKANİĞİ DİNAMİK Prof. Dr. Mehmet BAKİOĞLU İstanbul Teknik Üniversitesi (Emekli) Prof. Dr. Ünal ALDEMİR İstanbul Teknik Üniversitesi 2012 ii Yayın No : 2730 Teknik Dizini : 154 1. Baskı Ağustos

Detaylı

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.1 7.2 Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.4 Örnekler Kendi Ağırlığını Taşıyan Kablolar (Zincir Eğrisi)

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur?

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur? 3.1 Koordinat sistemleri 3.2 Kartezyen koordinatlar 3.3 Vektörler 3.4 Vektörlerin bileşenleri 3.5 Vektörlerin toplanması 3.6 Vektörlerin çıkarılması 37Bii 3.7 Birim vektör 3 VEKTÖRLER Pilot uçağın kokpit

Detaylı

Fizik 101: Ders 1 Mühendisler için Mekanik Günün konusu

Fizik 101: Ders 1 Mühendisler için Mekanik Günün konusu Fizik 101: Ders 1 Mühendisler için Mekanik Günün konusu Dersin kapsamı Öneriler Birimler e Ölçümler Temel birimler Birimler sistemi Birim sistemlerinden çeirme Boyut analizi 1-Boyutlu (1-D) Kinematik (özet)

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 06 IS/LM EĞRİLERİ VE BAZI ESNEKLİKLER PARA VE MALİYE POLİTİKALARININ ETKİNLİKLERİ TOPLAM TALEP (AD) Bugünki dersin içeriği: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 2. LM EĞRİSİ VE PARA TALEBİNİN

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Bir otomobile lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır. Hava sıcaklığı

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz.

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz. BTMIŞ YÜZEYLERE ELEN HİDROSTTİK KUVVETLER DÜZLEM YÜZEYLER Yata Yüeler Sıvı üei Yata bir dülem üee gelen idrostatik kuvvetin büüklüğünü ve etkime noktasını bulmak istioru. d d Kuvvetin Büüklüğü :Şekil deki

Detaylı

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik 1 -Fizik I 2013-2014 Statik Denge ve Esneklik Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 2 İçerik Denge Şartları Ağırlık Merkezi Statik Dengedeki Katı Cisimlere ler Katıların Esneklik Özellikleri 1

Detaylı

Newton Kanunlarının Uygulaması

Newton Kanunlarının Uygulaması BÖLÜM 5 Newton Kanunlarının Uygulaması Hedef Öğretiler Newton Birinci Kanunu uygulaması Newtonİkinci Kanunu uygulaması Sürtünme ve akışkan direnci Dairesel harekette kuvvetler Giriş Newton Kanunlarını

Detaylı

BÖLÜM 1 Uçak Dinamiğine Giriş. Hazırlayan: Ozan ÖZTÜRK

BÖLÜM 1 Uçak Dinamiğine Giriş. Hazırlayan: Ozan ÖZTÜRK BÖLÜM 1 Uçak Dinamiğine Giriş Hazırlayan: Ozan ÖZTÜRK Dev Makineler Bir Uçağın Tasarım Bileşenleri Uçak Ne Demek Uçak veya tayyare, hava akımının kanatların altında basınç oluşturması yardımıyla havada

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

HACETTEPE ÜNİVERSİTESİ HACETTEPE ASO 1.OSB MESLEK YÜKSEKOKULU HMK 211 CNC TORNA TEKNOLOJİSİ

HACETTEPE ÜNİVERSİTESİ HACETTEPE ASO 1.OSB MESLEK YÜKSEKOKULU HMK 211 CNC TORNA TEKNOLOJİSİ HACETTEPE ÜNİVERSİTESİ HACETTEPE ASO 1.OSB MESLEK YÜKSEKOKULU HMK 211 CNC TORNA TEKNOLOJİSİ Öğr. Gör. RECEP KÖKÇAN Tel: +90 312 267 30 20 http://yunus.hacettepe.edu.tr/~rkokcan/ E-mail_1: rkokcan@hacettepe.edu.tr

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Grv. M. ERYÜREK Arş. Grv. H. TAŞKIN

3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Grv. M. ERYÜREK Arş. Grv. H. TAŞKIN 3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Gr. M. ERYÜREK Arş. Gr. H. TAŞKIN AMAÇ Eğik düzlemdeki imeli hareketi gözlemek e bu hareket için yol-zaman, hız-zaman ilişkilerini incelemek, yerçekimi imesini

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

BALIKESİR KARESİ ADNAN MENDERES ANADOLU LİSESİ 2015 2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI

BALIKESİR KARESİ ADNAN MENDERES ANADOLU LİSESİ 2015 2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI EKİM EYLÜL EYLÜL EYLÜL AY HAFTA DERS SAATİ BALIKESİR KARESİ ADNAN MENDERES ANADOLU LİSESİ 2015 2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE KONULAR KAZANIMLAR ÖĞRENME-ÖĞRETME

Detaylı

DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ

DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ Öğrencinin ; Adı : Özgür Soyadı : ATİK Numarası : 387 Sınıfı : 10F/J Ders Öğretmeninin ; Adı : Fahrettin Soyadı : KALE Ödevin

Detaylı

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda

Detaylı

GRAFİK ÇİZİMİ VE UYGULAMALARI 2

GRAFİK ÇİZİMİ VE UYGULAMALARI 2 GRAFİK ÇİZİMİ VE UYGULAMALARI 2 1. Verinin Grafikle Gösterilmesi 2 1.1. İki Değişkenli Grafikler 3 1.1.1. Serpilme Diyagramı 4 1.1.2. Zaman Serisi Grafikleri 5 1.1.3. İktisadi Modellerde Kullanılan Grafikler

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVELER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

BÖLÜM 1: TEMEL KAVRAMLAR

BÖLÜM 1: TEMEL KAVRAMLAR BÖLÜM 1: TEMEL KAVRAMLAR Hal Değişkenleri Arasındaki Denklemler Aralarında sıfıra eşitlenebilen en az bir veya daha fazla denklem kurulabilen değişkenler birbirine bağımlıdır. Bu denklemlerden bilinen

Detaylı

KAYNAK: Hüseyin (Guseinov), Oktay. 2007. "Skaler ve Vektörel Büyüklükler."

KAYNAK: Hüseyin (Guseinov), Oktay. 2007. Skaler ve Vektörel Büyüklükler. KAYNAK: Hüseyin (Guseinov), Oktay. 2007. "Skaler ve Vektörel Büyüklükler." Eğitişim Dergisi. Sayı: 15 (Mayıs 2007). SKALER VE VEKTÖREL BÜYÜKLÜKLER Prof. Dr. Oktay Hüseyin (Guseinov) Hayvanların en basit

Detaylı

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir. Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri Düzlemin noktalarını, düzlemin noktalarına eşleyen bire bir ve örten bir fonksiyona düzlemin bir dönüşümü denir. Öteleme: a =(a 1,a ) ve u =(u 1,u ) olmak

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

6. Sınıf Fen ve Teknoloji

6. Sınıf Fen ve Teknoloji KONU: Kuvvet Kuvveti göremeyiz, ancak onu etkileri ile tanırız. Kuvvet; Duran bir cismi hareket ettirebilir. Hareket eden bir cismi durdurabilir. Hareket eden bir cismin hızını değiştirebilir. Hareket

Detaylı

7. DİRENÇ SIĞA (RC) DEVRELERİ AMAÇ

7. DİRENÇ SIĞA (RC) DEVRELERİ AMAÇ 7. DİENÇ SIĞA (C) DEELEİ AMAÇ Seri bağlı direnç ve kondansatörden oluşan bir devrenin davranışını inceleyerek kondansatörün durulma ve yarı ömür zamanını bulmak. AAÇLA DC Güç kaynağı, kondansatör, direnç,

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26 Elektrostatik Elektrik Alan Elektrik Akı Kondansatör Kaynak : Serway-Beichner Bölüm 23, 24, 26 İndüksiyon Nötr Maddenin indüksiyon yoluyla yüklenmesi (Bir yük türünün diğer yük türüne göre daha fazla olması)

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

B: Bu şekildeki her bir nokta dikdörtgenin noktalarını temsil eder.

B: Bu şekildeki her bir nokta dikdörtgenin noktalarını temsil eder. 2. ÇOK KATLI İNTEGRALLER, DİFERENSİYEL DENKLEMLERE GİRİŞ 2.1. Çok Katlı İntegraller 2.1.1. İki Katlı İntegraller Fonksiyonu bir B bölgesinde sınırlı yani için olsun. B bölgesi alt bölgelere ayrılırsa;

Detaylı

Elektromanyetik Alan Kaynakları (1)

Elektromanyetik Alan Kaynakları (1) (4) Elektrostatik Giriş Elektrostatik zamana bağlı olarak değişen elektrik alanlar için temel oluşturur. Pek çok elektronik cihazın çalışması elektrostatik üzerine kuruludur. Bunlara örnek olarak osiloskop,

Detaylı

Dişli çark mekanizmaları en geniş kullanım alanı olan, gerek iletilebilen güç gerekse ulaşılabilen çevre hızları bakımından da mekanizmalar içinde

Dişli çark mekanizmaları en geniş kullanım alanı olan, gerek iletilebilen güç gerekse ulaşılabilen çevre hızları bakımından da mekanizmalar içinde DİŞLİ ÇARKLAR Dişli çark mekanizmaları en geniş kullanım alanı olan, gerek iletilebilen güç gerekse ulaşılabilen çevre hızları bakımından da mekanizmalar içinde özel bir yeri bulunan mekanizmalardır. Mekanizmayı

Detaylı

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun . UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II FİNAL SORULARI ÇÖZÜMLERİ d belirli integralinin aşağıdaki çözümünün doğru olup olmadığını belirtiniz. Eğer çözüm yanlış ise sebebini açıklayınız.

Detaylı

Şekil 7.1 Bir tankta sıvı birikimi

Şekil 7.1 Bir tankta sıvı birikimi 6 7. DİFERENSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMLERİ Diferensiyel denklemlerin sayısal integrasyonunda kullanılabilecek bir çok yöntem vardır. Tecrübeler dördüncü mertebe (Runge-Kutta) yönteminin hemen hemen

Detaylı

MALZEME BİLGİSİ. Kristal Yapılar ve Kristal Geometrisi

MALZEME BİLGİSİ. Kristal Yapılar ve Kristal Geometrisi MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Kristal Yapılar ve Kristal Geometrisi 1 KRİSTAL YAPILAR Malzemelerin iç yapısı atomların diziliş biçimine bağlıdır. Kristal yapı Kristal yapılarda atomlar düzenli

Detaylı

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları 1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları Sol üstte yüzey seftleştirme işlemi uygulanmış bir çelik

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

MÜHENDİSLİK ÖLÇMELERİ UYGULAMASI (HRT4362) 8. Yarıyıl

MÜHENDİSLİK ÖLÇMELERİ UYGULAMASI (HRT4362) 8. Yarıyıl İnşaat Fakültesi Harita Mühendisliği Bölümü Ölçme Tekniği Anabilim alı MÜHENİSLİK ÖLÇMELERİ UYGULAMASI (HRT436) 8. Yarıyıl U L K Kredi 3 ECTS 3 UYGULAMA-5 ELEKTRONİK ALETLERİN KALİBRASYONU Prof.r.Engin

Detaylı

KAYMALI YATAKLAR-II RADYAL YATAKLAR

KAYMALI YATAKLAR-II RADYAL YATAKLAR Makine Elemanları 2 KAYMALI YATAKLAR-II RADYAL YATAKLAR Doç.Dr. Ali Rıza Yıldız 1 Bu Bölümden Elde Edilecek Kazanımlar Radyal yataklama türleri Sommerfield Sayısı Sonsuz Genişlikte Radyal Yatak Hesabı

Detaylı

Türev Uygulamaları. 4.1 Bağımlı Hız

Türev Uygulamaları. 4.1 Bağımlı Hız Bölüm 4 Türev Uygulamaları 4.1 Bağımlı Hız Eğer bir balonun içine hava pompalarsak, balonun hem yarıçapı hem de hacmi artar ve artış hızları birbirine bağımlıdır. Fakat, hacmin artış hızını doğrudan ölçmek

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

YAKIN DOĞU ÜNİVERSİTESİ SAĞLIK HİZMETLERİ MESLEK YÜKSEK OKULU ELEKTRONÖROFİZYOLOJİ TEKNİKERLİĞİ FİZİK DERSİ AKAN BAKKALOĞLU 1

YAKIN DOĞU ÜNİVERSİTESİ SAĞLIK HİZMETLERİ MESLEK YÜKSEK OKULU ELEKTRONÖROFİZYOLOJİ TEKNİKERLİĞİ FİZİK DERSİ AKAN BAKKALOĞLU 1 YAKIN DOĞU ÜNİVERSİTESİ SAĞLIK HİZMETLERİ MESLEK YÜKSEK OKULU ELEKTRONÖROFİZYOLOJİ TEKNİKERLİĞİ FİZİK DERSİ AKAN BAKKALOĞLU 1 FİZİKTE ÖLÇME, BİRİM ve BİRİM SİSTEMLERİ ÖLÇME: Bir niceliğin büyüklüğünün

Detaylı

3. GEMİ DİRENCİ, GEMİ DİRENCİNİN BİLEŞENLERİ, SINIR TABAKA

3. GEMİ DİRENCİ, GEMİ DİRENCİNİN BİLEŞENLERİ, SINIR TABAKA 3. GEMİ DİRENCİ, GEMİ DİRENCİNİN BİLEŞENLERİ, SINIR TABAKA 3.1 Gemi Direnci Bir gemi viskoz bir akışkanda (su + hava) v hızıyla hareket ediyorsa, gemiye viskoziteden kaynaklanan yüzeye teğet sürtünme kuvvetleri

Detaylı

TOSYA ANADOLU İMAM-HATİP LİSESİ 2015-2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI

TOSYA ANADOLU İMAM-HATİP LİSESİ 2015-2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI EKİM EYLÜL EYLÜL EYLÜL 4 5 4 11.1. Kuvvet ve 11.1.1. Vektörler 11.1.1. Vektörler 11.1.2. Bağıl 11.1.1.1. Vektörlerin özelliklerini açıklar. 11.1.1.2. Vektörel büyüklükleri kartezyen koordinat sisteminde

Detaylı

EĞİK ATIŞ Ankara 2008

EĞİK ATIŞ Ankara 2008 EĞİK ATIŞ Ankara 8 EĞİK ATIŞ: AMAÇ: 1. Topun ilk hızını belirlemek. Ölçülen menzille hesaplanan menzili karşılaştırmak 3. Bir düzlem üzerinde uygulanan eğik atışda açıyla menzil ve tepenoktası arasındaki

Detaylı

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ Gerçek akışkanın davranışı viskoziteden dolayı meydana gelen ilave etkiler nedeniyle ideal akışkan akımlarına göre daha karmaşık yapıdadır. Gerçek akışkanlar hareket

Detaylı

MIT 8.02, Bahar 2002 Ödev # 2 Çözümler

MIT 8.02, Bahar 2002 Ödev # 2 Çözümler Adam S. Bolton bolton@mit.edu MIT 8.02, Bahar 2002 Ödev # 2 Çözümler 22 Şubat 2002 Problem 2.1 İçi boş bir metalik küre içerisindeki bir noktasal yükün elektrik alanı - Gauss Yasası İş Başında Bu problemi

Detaylı

Bu Bölümde Neler Öğreneceğiz?

Bu Bölümde Neler Öğreneceğiz? 7. MALİYETLER 193 Bu Bölümde Neler Öğreneceğiz? 7.1. Kısa Dönem Firma Maliyetleri 7.1.1. Toplam Sabit Maliyetler 7.1.2. Değişken Maliyetler 7.1.3. Toplam Maliyetler (TC) 7.1.4. Marjinal Maliyet (MC) 7.1.5.

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

6.12 Örnekler PROBLEMLER

6.12 Örnekler PROBLEMLER 6.1 6. 6.3 6.4 6.5 6.6 6.7 Çok Parçalı Taşıyıcı Sistemler Kafes Sistemler Kafes Köprüler Kafes Çatılar Tam, Eksik ve Fazla Bağlı Kafes Sistemler Kafes Sistemler İçin Çözüm Yöntemleri Kafes Sistemlerde

Detaylı

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =.

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =. 2014 2015 Ödevin Veriliş Tarihi: 12.06.2015 Ödevin Teslim Tarihi: 21.09.2015 MEV KOLEJİ ÖZEL ANKARA OKULLARI 1. Aşağıda verilen boşluklarara ifadeler doğru ise (D), yanlış ise (Y) yazınız. A. Fiziğin ışıkla

Detaylı

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ Bölüm 3 SAF MADDENİN ÖZELLİKLERİ 1 Amaçlar Amaçlar Saf madde kavramının tanıtılması Faz değişimi işleminin fizik ilkelerinin incelenmesi Saf maddenin P-v-T yüzeylerinin ve P-v, T-v ve P-T özelik diyagramlarının

Detaylı

1. Yatırımın Faiz Esnekliği

1. Yatırımın Faiz Esnekliği DERS NOTU 08 YATIRIMIN FAİZ ESNEKLİĞİ, PARA VE MALİYE POLİTİKALARININ ETKİNLİKLERİ, TOPLAM TALEP (AD) EĞRİSİNİN ELDE EDİLİŞİ Bugünki dersin içeriği: 1. YATIRIMIN FAİZ ESNEKLİĞİ... 1 2. PARA VE MALİYE POLİTİKALARININ

Detaylı

Şekil 2 Hareketin başladığı an

Şekil 2 Hareketin başladığı an Şekil 2 Hareketin başladığı an Bir savaş uçağı şekildeki gibi 1500 km/sa hızla sorti (dalışa geçerek bombardıman gerçekleştirmek) için harekete başlıyor ve eğrilik yarıçapı 300m. olan dairesel yörüngede

Detaylı

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI tasarım BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI Nihat GEMALMAYAN, Hüseyin ĐNCEÇAM Gazi Üniversitesi, Makina Mühendisliği Bölümü GĐRĐŞ Đlk bisikletlerde fren sistemi

Detaylı

TOPLAM TALEP I: IS-LM MODELİNİN OLUŞTURULMASI

TOPLAM TALEP I: IS-LM MODELİNİN OLUŞTURULMASI BÖLÜM 10 TOPLAM TALEP I: IS-LM MODELİNİN OLUŞTURULMASI IS-LM Modelinin Oluşturulması Klasik teori 1929 ekonomik krizine çare üretemedi Teoriye göre çıktı, faktör arzına ve teknolojiye bağlıydı Bunlar ise

Detaylı

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI BLOK DİYAGRAM İNDİRGEME KURALLARI Örnek 9: Aşağıdaki açık çevrim blok diyagramının transfer fonksiyonunu bulunuz? 2 BLOK DİYAGRAM İNDİRGEME

Detaylı

Hareket ÜNİTE. Amaçlar. İçindekiler. Öneriler. Bu üniteyi çalıştıktan sonra,

Hareket ÜNİTE. Amaçlar. İçindekiler. Öneriler. Bu üniteyi çalıştıktan sonra, ÜNİTE 3 Hareket Bu üniteyi çalıştıktan sonra, Amaçlar hareket kavramını, hareketi doğuran kuvvetleri, hız kavramını, ivme kavramını, enerji kavramını, hareket ile enerji arasındaki ilişkiyi öğreneceksiniz.

Detaylı

T.C. TÜBİTAK-BİDEB. YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI

T.C. TÜBİTAK-BİDEB. YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI T.C. TÜBİTAK-BİDEB YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI İKİ ELEKTROMIKNATIS ARASINDA BULUNAN BİR DEMİR PARÇACIĞIN HAREKETİ HAZIRLAYANLAR

Detaylı

Ders 3- Direnç Devreleri I

Ders 3- Direnç Devreleri I Ders 3- Direnç Devreleri I Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik 2. Direnç Devreleri Ohm kanunu Güç tüketimi Kirchoff Kanunları Seri ve paralel dirençler Elektriksel

Detaylı

Pamukkale Üniversitesi. Makine Mühendisliği Bölümü. MENG 219 Deney Föyü

Pamukkale Üniversitesi. Makine Mühendisliği Bölümü. MENG 219 Deney Föyü Pamukkale Üniversitesi Makine Mühendisliği Bölümü MENG 219 Deney Föyü Deney No: Deney Adı: Deney Sorumluları: Deneyin Amacı: X Basınç Ölçümü Doç. Dr. Kadir Kavaklıoğlu ve Araş. Gör. Y Bu deneyin amacı

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II DOĞRUSAL ISI İLETİMİ DENEYİ 1.Deneyin Adı: Doğrusal ısı iletimi deneyi..

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

PARALEL KUVVETLERİN DENGESİ

PARALEL KUVVETLERİN DENGESİ ARALEL KUVVETLERİN DENGESİ aralel kuvvetler eğer aynı yönlü ise bileşke kuvvet iki kuvvetin arasında ve büyük kuvvete daha yakın olur. Bileşke kuvvetin bulunduğu noktadan cisim asılacak olursak cisim dengede

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı