**MAN 502T ĠĢletme Yönetimi için AraĢtırma Yöntemleri**

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "**MAN 502T ĠĢletme Yönetimi için AraĢtırma Yöntemleri**"

Transkript

1 **MAN 502T ĠĢletme Yönetimi için AraĢtırma Yöntemleri** **** ARAġTIRMA YÖNTEMLERĠNE GĠRĠġ ** 1. Yarıyıl** **Hafta 6** Hazırlayan: **Dr. Özlem Ġnanç, IĢık Üniversitesi-Ġstanbul** GiriĢ Bu haftaki dersimizde örneklem seçimi konusunu tartışmaya başlayacağız. 1

2 **Örneklem Seçimi-1** Bilimsel araştırmanızın konusu, hedefleriniz ve cevap aradığınız araştırma soruları ne olursa olsun araştırmanızda örneklem kullanıp kullanmayacağınıza karar vermeniz gerekmektedir. Bazı araştırmalarda konuyla ilgili her elemandan bilgi almak mümkün olabilir. Bu tür çalışmalara sayım (census) denir. Fakat bir çok bilimsel çalışma için çeşitli nedenlerden ötürü (zaman ve para kısıtı, coğrafi nedenlerden ötürü herkese ulaşamama vb.) sayım metodunu kullanmak mümkün değildir. Bu gibi durumlarda örneklem seçmek gerekmektedir. Örneklem seçim teknikleri daha az kaynak kullanarak toplam birimlerin alt kümesinden gerekli bilgileri toplamamıza yarar. ** AraĢtırma Yöntemleri ** örneklem eleman Populasyon (evren) **Şekil 1 Populasyon, örneklem, birim 2

3 **Örneklem Seçimi-2** Bazı araştırma soruları seçilen örneklem kullanılarak ulaşılan sonuçların her birime genellenmesini gerektirebilir: Örnek: Tüketicilerin yeni piyasaya sürülen bir içecek hakkındaki düşünceleri üzerine bir araştırma yapmakla görevlisiniz. Seçtiğiniz örneklemin %75 i içeceğin fiyatının uygun olduğu kanısındaysa, içeceği tüketen tüketicilerin %75 inin bu şekilde düşündüğü sonucunu çıkartabilirsiniz. **Örneklem Seçimi-3** Ancak bazı araştırma soruları için toplanan örneklem genelleme yapılmasını gerektirmez. Örneğin X firmasının pazarlama bölümünün verimliliği üzerine yapılan bir çalışmanın sonucunun sözkonusu alanda çalışan firmaların tamamına ya da X firmasının diğer bölümlerine genellenmesi beklenemez. Eğer veri toplanacak birimlerin sayısı makul bir ölçüde ise, örneklem seçmek yerine, sayım yapılması uygun olur. Fakat eğer A) Bütün populasyona ulaşılması populasyonun büyüklüğü, coğrafi koşullar ya da başka sebeplerden dolayı mümkün değilse B) Maddi kısıtlar sözkonusu ise C) Zaman kısıtı sözkonusu ise D) Çabuk sonuca ulaşılmak isteniyorsa örneklem üzerinde çalışmak sayıma bir alternatif olarak kabul edilebilir. 3

4 **Örneklem Seçme Teknikleri** 1- Tesadüfi (probability) ya da Temsili (representative) Örneklem Her bir birimin populasyondan örnekleme seçilme olasılığı bilinir ve genellikle eşittir. Yani, örneklemin istatistiki olarak incelenmesi sonucu elde edilecek sonuçlar, populasyonun tümüne genellenebilir. Anket yoluyla yapılan çalışmaların pek çoğu bu gruba girer. ** Örneklem Seçme Teknikleri -2** 2- Tesadüfi Olmayan Örneklem Her bir elemanın evrenden örnekleme seçilme olasılığı bilinmez ve eşit değildir. Örnekleme bakarak populasyonun tümü hakkında genellemeye varmak genelde mümkün değildir. Yapılabilen genellemeler ise istatistiki metodlar kullanılarak ulaşılan türde değildir. Vaka incelemelerinde genelde bu tip örneklem seçimi kullanılır. 4

5 **Örneklem Seçimi-1** Örneklem seçim tekniklerini aşağıdaki şekilde gruplandırabiliriz: 1)Tesadüfi Örneklem A) Basit tesadüfi (simple random) B) Sistematik (systematic) C) Tabakalı tesadüfi (stratified random) D) Küme (cluster) E) Çok aşamalı (multi-stage) **Örneklem Seçimi-2** 2) Tesadüfi Olmayan Örneklem A) Kota B) Amaca Yönelik (purposive) i) En uç durum (extreme case) ii) Heterojen (heterogeneous) iii) Homojen (homogeneous) iv) Kritik durum (critical case) v) Tipik durum (typical case) C) Kartopu (snowball) D) Kendi kendini seçme (self-selection) E) Uygunluk (convenience) 5

6 **I- Tesadüfi Örneklem ** Genelde anket türündeki çalışmalar ile kullanılan tesadüfi örneklem tekniğinde evrendeki her elementin örnekleme seçilebilme olasılığı bilinir ve genelde eşittir. Örneklemin istatistiki yöntemler kullanılarak incelenmesi ile ortaya konan sonuçlar, populasyonun tümüne genellenebilme özelliği taşır. Tesadüfi örneklem seçme tekniğinde genel olarak 4 aşama vardır: A- Araştırma soruları ve hedefleri gözönüne alınarak çalışma için uygun olan örneklem çerçevesi (örneklem çerçevesi: örneklemin seçileceği populasyonun tüm elementlerini içeren liste) oluşturulur B- Uygun örneklem büyüklüğüne karar verilir. C- Uygun olan teknik ile örneklem seçilir D- Örneklemin populasyonu temsil edip etmediği araştırılır BAZI ARAġTIRMACILARA GÖRE EĞER POPULASYONDAKĠ TOPLAM ELEMENT SAYISI ELLĠ YADA DAHA AZ ĠSE ÖRNEKLEM SEÇĠLMEMELĠ VE POPULASYONUN TAMAMI ĠLE ÇALIġILMALIDIR. ÇÜNKÜ KÜÇÜK POPULASYONLARDA UÇ DEĞERLERĠN ETKĠSĠ DAHA FAZLA HĠSSEDĠLĠR. EĞER SÖZKONUSU UÇ DEĞER ÖRNEKLEM ĠÇĠNDEYSE ÖRNEKLEMĠN POPULASYONU TEMSĠL ETMESĠ DURUMU ORTADAN KALKABĠLĠR. **A)Uygun örneklem çerçevesinin belirlenmesi** Örneklem çerçevesi, örneklemin seçileceği populasyondaki her elemanı listeleyen çerçevedir. Örnek: Işık Üniversitesi e-mba programı ile ilgili bir çalışma yapılacaksa, örneklem çerçevesi programa kayıtlı öğrencilerin tamamıdır. Örneklem sözkonusu listeden seçilir. Çerçevenin eksiksiz olması çok büyük önem taşır. Bazı elementleri dışarıda bırakan bir çerçeveden oluşturulan örneklem üzerinden ulaşılan sonuçlar populasyonu temsil edemez İyi bir örneklem çerçevesi: o Eksiksiz (complete) o Güncel (current) o Tarafsız (unbiased) o Kesin (accurate) olmalıdır. 6

7 **B) Uygun örneklem büyüklüğüne karar verilmesi-1** Tesadüfi örneklem seçme tekniğinde, örneklemin populasyonun genelini temsil edip etmediği istatistiki olasılık hesapları sonucunda hesaplanır. Örneklem büyüklüğü arttıkça, yani örneklem populasyona yaklaştıkça genellemdeki hata payı azalır. Bu nedenle örneklem büyüklüğü belirlenirken harcanacak zaman ve para ile kabul edilebilir düzeyde olan hata payı arasında tercihler yapılır. Kısaca örneklem büyüklüğü aşağıdaki koşullarla belirlenir 1- Verilerin güvenilirlik (confidence) aralığı (örneklemden toplanan veriler populasyonu ne kadar temsil ediyor?) 2- Çalışma için kabul edilebilir hata payı (the margin of error) (örneklem kullanılarak yapılan tahminlerin hassasiyeti) 3- Kullanılacak istatistiksel teknikler 4- Örneklemin seçildiği populasyonun büyüklüğü Yukarıdaki koşullara göre her bir çalışmada örneklem büyüklüğü için gereken minimum eşik belirlenebilir. **B) Uygun örneklem büyüklüğüne karar verilmesi-2** Örneklem oluşturulurken dikkat edilmesi gereken noktalardan biri de örneklemin normal dağılıma sahip olması gerekliliğidir. Örneklemin büyüklüğü arttıkça, örneklem normal dağılıma daha çok yaklaşılır(merkezi limit teoremi gereği) ve bu durum populasyonun kendisi normal dağılıma sahip olmasa bile geçerli olur. ĠSTATĠSTĠKÇĠLERE GÖRE YUKARIDAKĠ KOġULUN SAĞLANABĠLMESĠ ĠÇĠN MĠNUMUM ÖRNEKLEM BÜYÜKLÜĞÜ 30 OLMALIDIR. 7

8 **B) Uygun örneklem büyüklüğüne karar verilmesi-3** Örneklemden elde edilen istatistiki sonuçların populasyon hakkında bir karara varmak için kullanılmasına istatistiki çıkarım (statistical inference) denir. Uygun seçilen bir örneklemde elde edilen sonuçların, kullanılan örneklem büyüklüğü ile elde edilmesinin olasılığı hesaplanabilir. Büyük sayılar kanunu gereği büyük örneklemeler kullanıldığında istatistiki çıkarım daha kesin olur. Araştırmacılar genelde %95 güven aralığında çalışırlar. Yani,populasyondan belirlenen büyüklükte 100 örneklem seçilirse bunların enaz 95 tanesi populasyonun özelliklerini taşımalıdır. Hata payı ise sonuçların hassasiyetini gösterir. Eğer hata payı %3 ise, örneklemin verdiği tüketicilerin %75 i ürünü pahalı buluyor sonucuna +3 ve -3 eklenerek populasyon için sonuç bulunur (Yani populasyon için sonuç %72 ile %78 arasındadır) Sonuç **Bu derste örneklem seçiminde kullanılan teknikler ve kriterler konusuna başladık. Gelecek hafta bu konuya devam edeceğiz. Görüşmek üzere. 8

1. ÖRNEKLEME VE ARAŞTIRMA PROBLEMİNE UYGUN ÖRNEKLEME YAPMA

1. ÖRNEKLEME VE ARAŞTIRMA PROBLEMİNE UYGUN ÖRNEKLEME YAPMA 1. ÖRNEKLEME VE ARAŞTIRMA PROBLEMİNE UYGUN ÖRNEKLEME YAPMA Araştırmacı kişi ya da kurumlar birinci el veri elde etye yönelik araştırma yapmaya karar verdiklerinde çoğu zaman araştırma yapacağı grubun tüm

Detaylı

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ ÖRNEKLEME TEORİSİ 1 Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik. Peki popülasyonun istatistiksel

Detaylı

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci BÖLÜM 8 ÖRNEKLEME Temel ve Uygulamalı Araştırmalar için Araştırma Süreci 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması

Detaylı

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Araştırmalarda

Detaylı

Örneklem. Yöntemleri FBED511 Eğitim Bilimlerinde Temel Araştırma Yöntemleri 1. Evren & Örneklem. Evren. Örneklem ve örnekleme

Örneklem. Yöntemleri FBED511 Eğitim Bilimlerinde Temel Araştırma Yöntemleri 1. Evren & Örneklem. Evren. Örneklem ve örnekleme Yöntemleri & EBE Z Eğitimde Araştırma Yöntemleri (Fraenkel & Wallen, 1990), araştırma sonuçlarının genelleneceği (geçerli olacağı) büyük grup. Hedef evren, araştırmacının ulaşmak istediği, ancak ulaşması

Detaylı

PAZARLAMA ARAŞTIRMA SÜRECİ

PAZARLAMA ARAŞTIRMA SÜRECİ PAZARLAMA ARAŞTIRMA SÜRECİ Pazarlama araştırması yapılırken belirli bir sıra izlenir. Araştırmada her aşama, birbirinden bağımsız olmayıp biri diğeri ile ilişkilidir. Araştırma sürecinde başlıca aşağıdaki

Detaylı

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ HEDEFLER Bu üniteyi çalıştıktan sonra; Örneklemenin niçin ve nasıl yapılacağını öğreneceksiniz. Temel Örnekleme metotlarını öğreneceksiniz. Örneklem

Detaylı

İSTATİSTİK II (İST202U)

İSTATİSTİK II (İST202U) İSTATİSTİK II (İST202U) KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ.

Detaylı

ARAŞTIRMA EVRENİ VE ÖRNEKLEM

ARAŞTIRMA EVRENİ VE ÖRNEKLEM Araştırma Evreni, Örneklem Seçimi ve Ölçüm GİRİŞ Araştırmacının, araştırma problemini oluşturduktan ve en uygun araştırma tipinin ne olduğuna karar verdikten sonra, bilgileri kimden toplayacağına karar

Detaylı

EVREN VE ÖRNEKLEM. EVREN Araştırma Bulgularının genellenmesi hedeflenen, veri toplamaya esas büyük kitle.

EVREN VE ÖRNEKLEM. EVREN Araştırma Bulgularının genellenmesi hedeflenen, veri toplamaya esas büyük kitle. EVREN VE ÖRNEKLEM EVREN Araştırma Bulgularının genellenmesi hedeflenen, veri toplamaya esas büyük kitle. ÖRNEKLEM Evrenden çeşitli tekniklerle seçilen, evrenin özelliklerini taşıması istenilen, verilerin

Detaylı

ÖRNEKLEM SEÇİMİ VE HESAPLAMASI. Giriş

ÖRNEKLEM SEÇİMİ VE HESAPLAMASI. Giriş ÖRNEKLEM SEÇİMİ VE HESAPLAMASI Giriş Bilimsel araştırmalarda doğru bilgi sahibi olmak ve doğru karar vermek esastır. Bu yüzden doğru bilgilere ulaşmak ve elde edilen bilgileri genelleştirmek ihtiyacı vardır

Detaylı

Nitel Araştırma. Süreci

Nitel Araştırma. Süreci EBE AE 602 Nitel Araştırma Süreci Nitel Araştırma Süreci Örneklem Seçimi Nitel Araştırma Süreci ve Örneklem Seçimi Nitel araştırma esnek bir araştırma deseni yaklaşımını gerektirir. Başta ortaya çıkan

Detaylı

Hipotez belirleme kuramsal olarak Galileo tarafından ortaya atılan ve daha sonra da bilim felsefecileri ve bilim insanları tarafından desteklenip

Hipotez belirleme kuramsal olarak Galileo tarafından ortaya atılan ve daha sonra da bilim felsefecileri ve bilim insanları tarafından desteklenip 2.HAFTA Hipotez belirleme kuramsal olarak Galileo tarafından ortaya atılan ve daha sonra da bilim felsefecileri ve bilim insanları tarafından desteklenip özümsenen Bilimsel Yöntem yaklaşımını temel almaktadır.

Detaylı

GİRİŞ Tanımlar 1.2. Örneklemenin ana adımları 1.3. Örnekleme Yöntemleri

GİRİŞ Tanımlar 1.2. Örneklemenin ana adımları 1.3. Örnekleme Yöntemleri 1 GİRİŞ 1.1. Tanımlar 1.2. Örneklemenin ana adımları 1.3. Örnekleme Yöntemleri Kaynak : Temel Örnekleme Yöntemleri, Taro Yamane Çeviren : A.Esin, M.A. Bakır, C. Aydın, E. Gürbüzsel TANIMLAR Populasyonu

Detaylı

SEÇKİSİZ OLMAYAN ÖRNEKLEME YÖNTEMLERİ

SEÇKİSİZ OLMAYAN ÖRNEKLEME YÖNTEMLERİ SEÇKİSİZ OLMAYAN ÖRNEKLEME YÖNTEMLERİ SEÇKİSİZ OLMAYAN ÖRNEKLEME YÖNTEMLERİ Seçkisiz olmayan örnekleme yöntemleri Fraenkel ve Wallen(2006) ın sınıflandırmasıyla tutarlı olarak ; Sistematik Örnekleme Amaçsal

Detaylı

İçindekiler. Pazarlama Araştırmalarının Önemi

İçindekiler. Pazarlama Araştırmalarının Önemi İçindekiler Birinci Bölüm Pazarlama Araştırmalarının Önemi 1.1. PAZARLAMA ARAŞTIRMALARININ TANIMI VE ÖNEMİ... 1 1.2. PAZARLAMA ARAŞTIRMASI İŞLEVİNİN İŞLETME ORGANİZASYONU İÇİNDEKİ YERİ... 5 1.3. PAZARLAMA

Detaylı

ÖRNEKLEME. Araş. Gör. Dr. S. Utku UZUN Pamukkale Üniversitesi Tıp Fakültesi Halk Sağlığı Anabilim Dalı

ÖRNEKLEME. Araş. Gör. Dr. S. Utku UZUN Pamukkale Üniversitesi Tıp Fakültesi Halk Sağlığı Anabilim Dalı ÖRNEKLEME Araş. Gör. Dr. S. Utku UZUN Pamukkale Üniversitesi Tıp Fakültesi Halk Sağlığı Anabilim Dalı Eskiden ABD de Literary Digest dergisi telefon rehberi ve otomobil kayıtlarından yararlanarak 1924,

Detaylı

2. İşletmeler Neden Pazarlama Araştırmasına İhtiyaç Duyar

2. İşletmeler Neden Pazarlama Araştırmasına İhtiyaç Duyar 5.Hafta Pazarlama Araştırmaları 2. İşletmeler Neden Pazarlama Araştırmasına İhtiyaç Duyar Işletmelerin faaliyetlerinde çevresel koşullar büyük önem taşır. Çevresel faktörlerdeki gelişmeler, fırsatlar ve

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sınıflandırıcıların Değerlendirilmesi Skorlar Karışıklık matrisi Accuracy Precision Recall

Detaylı

Araştırma Oyunu Avrupa Bilimsel Araştırma Oyunu Oyun rehberi

Araştırma Oyunu Avrupa Bilimsel Araştırma Oyunu Oyun rehberi Araştırma Oyunu Avrupa Bilimsel Araştırma Oyunu Oyun rehberi Oynarken nelere ihtiyacınız olacak? Kayıt oldunuz mu? Bir takımınız var mı? Öyleyse şimdi oyuna başlama zamanı! Adımları takip et ve Aşama 1

Detaylı

Örneklem Mantığı. Yaşar Tonta. H.Ü. Bilgi ve Belge Yönetimi Bölümü

Örneklem Mantığı. Yaşar Tonta. H.Ü. Bilgi ve Belge Yönetimi Bölümü Örneklem Mantığı Yaşar Tonta H.Ü. Bilgi ve Belge Yönetimi Bölümü tonta@hacettepe.edu.tr http://yunus.hacettepe.edu.tr/~tonta/tonta.html Not Bu slaytlarda yer alan bilgiler BBY 207 Sosyal Bilimlerde Araştırma

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

Örnekleme Süreci ve Örnekleme Yöntemleri

Örnekleme Süreci ve Örnekleme Yöntemleri Örnekleme Süreci ve Örnekleme Yöntemleri Prof. Dr. Cemal YÜKSELEN Ġstanbul Arel Üniversitesi 4. Pazarlama AraĢtırmaları Eğitim Semineri 26-29 Ekim 2010 Örnekleme Süreci Anakütleyi Tanımlamak Örnek Çerçevesini

Detaylı

ÖRNEKLEMEYE İLİŞKİN HUSUSLAR MUHASEBE TAHMİNLERİNİN DENETİMİ. M. Vefa TOROSLU. Nisan 2010

ÖRNEKLEMEYE İLİŞKİN HUSUSLAR MUHASEBE TAHMİNLERİNİN DENETİMİ. M. Vefa TOROSLU. Nisan 2010 ÖRNEKLEMEYE İLİŞKİN HUSUSLAR MUHASEBE TAHMİNLERİNİN DENETİMİ M. Vefa TOROSLU Nisan 2010 ÖRNEKLEMEYE İLİŞKİN HUSUSLAR Örneğin Oluşturulması Bağımsız denetçi, bağımsız denetim örneğini oluştururken, bağımsız

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

ÖRNEKLEM BÜYÜKLÜĞÜ GÜÇ ANALİZİ

ÖRNEKLEM BÜYÜKLÜĞÜ GÜÇ ANALİZİ ÖRNEKLEM BÜYÜKLÜĞÜ GÜÇ ANALİZİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr Uygun Örneklem Büyüklüğü Toplum Ortalamasının Kestirilmesinde

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar Su Ürünlerinde Temel İstatistik Ders 2: Tanımlar Karakter Araştırma yada istatistiksel analizde ele alınan ünitenin yapısal (morfolojik, fizyolojik, psikolojik, estetik, vb.) özellikleridir. Tüm karakterler

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 2 AÇIKLAYICI (BETİMLEYİCİ) İSTATİSTİK Yrd. Doç. Dr. Fatih TOSUNOĞLU 1-Açıklayıcı (Betimleyici) İstatistik İnceleme sonucu elde edilen ham verilerin istatistiksel

Detaylı

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 ÜNİTE:1 İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2 Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 Ortalamalar, Değişkenlik ve Dağılma Ölçüleri ÜNİTE:4 Endeksler ÜNİTE:5

Detaylı

1.SUNUM. Yrd. Doç. Dr. Sedat Şen

1.SUNUM. Yrd. Doç. Dr. Sedat Şen 1.SUNUM Yrd. Doç. Dr. Sedat Şen 1 İstatistik: Sayısal verilerin toplanmasını, analiz edilmesini ve yorumlanmasını içeren bir matematik koludur. İstatistikçi: Veri toplama, analiz ve yorumlama işini yapa(bile)n

Detaylı

İstatistiksel Kavramların Gözden Geçirilmesi

İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Çıkarsama Ekonometri 1 Konu 3 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

İstatistik: Sayısal verilerin toplanmasını, analiz edilmesini ve yorumlanmasını içeren bir matematik koludur.

İstatistik: Sayısal verilerin toplanmasını, analiz edilmesini ve yorumlanmasını içeren bir matematik koludur. 1.SUNUM İstatistik: Sayısal verilerin toplanmasını, analiz edilmesini ve yorumlanmasını içeren bir matematik koludur. İstatistikçi: Veri toplama, analiz ve yorumlama işini yapa(bile)n kişidir. Dr. Sedat

Detaylı

Parti Bazında Kabul Örneklemesi

Parti Bazında Kabul Örneklemesi KABUL ÖRNEKLEMESİ Hammadde, yarı mamul veya bitmiş (son) ürünün kabul / red kararının verilebilmesi için kullanılan bir yaklaşımdır. Kabul örneklemesi sadece partinin kabul / red kararı için kullanılır,

Detaylı

Merkezi Limit Teoremi

Merkezi Limit Teoremi Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal

Detaylı

**MAN 502T İşletme Yönetimi için Araştırma Yöntemleri**

**MAN 502T İşletme Yönetimi için Araştırma Yöntemleri** **MAN 502T İşletme Yönetimi için Araştırma Yöntemleri** **** ARAŞTIRMA YÖNTEMLERİNE GİRİŞ ** 1. Yarıyıl** **Hafta 11** Hazırlayan: **Dr. Özlem İnanç, Işık Üniversitesi-İstanbul** Giriş Bu haftaki dersimizde

Detaylı

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Hipotez Testleri Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Nedir? Gözlemlenebilir (araştırılabilir) bir olay, olgu veya fikri mantıklı ve bilimsel olarak açıklamaya yönelik yapılan tahminlerdir.

Detaylı

BİYOİSTATİSTİK Uygulama 2 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 2 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 2 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 ÖRNEK SENARYO 15 yıllık hizmet

Detaylı

BİLİMSEL ARAŞTIRMA YÖNTEMLERİ

BİLİMSEL ARAŞTIRMA YÖNTEMLERİ BİLİMSEL ARAŞTIRMA YÖNTEMLERİ Yöntem Dr. Seher Yalçın 3.2.2017 Dr. Seher Yalçın 1 YÖNTEM Araştırmanın Modeli Evren ve Örneklem Veriler ve Toplanması Verilerin Çözümü ve Yorumu 3.2.2017 Dr. Seher Yalçın

Detaylı

Örneklem Mantığı. Yaşar Tonta. H.Ü. Bilgi ve Belge Yönetimi Bölümü

Örneklem Mantığı. Yaşar Tonta. H.Ü. Bilgi ve Belge Yönetimi Bölümü Örneklem Mantığı Yaşar Tonta H.Ü. Bilgi ve Belge Yönetimi Bölümü tonta@hacettepe.edu.tr http://yunus.hacettepe.edu.tr/~tonta/tonta.html Not Bu slaytlarda yer alan bilgiler SB 5002 Araştırma Yöntemleri

Detaylı

ARAŞTIRMA EVRENİ VE ÖRNEKLEM

ARAŞTIRMA EVRENİ VE ÖRNEKLEM 7. Bölüm: Araştırma Evreni, Örneklem Seçimi ve Ölçüm GİRİŞ Araştırmacının, araştırma problemini oluşturduktan ve en uygun araştırma tipinin ne olduğuna karar verdikten sonra, bilgileri kimden toplayacağına

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

BAĞIMSIZ DENETİMDE ÖRNEKLEME (BDS 530) HAKKINDA TEBLİĞ TÜRKİYE DENETİM STANDARTLARI TEBLİĞİ NO:

BAĞIMSIZ DENETİMDE ÖRNEKLEME (BDS 530) HAKKINDA TEBLİĞ TÜRKİYE DENETİM STANDARTLARI TEBLİĞİ NO: 22 Ocak 2014 ÇARŞAMBA Resmî Gazete Sayı : 28890 TEBLİĞ Kamu Gözetimi, Muhasebe ve Denetim Standartları Kurumundan: BAĞIMSIZ DENETİMDE ÖRNEKLEME (BDS 530) HAKKINDA TEBLİĞ TÜRKİYE DENETİM STANDARTLARI TEBLİĞİ

Detaylı

Neden İşletme Kurarız?

Neden İşletme Kurarız? 1 Neden İşletme Kurarız? Bağımsız çalışma isteği Miras yoluyla işletme sahipliği Yeni bir buluş veya fikri pazara sunma arzusu Başka fırsatların yokluğu Toplumsal itibar sağlama Kazanç sağlama ve ülke

Detaylı

Pazarlama araştırması

Pazarlama araştırması Pazarlama araştırması Etkin bir pazarlama kararı alabilmek için gerekli olan enformasyonun ve bilginin toplanması ve kullanılmasıdır. Bu sayede, pazarla ilgili risk ve belirsizlik azalacak ve başarı artacaktır.

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

VERİLERİN TOPLANMASI VE SUNULMASI

VERİLERİN TOPLANMASI VE SUNULMASI 2 VERİLERİN TOPLANMASI VE SUNULMASI 2.1. Örnekleme 2.2. Verilerin toplanması 2.3. Verilerin sunulması: 2.4 Deneysel Çalışmalar Prof.Dr. Levent ŞENYAY I I - 1 2.1. Örnekleme İstatistiksel veriler toplanırken

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü Ders Müfredatı Açıklayıcı İstatistik Merkezi Eğilim ve Dağılma Ölçüleri Olasılık (İhtimal) Anakütle Dağılımları

Detaylı

AMAÇ: Araştırma planlamasında kullanılan basamakları öğrencilerin tanımlayabilmesini sağlamaktır.

AMAÇ: Araştırma planlamasında kullanılan basamakları öğrencilerin tanımlayabilmesini sağlamaktır. ÖRNEKLEME YÖNTEMLERİ 05.03.2013 Salı Populasyonu tanımak, Populasyonu temsil gücüne sahip bir alt grubu seçmek. n hacimli örnekten; elde edilen sonuçlarla; n den N e gitmektir. Populasyona genellemektir.

Detaylı

χ 2 Testi Mühendislikte İstatistik Yöntemler Bağımsızlık Testi Homojenlik Testi Uygunluk Testi

χ 2 Testi Mühendislikte İstatistik Yöntemler Bağımsızlık Testi Homojenlik Testi Uygunluk Testi χ Testi Mühendislikte İstatistik Yöntemler χ Testi Bağımsızlık Testi Homojenlik Testi Uygunluk Testi χ Testi Sayısal olmayan değişkenler arasındaki ilişkinin testi (Bağımsızlık) Farklı örnek kütlelerin

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

Şu ana kadar. İşlemleri üzerinde konuştuk.

Şu ana kadar. İşlemleri üzerinde konuştuk. ÖRNEKLEME 4. Bölüm Şu ana kadar 1- Araştırma sorusu belirleme 2-Bilimsel Araştırmalarda Etik 3- Kavram -> kavramsallaştırma -> Operasyonalizasyon 4- Bağımlı/Bağımsız ve Kontrol Değişkenleri 5. Geçerlilik

Detaylı

Örneklem Dağılımları ve Merkezi Limit Teoremi

Örneklem Dağılımları ve Merkezi Limit Teoremi Örneklem Dağılımları ve Merkezi Limit Teoremi Çıkarımsal İstatistik (Inferential Statistics) : Örneklemden yola çıkarak ana kütleyle (popülasyonla) ilgili çıkarımlarda bulunmak (Smidt, 2001) İstatistiksel

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

HİPOTEZ TESTLERİ HİPOTEZ NEDİR?

HİPOTEZ TESTLERİ HİPOTEZ NEDİR? HİPOTEZ TESTLERİ HİPOTEZ NEDİR? Örnekleme ile test edilmeye çalışılan bir popülasyonun ilgili parametresi hakkında ortaya sunulan iddiadır. Örneğin; A dersi için vize ortalaması 50 nin altındadır Firestone

Detaylı

Popülasyon Ortalamasının Tahmin Edilmesi

Popülasyon Ortalamasının Tahmin Edilmesi Güven Aralıkları Popülasyon Ortalamasının Tahmin Edilmesi Tanımlar: Nokta Tahmini Popülasyon parametresi hakkında tek bir rakamdan oluşan tahmindir. Popülasyon ortalaması ile ilgili en iyi nokta tahmini

Detaylı

GÜZ DÖNEMİ YÜKSEK LİSANS VE DOKTORA DERS KAYITLARINDA DİKKAT EDİLECEK HUSUSLAR VE LİSANSÜSTÜ DERS PROGRAMLARI

GÜZ DÖNEMİ YÜKSEK LİSANS VE DOKTORA DERS KAYITLARINDA DİKKAT EDİLECEK HUSUSLAR VE LİSANSÜSTÜ DERS PROGRAMLARI 2016-2017 GÜZ DÖNEMİ YÜKSEK LİSANS VE DOKTORA DERS KAYITLARINDA DİKKAT EDİLECEK HUSUSLAR VE LİSANSÜSTÜ DERS PROGRAMLARI * Ders kayıtları 8-9 Eylül 2016 tarihlerinde öğrenci işleri bilgi sistemi üzerinden

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ İÇİNDEKİLER ÖNSÖZ... v TEŞEKKÜR... vi İKİNCİ BASKIYA ÖNSÖZ VE TEŞEKKÜR... vii İÇİNDEKİLER... ix ŞEKİLLER LİSTESİ... xviii TABLOLAR LİSTESİ... xx BİRİNCİ KISIM: TASARIM BİRİNCI BÖLÜM PAZARLAMA ARAŞTIRMASINA

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 ANAKÜTLE Anakütle kavramı insan, yer ve şeyler toplulugunu ifade etmek için kullanır. İlgi alanına gore, araştırmacı hangi topluluk üzerinde

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Genetik Algoritma (Genetic Algorithm) Doç.Dr. M. Ali Akcayol Genetik Algoritma 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik

Detaylı

Nitel Araştırmada Geçerlik ve Güvenirlik

Nitel Araştırmada Geçerlik ve Güvenirlik Nitel Araştırmada Geçerlik ve Bilimsel araştırmanın en önemli ölçütlerinden biri olarak kabul edilen geçerlik ve güvenirlik araştırmalarda en yaygın olarak kullanılan iki en önemli ölçüttür. Araştırmalarda

Detaylı

I. İSTATİSTİK VE OLASILIK

I. İSTATİSTİK VE OLASILIK I. İSTATİSTİK VE OLASILIK Dr. İrfan Yolcubal Kocaeli Üniversitesi Jeoloji Müh. Bölümü Ders Kitabı Statistical analysis of Geological data (Koch G. S., ve Link, R. F., 1980. Dover Publications) A data-based

Detaylı

Bilimsel Araştırma Yöntemleri. Doç. Dr. Recep Kara

Bilimsel Araştırma Yöntemleri. Doç. Dr. Recep Kara Bilimsel Araştırma Yöntemleri Doç. Dr. Recep Kara YÖNTEM BÖLÜMÜ 4. Ders Araştırmanın Modeli Evren ve Örneklem Verilerin Toplanması Verilerin Analiz Edilmesi bölümlerinden oluşur. 1. Araştırmanın Modeli

Detaylı

Bir ürün yada hizmetin belirlenen yada olabilecek ihtiyaçları karşılama yeterliğine dayanan özelliklerinin toplamıdır.

Bir ürün yada hizmetin belirlenen yada olabilecek ihtiyaçları karşılama yeterliğine dayanan özelliklerinin toplamıdır. KALİTE KONTROL Kalite: Bir ürün yada hizmetin belirlenen yada olabilecek ihtiyaçları karşılama yeterliğine dayanan özelliklerinin toplamıdır. Kontrol: Mevcut sonuçlarla hedefleri ve amaçları kıyaslama

Detaylı

ÖRNEKLEME HATALARI EK C. A. Sinan Türkyılmaz

ÖRNEKLEME HATALARI EK C. A. Sinan Türkyılmaz ÖNEKLEME HATALAI EK C A. Sinan Türkyılmaz Örneklem araştırmalarından elde edilen kestirimler (estimates) iki tip dan etkilenirler: (1) örneklem dışı lar ve (2) örneklem ları. Örneklem dışı lar, veri toplama

Detaylı

T.C. MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ EĞİTİM BİLİMLERİ ENSTİTÜSÜ

T.C. MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ EĞİTİM BİLİMLERİ ENSTİTÜSÜ T.C. MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ EĞİTİM BİLİMLERİ ENSTİTÜSÜ TEZ ÖNERİSİ HAZIRLAMA KILAVUZU MART, 2017 MUĞLA T.C. MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ EĞİTİM BİLİMLERİ ENSTİTÜSÜ.... ANABİLİM DALI.... BİLİM

Detaylı

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel kalite kontrol o Üretim ve hizmet süreçlerinin ölçülebilir veriler yardımıyla istatistiksel yöntemler kullanılarak

Detaylı

Capture-Recapture. Yakala-tekrar yakala

Capture-Recapture. Yakala-tekrar yakala Capture-Recapture Yakala-tekrar yakala 1 2 Epidemioyologlar İnsanları, olayları, hastaları tek tek saymak isterler 3 20.yy başlarında epidemiyologlar saymaya devam ederken, hayvan bilimciler bunun imkansızlığını

Detaylı

EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan

EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan EVREN, ÖRNEK, TEMSİLİYET Prof. Mustafa Necmi İlhan MD, PhD, PhD, MBA Gazi Üniversitesi Tıp Fakültesi Halk Sağlığı AbD mnilhan@gazi.edu.tr 1 Neden Araştırma Yaparız? Bilimsel gerçeğe ulaşmak Bilinenlerin

Detaylı

SURİYE, IŞİD VE ASKERİ OPERASYONLA İLGİLİ SEÇMEN DÜŞÜNCELERİ

SURİYE, IŞİD VE ASKERİ OPERASYONLA İLGİLİ SEÇMEN DÜŞÜNCELERİ SURİYE, IŞİD VE ASKERİ OPERASYONLA İLGİLİ SEÇMEN DÜŞÜNCELERİ ŞUBAT 2015 www.perspektifs.com info@perspektifs.com Perspektif Strateji Araştırma objektif, doğru ve nitelikli bilginin üretildiği bir merkez

Detaylı

1. BETİMSEL ARAŞTIRMALAR

1. BETİMSEL ARAŞTIRMALAR ARAŞTIRMA MODELLERİ 1. BETİMSEL ARAŞTIRMALAR A. BETİMLEME (KAMUOYU) ARAŞTIRMALARI Bir survey yöntemi olan betimleme yöntemi, grupla ilgili, genişliğine bir çalışmadır. Bu tür araştırmalar, çok sayıda

Detaylı

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

III. PwC Çözüm Ortaklığı Platformu Şirketlerde İç Kontrol ve İç Denetim Fonksiyonu* 22 Aralık 2004

III. PwC Çözüm Ortaklığı Platformu Şirketlerde İç Kontrol ve İç Denetim Fonksiyonu* 22 Aralık 2004 III. PwC Çözüm Ortaklığı Platformu Şirketlerde İç Kontrol ve İç Denetim Fonksiyonu* *connectedthinking PwC İçerik İç kontroller İç kontrol yapısının oluşturulmasında COSO nun yeri İç denetim İç denetimi

Detaylı

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Sıra İstatistikleri ve Uygulama Alanlarından Bir Örneğin Değerlendirmesi 89 SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Esin Cumhur PİRİNÇCİLER Araş. Gör. Dr., Çanakkale Onsekiz

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

Hipotez Testi. gibi hususlar ayrıbirer hipotezin konusudur. () Kafkas Üniversitesi May 23, / 11

Hipotez Testi. gibi hususlar ayrıbirer hipotezin konusudur. () Kafkas Üniversitesi May 23, / 11 Hipotez Testi Bu dersde anakütle parametresinin varsayılan değeri ile başlayıp, örneklem kullanarak varsayılan değerin uygunluğunun kabul edilmesi ya da reddedilmesi sonucuna karar verilecektir. Ortaya

Detaylı

BOLOGNA SÜRECİ PROGRAM TANITIM İŞLEMLERİ FAKÜLTE/BÖLÜM/PROGRAM TANITIM

BOLOGNA SÜRECİ PROGRAM TANITIM İŞLEMLERİ FAKÜLTE/BÖLÜM/PROGRAM TANITIM BOLOGNA SÜRECİ PROGRAM TANITIM İŞLEMLERİ FAKÜLTE/BÖLÜM/PROGRAM TANITIM Fakülte/Bölüm/Program tanıtım ekranı Üniversite de var olan programların tanıtım bilgileri girişinin yapıldığı ekrandır. Herhangi

Detaylı

Teori ve Uygulama. Bugünün iş dünyasında verilerden (sayılardan) kaçış yok.

Teori ve Uygulama. Bugünün iş dünyasında verilerden (sayılardan) kaçış yok. 1 İstatistik Teori ve Uygulama Başlarken Prof.Dr. Ünal H. ÖZDEN 1 Bugünün iş dünyasında verilerden (sayılardan) kaçış yok. Bugünün dijital dünyasında ileri çalışmalar için herhangi bir olguya ait giderek

Detaylı

G.M.K. Bulvarı No: 71 Maltepe / Ankara

G.M.K. Bulvarı No: 71 Maltepe / Ankara 2016/3. DÖNEM SERBEST MUHASEBECİ MALİ MÜŞAVİRLİK SINAVI MUHASEBE DENETİMİ SINAVI SORULARI 3 ARALIK 2016 CUMARTESİ Soru 1. Aşağıdakileri açıklayınız. (40 Puan) a) Denetim modelinde bulgu riski (10 Puan)

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

ÖDEV 5 ÇÖZÜMLERİ. 1. A, B, C Ω olmak üzere A B ve A B C olaylarını ayrık olayların birleşimi olarak yazınız.

ÖDEV 5 ÇÖZÜMLERİ. 1. A, B, C Ω olmak üzere A B ve A B C olaylarını ayrık olayların birleşimi olarak yazınız. OLASILIĞA GİRİŞ IDERSİ ÖDEV 5 ÇÖZÜMLERİ 1. A, B, C Ω olmak üzere A B ve A B C olaylarını ayrık olayların birleşimi olarak yazınız. A B = A (B A) =A (B A c ) A B C = A (B A) (C (A B)) = A (B A c ) (C B

Detaylı

Veri Toplama Yöntemleri

Veri Toplama Yöntemleri Veri Toplama Yöntemleri Genel olarak veri, bir sonuca varabilmek için gerekli olan ilk bilgi, dayanak bilgi yada belge yada ipuçları olarak tanımlanmaktadır. Araştırma surecinde veri niteliğindeki bilgi

Detaylı

Ünite 4 Kaba Verinin örneklenmesi ve Araştırılması. Örnekleme Tasarım Adımları. Ana konular. Örnekleme Boyutu. Örnekleme

Ünite 4 Kaba Verinin örneklenmesi ve Araştırılması. Örnekleme Tasarım Adımları. Ana konular. Örnekleme Boyutu. Örnekleme Ünite 4 Kaba Verinin örneklenmesi ve Araştırılması Sistem Analizi ve Tasarımı Sedat TELÇEKEN Örneklemeye neden ihtiyaç duyulur? Sistem Analistleri örneklemeyi; Maliyetleri azaltmak, Veri Toplama sürecini

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 9 VARYANS ANALİZİ Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi

Detaylı

OLASILIK VE İSTATİSTİK

OLASILIK VE İSTATİSTİK OLASILIK VE İSTATİSTİK PROBABILITY AND STATISTICS (3+0) Dersi verenler: Doç. Dr. Nil TOPLAN Yrd. Doç. Dr. Nuray CANİKOĞLU 1 DEĞERLENDİRME SİSTEMİ YARIYIL İÇİ SAYISI KATKI Ara Sınav 1 60 Kısa Sınav 2 30

Detaylı

tepav Kasım2015 N201532 DEĞERLENDİRME NOTU Seçim Anketleri Ne Kadar Güvenilir? Türkiye Ekonomi Politikaları Araştırma Vakfı

tepav Kasım2015 N201532 DEĞERLENDİRME NOTU Seçim Anketleri Ne Kadar Güvenilir? Türkiye Ekonomi Politikaları Araştırma Vakfı Kasım2015 N201532 tepav Türkiye Ekonomi Politikaları Araştırma Vakfı DEĞERLENDİRME NOTU Erol TAYMAZ TEPAV Seçim Anketleri Ne Kadar Güvenilir? Türkiye'de son yıllarda seçim anketleri büyük ilgi görüyor.

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Mühendislikte İstatistik Metotlar

Mühendislikte İstatistik Metotlar Mühendislikte İstatistik Metotlar Recep YURTAL Çukurova Üniveristesi Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü Referans Kitaplar Türkçe : Mühendisler için İstatistik, Mehmetçik Bayazıt,

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

Bilim ve Bilimsel Araştırma

Bilim ve Bilimsel Araştırma Bilim ve Bilimsel Araştırma Bilim nedir? Scire / Scientia Olaylar ve nesneleri kavramak, tanımak ve sınıflandırmak üzere çözümleyen, olgular arasındaki nesnellik ilişkilerini kuran, bu ilişkileri deney

Detaylı

Bu modül, senaryolar, schedule form, raporlar, personel ve öğretmen portalı schedule menülerini kapsamaktadır.

Bu modül, senaryolar, schedule form, raporlar, personel ve öğretmen portalı schedule menülerini kapsamaktadır. Working Schedule (Çalışma Programı) Bu modül, senaryolar, schedule form, raporlar, personel ve öğretmen portalı schedule menülerini kapsamaktadır. Senaryo Görev senaryoları belirlenen kriterlere göre sistem

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET Bu çalışmada, Celal Bayar Üniversitesi İnşaat Mühendisliği Bölümü öğrencilerinin

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı