CRYSTAL BALL Eğitimi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "CRYSTAL BALL Eğitimi"

Transkript

1 CRYSTAL BALL Eğitimi İki günlük bu kursun ilk yarısında, Crystal Ball Fusion Edition kullanılarak Excel tablolarına dayalı risk analizi öğretilecektir. Monte Carlo simülasyonu, tornado analizi ve Crystal Ball model geliştirme adımları anlatılacaktır. Simülasyon sonuçlarından kazanılan derinlemesine görüş ve bulguların yönetim kuruluna, yönetime, müşterilere sunmanın en iyi yolları gösterilecektir. İkinci günde, ileri model geliştirme uygulamaları gerçekleştirilecektir. Hızlı model kurma süreci ve Crystal Ball Fusion Edition analitik araçları ele alınacaktır. Optimizasyon ve zaman serileri tahmini, ileri varsayımlar, tahmin seçenekleri ve duyarlılık kontrollarını kapsayan ileri konu başlıkları işlenecektir. Bu kursun ikinci yarısında, Crystal Ball ve OptQuest in birlikte oluşturduğu yeteneği kullanarak optimal karar verme konusu ele alınacaktır. Uygulama örneklerinin ve gerçek alıştırmalar ile kurs boyunca sunulan kavram ve içeriğin anlaşılırlığını arttırılacaktır. Öğrenilecek S mtemel konular a r t A g e Spreadsheet Modelleri kurmak Spreadsheet Modellerini analiz etmek Karar değişkenlerini optimize etmek Predictor ile Tahmin Varsayımları ve tahminleri tanımlama Katılımcılar Risk analiz uzmanları Ekonomik analiz ve modelleme uzmanları Tahmin ve modelleme uzmanları Veri modelleme uzmanları Crystal Ball kullanıcıları Sistem analistleri İş zekası uzmanları İş Analistleri

2 Kurs Hedefleri Olasılık Dağılımlarını Anlamak Crystal Ball Yeteneklerini Keşfetmek Varsayımları ve Tahminleri Yaratmak Veriye dayalı varsayımları yaratmak Uzman fikirlerine dayalı tahminleri yaratmak Simülasyon Sonuçlarını Analiz Etmek Simülasyon Sonuçlarını Sunmak Crystal Ball Araçlarını Kullanarak Analiz Yapmak Simülasyon Kontrollar ile Çalışmak Varsayımlar için İleri Seçenekleri Kurmak Tahminler için İleri Seçenekleri Kurmak OptQuest ile Simülasyon Modellerini Optimize Etmek Optimizasyon Çözümlerini Analiz Etmek Predictor ile Tahmin Modelleme ve Simülasyonu Anlamak

3 Kurs Konu Başlıkları: Modelleme ve Simülasyona Genel Bakış Modelleme Temel Kavram ve Yaklaşımları Simülasyon Temelleri Crystal Ball Hakkında Modelleme ve Simülasyon İncelemeleri Model Geliştirme Süreci Monte Carlo Simülasyonu Hakkında Olasılık Dağılımı Temelleri Olasılık Dağılımlarına Genel Bakış Temel Dağılım İstatistikleri Önceden Tanımlanmış Temel Dağılımlar Crystal Ball ü Keşfetmek Crystal Ball Başlatma Tercihlerini Oluşturmak Çalıştırma Tercihlerini Oluşturmak Temel Terminoloji Crystal Ball Menüleri Ek Kaynaklar Varsayımları ve Tahminleri Yaratmak Varsayımları Yaratma Tahminleri Yaratma Dağılımlar Hakkında Varsayım ve tahmin verileri düzenleme Veriye Dayalı Varsayımları Yaratma Veriye dayalı Varsayımlar Hakkında Dağılıma uygunlukla Varsayımları Yaratma Veriye dayalı Özel Varsayımları Yaratma Varsayımları İlişkilendirme Uzman Fikirlerine Dayalı Varsayım Yaratma Uzmana-Dayalı Varsayımlar Hakkında Bilinen Parametrelerle Normal Dağılımları Kurma Üçgen Dağılımlar Yaratma Özel Dağılımları Kurma Ek Referanslar

4 Simülasyon Sonuçlarının Analizi Simülasyonları Çalıştırma Temel Durum Hakkında Tahminlerin Analizi Varsayım Grafiklerini Görüntüleme Çoklu Tahminlerin Analizi Simülasyon Sonuçlarının Sunumu Rapor Türleri Rapor Yaratma Sonuçların Kaydedilmesi Crystal Ball Araçlarıyla Analiz Crystal Ball Araçları Hakkında Duyarlıklık Analizi Tornado Grafikleri Batch Fit Hakkında S Batch Fit msonuçlarını Yaratma a r t A g e Korelasyon Matrisleri Yaratma Saçılım Grafikleri ile Korelasyonların Analizi Simülasyon Kontrolları ile Çalışma Kesinlik Kontrol Tercihlerinin Kurulması Örnekleme Tercihlerinin Kurulması Çalıştırma Zaman Tercihlerinin Kurulması Simülasyon Çalıştırma Seçeneklerinin Belirlenmesi Simülasyon İstatistiği için Seçeneklerin Kurulması Kesinlik Kontrolunu Çalıştırma Varsayımlar için İleri Seçeneklerin Kurulması Değişik Parametreler ile Çalıştırma Varsayım Dağılımlarını Kesme Dağılım Fonsiyonlarını Yaratma Dağıtımlara Üyelik ve Yayınlama Dağılım Galerisini Özgünleştirme Tahminler için İleri Seçeneklerin Kurulması Tahmin İstatistiğini Otomatik Olarak Çıkarma Tahmin İstatistiklerine İşaret Çizgilerini Ekleme Tahminlere Dağılımları Uygunlaştırma Tahmin Sonuçlarını Filtreleme

5 OptQuest ile Simülasyon Modellerinin Optimizasyonu Optimizasyon Temelleri OptQuest Optimizasyon Kavramları OptQuest Optimizasyon Süreci OptQuest Optimizasyona Genel Bakış Optimizasyon Karar Değişkenleri Optimizasyon Çözümlerinin Analizi OptQuest Çözümlerinin Yönetimi OptQuest Performans En İyi Uygulamaları Efficient Frontier Analizlerini Yürütme Predictor ile Tahmin Zaman Serileri Tahminleri Yaratma Lineer Regresyonları Yürütme

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

MONTE CARLO BENZETİMİ

MONTE CARLO BENZETİMİ MONTE CARLO BENZETİMİ U(0,1) rassal değişkenler kullanılarak (zamanın önemli bir rolü olmadığı) stokastik ya da deterministik problemlerin çözümünde kullanılan bir tekniktir. Monte Carlo simülasyonu, genellikle

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

Kredi Limit Optimizasyonu:

Kredi Limit Optimizasyonu: Kredi Limit Optimizasyonu: «Teorik Değil Pratik" Simge Danışman Analitik Direktörü, Experian EMEA Kar Gelişimi Kredi Limit Optimizasyonu Optimizasyona Genel Bakış Profilleme Modelleme Karar Matrisleri

Detaylı

SİSTEM SİMÜLASYONU BENZETIM 1 SİMÜLASYON MODEL TÜRLERİ 1. STATİK VEYA DİNAMİK. Simülasyon Modelleri

SİSTEM SİMÜLASYONU BENZETIM 1 SİMÜLASYON MODEL TÜRLERİ 1. STATİK VEYA DİNAMİK. Simülasyon Modelleri SİSTEM SİMÜLASYONU SİMÜLASYON MODELİ TÜRLERİ BİR SİMÜLASYON ÇALIŞMASINDA İZLENECEK ADIMLAR ve SİMÜLASYON MODEL TÜRLERİ Simülasyon Modelleri Üç ana grupta toplanabilir; 1. Statik (Static) veya Dinamik (Dynamic),

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

Sistem Simulasyonu. Ders 8 Laboratuvar. Girdi Analizi

Sistem Simulasyonu. Ders 8 Laboratuvar. Girdi Analizi Sistem Simulasyonu Ders 8 Laboratuvar Girdi Analizi Örneklem Verileri durağan olmalıdır. Bu sonuç zaman serisi grafiğinden gözlemlenir. Verilerde zamana bağlı farkedilebilir bir trend (eğilim) olmamalıdır.

Detaylı

Sistem Simulasyonu. Ders 8 Laboratuvar. Girdi Analizi

Sistem Simulasyonu. Ders 8 Laboratuvar. Girdi Analizi Sistem Simulasyonu Ders 8 Laboratuvar Girdi Analizi Örneklem Verileri durağan olmalıdır. Bu sonuç zaman serisi grafiğinden gözlemlenir. Verilerde zamana bağlı farkedilebilir bir trend (eğilim) olmamalıdır.

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

8. BÖLÜM: DEĞİŞEN VARYANS

8. BÖLÜM: DEĞİŞEN VARYANS 8. BÖLÜM: DEĞİŞEN VARYANS Bu bölümde; Değişen Varyans Tespiti için Grafik Çizme Değişen Varyans Testi: Park Testi Değişen Varyans Testi: White Testi Değişen Varyans Probleminin Çözümü: Ağırlıklandırılmış

Detaylı

Bilgisayar ve Bilgi Sistemleri (COMPE 107) Ders Detayları

Bilgisayar ve Bilgi Sistemleri (COMPE 107) Ders Detayları Bilgisayar ve Bilgi Sistemleri (COMPE 107) Ders Detayları Ders Adı Bilgisayar ve Bilgi Sistemleri Ders Kodu COMPE 107 Dönemi Ders Uygulama Saati Saati Laboratuar Saati Kredi AKTS Bahar 3 0 0 3 3 Ön Koşul

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Korelasyon- (lineer korelasyon) Açıklayıcı (Bağımsız) Değişken x çalışma zamanı ayakkabı numarası İki değişken arasındaki ilişkidir. Günlük sigara sayısı SAT puanı boy Yanıt (Bağımlı)

Detaylı

AOSB 2017 EĞİTİM PROGRAMI

AOSB 2017 EĞİTİM PROGRAMI Eğitimin Konusu : Makro Excel Eğitim Tarihi : 04-05-10-11-12 Mayıs 2017 Eğitim Hedef Kitlesi : Excel kulllanıcıları arasında pratiklik ve hız kazanmış, Excel fonksiyonları, Veri Analizi araçlarını kullanma

Detaylı

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur.

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. Değişen Varyans Örnek Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. 1 Aşağıda yer alan denklemi tahmin edelim; y i = β 0 + β 1 x 1i + β 2 x 2i + u i EViews

Detaylı

2. BASİT DOĞRUSAL REGRESYON 12

2. BASİT DOĞRUSAL REGRESYON 12 1. GİRİŞ 1 1.1 Regresyon ve Model Kurma / 1 1.2 Veri Toplama / 5 1.3 Regresyonun Kullanım Alanları / 9 1.4 Bilgisayarın Rolü / 10 2. BASİT DOĞRUSAL REGRESYON 12 2.1 Basit Doğrusal Regresyon Modeli / 12

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

KANTİTATİF TEKNİKLER - Temel İstatistik -

KANTİTATİF TEKNİKLER - Temel İstatistik - KANTİTATİF TEKNİKLER - Temel İstatistik - 1 İstatistik Nedir? Belirli bir amaçla verilerin toplanması, düzenlenmesi, analiz edilerek yorumlanmasını sağlayan yöntemler topluluğudur. 2 İstatistik Kullanım

Detaylı

4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME

4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME 4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME Bu bölümde; Bir grup değişkenin çalışma sayfası görüntüsünü görüntüleme Bir grup değişkenin tanımlayıcı istatistiklerini görüntüleme Bir grup içerisindeki

Detaylı

ProModel ile Modelleme. Benzetim 14. Ders

ProModel ile Modelleme. Benzetim 14. Ders ProModel ile Modelleme Benzetim 14. Ders ProModel Menüleri ProModel temel olarak iki ayrı alandan oluşur, bu alanlar Main Menüler ve Layout Window udur. File menüsü ProModel Menüleri ProModel Menüleri

Detaylı

Benzetim 13. Ders. Benzetim Paketleri ve Promodel e Giriş

Benzetim 13. Ders. Benzetim Paketleri ve Promodel e Giriş Benzetim 13. Ders Benzetim Paketleri ve Promodel e Giriş BENZETİM PAKETİNDEN BEKLENEN ÖZELLİKLERİ Genel Özellikler: Modelleme esnekliği (bir modelin değişik parametrelerle yenilenebilmesi), Yeni model

Detaylı

DERS BİLGİ FORMU. Okul Eğitimi Süresi

DERS BİLGİ FORMU. Okul Eğitimi Süresi ELEKTROMEKANİK KONTROL VE PLC (0860260122) Zorunlu Meslek i Seçmeli (Proje, Ödev, 4 28 22 50 Kredisi 4+1 5 Bu ders ile öğrenci, kumanda elemanlarının montajını ve kumanda devre elemanları kullanılarak

Detaylı

MatLab. Mustafa Coşar mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar

MatLab. Mustafa Coşar mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar MatLab Mustafa Coşar mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar Sunum Planı MatLab Hakkında Ekran Yapısı Programlama Yapısı Matlab da Programlamaya Giriş Sorular MatLab Hakkında MatLab;

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

SOLIDWORKS SIMULATION EĞİTİMİ

SOLIDWORKS SIMULATION EĞİTİMİ SOLIDWORKS SIMULATION EĞİTİMİ Kurs süresince SolidWorks Simulation programının işleyişinin yanında FEA teorisi hakkında bilgi verilecektir. Eğitim süresince CAD modelden başlayarak, matematik modelin oluşturulması,

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

İNTERNET TARAYICISI ÜZERİNDE ÇALIŞABİLEN ELEKTRİK TALEP TAHMİNİ ANALİZ PROGRAMI

İNTERNET TARAYICISI ÜZERİNDE ÇALIŞABİLEN ELEKTRİK TALEP TAHMİNİ ANALİZ PROGRAMI TMMOB TÜRKİYE VI. ENERJİ SEMPOZYUMU - KÜRESEL ENERJİ POLİTİKALARI VE TÜRKİYE GERÇEĞİ İNTERNET TARAYICISI ÜZERİNDE ÇALIŞABİLEN ELEKTRİK TALEP TAHMİNİ ANALİZ PROGRAMI Barış Sanlı Dünya Enerji Konseyi Türk

Detaylı

DERS BİLGİ FORMU ASENKRON VE SENKRON MAKİNALAR (0860120192-0860170102) ELEKTRİK VE ENERJİ. Okul Eğitimi Süresi

DERS BİLGİ FORMU ASENKRON VE SENKRON MAKİNALAR (0860120192-0860170102) ELEKTRİK VE ENERJİ. Okul Eğitimi Süresi ) ASENKRON VE SENKRON MAKİNALAR (0860120192-0860170102) (Proje, İş Yeri ) Kredisi Bu derste, her türlü asenkron ve senkron elektrik makinalarının uçlarının bulunması, devreye bağlanması ve çalıştırılması

Detaylı

Eme Sistem simülasyonu. Giriş. Simulasyonun Kullanım Alanları (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş

Eme Sistem simülasyonu. Giriş. Simulasyonun Kullanım Alanları (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş Eme 3105 Giriş Sistem simülasyonu Gerçek Dünya Sureci Sistemin davranışıyla ilişkili varsayımlar seti Modelleme & Analiz Sistem Simülasyonuna Giriş Ders 1 Simülasyon, gerçek bir dünya sureci yada sistemindeki

Detaylı

9/14/2016 EME 3117 SİSTEM SIMÜLASYONU. Giriş. (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş. Hafta 1. Yrd.Doç.Dr.

9/14/2016 EME 3117 SİSTEM SIMÜLASYONU. Giriş. (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş. Hafta 1. Yrd.Doç.Dr. EME 3117 SİSTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Hafta 1 Yrd.Doç.Dr.Beyazıt Ocaktan Giriş Simülasyon, gerçek bir dünya süreci yada sistemindeki işlemlerin zamana bağlı değişimlerinin taklit edilmesidir.

Detaylı

Kurumsal Proje ve Portföy Yönetimine Microsoft Bakışı. Atalay Aktaş Ürün Pazarlama Müdürü Microsoft Türkiye

Kurumsal Proje ve Portföy Yönetimine Microsoft Bakışı. Atalay Aktaş Ürün Pazarlama Müdürü Microsoft Türkiye Kurumsal Proje ve Portföy Yönetimine Microsoft Bakışı Atalay Aktaş Ürün Pazarlama Müdürü Microsoft Türkiye Microsoft Project in Gelişimi Project 2010 Yatırım Alanları Sizinle Birlikte Gelişebilen Doğru

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

EME 3105 Giriş SISTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Simülasyon Ders 1 Simülasyon, Yrd.Doç.Dr.Beyazıt Ocaktan

EME 3105 Giriş SISTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Simülasyon Ders 1 Simülasyon, Yrd.Doç.Dr.Beyazıt Ocaktan EME 3105 Giriş SISTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Gerçek Dünya Sureci Sistemin davranışıyla ilişkili varsayımlar seti Modelleme & Analiz Ders 1 Yrd.Doç.Dr.Beyazıt Ocaktan Simülasyon, gerçek

Detaylı

LOGO İş Zekası çözümü ile kurumsal raporlama ve analizler. Cem Yılmaz Genel Müdür LOGOBI Yazılım

LOGO İş Zekası çözümü ile kurumsal raporlama ve analizler. Cem Yılmaz Genel Müdür LOGOBI Yazılım LOGO İş Zekası çözümü ile kurumsal raporlama ve analizler Cem Yılmaz Genel Müdür LOGOBI Yazılım Hakkımızda LOGOBI Yazılım A.Ş. iş zekası alanında faaliyet gösteren, Türkiye de sahip olduğu yüzlerce müşterinin

Detaylı

Tarih ve Saat Ders İçeriği Eğitmenler

Tarih ve Saat Ders İçeriği Eğitmenler VİOP AKADEMİ Tarih ve Saat Ders İçeriği Eğitmenler 13/9/2014 VİOP Piyasası ve Ürünleri Prof. Dr. Vedat Akgiray, 10:00-11:30 Boğaziçi Üniversitesi 13/9/2014 Vadeli Piyasalarda Fiyatlama Dr. Emrah Şener,

Detaylı

Öğretim Üyeleri İçin Ön Söz Öğrenciler İçin Ön Söz Teşekkürler Yazar Hakkında Çevirenler Çeviri Editöründen

Öğretim Üyeleri İçin Ön Söz Öğrenciler İçin Ön Söz Teşekkürler Yazar Hakkında Çevirenler Çeviri Editöründen Öğretim Üyeleri İçin Ön Söz Öğrenciler İçin Ön Söz Teşekkürler Yazar Hakkında Çevirenler Çeviri Editöründen ix xiii xv xvii xix xxi 1. Çevre Kimyasına Giriş 3 1.1. Çevre Kimyasına Genel Bakış ve Önemi

Detaylı

2012 MATLAB & SIMULINK EĞİTİMLERİ

2012 MATLAB & SIMULINK EĞİTİMLERİ 2012 MATLAB & SIMULINK EĞİTİMLERİ İçindekiler 1. 2012 yılı Eğitim Takvimi Sf:1-2 2. MATLAB & Simulink Eğitim İçerikleri Sf:3-5 3. 2012 yılı Eğitim Ücretleri Sf:6 4. Eğitimler ile ilgili Açıklamalar Sf:7

Detaylı

İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI

İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI 2014 İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI Açıklama Staj yapılan işletmelerde

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1

Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1 İÇİNDEKİLER Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1 1.1. Yöneticilik / Komutanlık İşlevi ve Gerektirdiği Nitelikler... 2 1.1.1. Yöneticilik / Komutanlık

Detaylı

Olasılık ve Rastgele Süreçler (EE213) Ders Detayları

Olasılık ve Rastgele Süreçler (EE213) Ders Detayları Olasılık ve Rastgele Süreçler (EE213) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve Rastgele Süreçler EE213 Güz 3 0 0 3 7 Ön Koşul Ders(ler)i

Detaylı

İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ

İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ V. Ulusal Üretim Araştırmaları Sempozyumu, İstanbul Ticaret Üniversitesi, 25-27 Kasım 2005 İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ Metin ÖNER Celal

Detaylı

AKT 418 Aktüeryal Sistem Benzetimi

AKT 418 Aktüeryal Sistem Benzetimi AKT 418 Aktüeryal Sistem Benzetimi Ders 1 Sistem, model, Monte Carlo simülasyonu Dr. Murat BÜYÜKYAZICI muratby@hacettepe.edu.tr Hacettepe Üniversitesi Aktüerya Bilimleri Bölümü Anlamlı bir söz! Sadece

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

Olasılık ve İstatistik II (IE 202) Ders Detayları

Olasılık ve İstatistik II (IE 202) Ders Detayları Olasılık ve İstatistik II (IE 202) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik II IE 202 Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Olasılık

Detaylı

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK Soru 1 X rassal değişkeninin olasılık yoğunluk fonksiyonu x x, x> f ( x) = 0, dy. 1 werilmiş ve Y = rassal değişkeni tanımlamış ise, Y değişkenin 0< 1 X 1 y için olasılık yoğunluk fonksiyonu aşağıdaki

Detaylı

3. BÖLÜM: EN KÜÇÜK KARELER

3. BÖLÜM: EN KÜÇÜK KARELER 3. BÖLÜM: EN KÜÇÜK KARELER Bu bölümde; Kilo/Boy Örneği için Basit bir Regresyon EViews Denklem Penceresinin İçeriği Biftek Talebi Örneği için Çalışma Dosyası Oluşturma Beef 2.xls İsimli Çalışma Sayfasından

Detaylı

Smart Work ile SüreS. reçlerinizi Daha Verimli Hale Getirin Yeşim MUTLU. WebSphere Ürün Müdürü

Smart Work ile SüreS. reçlerinizi Daha Verimli Hale Getirin Yeşim MUTLU. WebSphere Ürün Müdürü Smart Work ile SüreS reçlerinizi Daha Verimli Hale Getirin Yeşim MUTLU IBM Çözümler Zirvesi 2011 WebSphere Ürün Müdürü Đş Süreci Yönetimi Websphere Lombardi Edition Örnek Proje Profili Referanslar Đş Süreci

Detaylı

ENCOM DISCOVER & 3D KURS İÇERİĞİ

ENCOM DISCOVER & 3D KURS İÇERİĞİ ENCOM DISCOVER & 3D KURS İÇERİĞİ Başar Bilgisayar Sistemleri Ve İletişim Teknolojileri San. Ve Tic. Ltd. Şti. Web site: http://www.basarsoft.com.tr Kontak mail: basar@basarsoft.com.tr ODTÜ Teknokent Gümüş

Detaylı

DERS BİLGİLERİ. Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5

DERS BİLGİLERİ. Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5 DERS BİLGİLERİ Ders Kodu Yarıyıl T+U+L Saat Kredi AKTS Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5 Ön Koşul Dersleri - Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu Dersin

Detaylı

SİMÜLASYON Hazırlayan: Özlem AYDIN

SİMÜLASYON Hazırlayan: Özlem AYDIN SİMÜLASYON Hazırlayan: Özlem AYDIN Not: Bu sunumda Yrd. Doç. Dr. Yılmaz YÜCEL in Modelleme ve Benzetim dersi notlarından faydalanılmıştır. SİMÜLASYONUN ORTAYA ÇIKIŞI Simülasyonun modern anlamda kullanılışı

Detaylı

entbus pro web tabanlı enerji izleme yazılımı

entbus pro web tabanlı enerji izleme yazılımı W Ağustos 2013 entbus pro web tabanlı enerji izleme yazılımı entbus pro kompanzasyon ve enerji kalitesini analiz etmeyi sağlayan bir Enerji Yönetimi yazılımıdır. İşletmelerde yer alan enerji ölçüm cihazlarını

Detaylı

Doç. Dr. Metin Özdemir Çukurova Üniversitesi

Doç. Dr. Metin Özdemir Çukurova Üniversitesi FİZİKTE SAYISAL YÖNTEMLER Doç. Dr. Metin Özdemir Çukurova Üniversitesi Fizik Bölümü 2 ÖNSÖZ Bu ders notları Fizik Bölümünde zaman zaman seçmeli olarak vermekte olduǧum sayısal analiz dersinin hazırlanması

Detaylı

BİLGİSAYARLI AYAKKABI MODELLEME DERSİ

BİLGİSAYARLI AYAKKABI MODELLEME DERSİ BİLGİSAYARLI AYAKKABI MODELLEME DERSİ Dersin Modülleri Çizim Programını Kurma ve Çalıştırma Bilgisayarda Gova Modeli Bilgisayarda Molyer Modeli Bilgisayarda Çizme Modeli Bilgisayarda Rok Modeli Üç Boyutlu

Detaylı

2) Lineer olmayan denklem çözümlerini bilir 1,2,4 1

2) Lineer olmayan denklem çözümlerini bilir 1,2,4 1 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Numerik Analiz BIL222 4 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu / Yüz Yüze Dersin

Detaylı

NX Motion Simulation:

NX Motion Simulation: NX Motion Simulation: Mekanizma Hareket Analizi UNIGRAPHICS NX yazılımının modüllerinden biri olan NX Motion Simulation, NX Dijital Ürün Tasarımı ailesinin mühendislik bileşenlerinden birisidir. Motion

Detaylı

ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU

ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU ZORUNLU DERSLER IE 201 - Operasyon Modelleme Karar vermedeki belirsizlik rolü de dahil olmak üzere işletme kararlarının matematiksel

Detaylı

ENM 316 BENZETİM. Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

ENM 316 BENZETİM. Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV 1: Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması için gereken

Detaylı

Chronos Yönetim ekranları kullanım Kılavuzu

Chronos Yönetim ekranları kullanım Kılavuzu Chronos Yönetim ekranları kullanım Kılavuzu Döküman Bilgisi Hazırlayan: Burcu Altay Ünvan: Yazılım Geliştirme Danışmanı Döküman versiyonu: 1.1 Versiyon Geçmişi Ver. No. Ver. Tarihi Revize Eden Açıklama

Detaylı

Mühendisler İçin Olasılık ve İstatistik (CE 205) Ders Detayları

Mühendisler İçin Olasılık ve İstatistik (CE 205) Ders Detayları Mühendisler İçin Olasılık ve İstatistik (CE 205) Ders Detayları Ders Adı Ders Dönemi Ders Uygulama Kodu Saati Saati Laboratuar Saati Kredi AKTS Mühendisler İçin Olasılık ve İstatistik CE 205 Güz 3 0 0

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü umutokkan@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü Bölüm

Detaylı

DAHA HIZLI, DAHA PRATİK. LABORATUVAR İÇ VE DIŞ KALİTE KONTROLLERİNİN UYGULAMASI VE TAKİBİ

DAHA HIZLI, DAHA PRATİK. LABORATUVAR İÇ VE DIŞ KALİTE KONTROLLERİNİN UYGULAMASI VE TAKİBİ DAHA HIZLI, DAHA PRATİK. LABORATUVAR İÇ VE DIŞ KALİTE KONTROLLERİNİN UYGULAMASI VE TAKİBİ %100 web tabanlı İNTERQC, programı ile laboratuarlarınızın kalite kontrollerini istediğiniz yerden ve istediğiniz

Detaylı

Veriye Dayalı Karar Verme (Bölüm 1) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 1) Can Akkan Veriye Dayalı Karar Verme (Bölüm 1) Can Akkan 1 Data! Data! Data! I can t make bricks without clay - Sherlock Holmes,The Adventure of Copper Beeches, Sir Arthur Conan Doyle In God we trust, everyone else

Detaylı

E-DÖNÜŞÜM ADAPTÖRÜ EL KİTABI

E-DÖNÜŞÜM ADAPTÖRÜ EL KİTABI E-DÖNÜŞÜM ADAPTÖRÜ EL KİTABI Referans: Sürüm: Sürüm 2.0 NF/EDONUSUM/001 YAZILIM DANIŞMANLIK LİMİTED ŞİRKETİ 2 Bu sayfa boş bırakılmıştır. İÇİNDEKİLER B Ö L Ü M 1 GENEL BİLGİLER... 3 Uygulamaya Giriş...

Detaylı

Olasılık ve İstatistik nedir? Bilgisayar Mühendisliğindeki yeri

Olasılık ve İstatistik nedir? Bilgisayar Mühendisliğindeki yeri Olasılık ve İstatistik nedir? Bilgisayar Mühendisliğindeki yeri IST 108 Olasılık ve İstatistik Bahar 2016 Yrd. Doç. Dr. Ferhat Dikbıyık Bu sunumun bir kısmı Utah Üniversitesi nden Bilgisayar Bilimleri

Detaylı

ÖNDER BİLGİSAYAR KURSU. Microsoft Office Kursu Eğitim İçeriği

ÖNDER BİLGİSAYAR KURSU. Microsoft Office Kursu Eğitim İçeriği ÖNDER BİLGİSAYAR KURSU Microsoft Office Kursu Eğitim İçeriği Microsoft WORD 1. PENCERE ELEMANLARI VE GÖRÜNTÜLEME BİÇİMLERİ 1.1. Genel Bilgiler 1.2. Ekran Görünümleri 1.3. Metin Sınırları ve Basımda Çıkmayan

Detaylı

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010)

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) BİRİNCİ YIL Güz Dönemi (1. Yarıyıl) STAT 101 Temel İstatistik I (3 2 4) İstatistik bilimi. Verilerin görsel sunumu. Frekans tablosu oluşturma. Gövde yaprak

Detaylı

Temel Bilgi Teknolojileri - II Ayrıntılı Ders İçerikleri

Temel Bilgi Teknolojileri - II Ayrıntılı Ders İçerikleri Temel Bilgi Teknolojileri - II Ayrıntılı Ders İçerikleri Hesap Tabloları(Excel 2007) HAFTA 1 1. Hesap Tablolarına Giriş 1.1. Hesap tablosu tanımı, kullanım amacı ve yerleri 1.2. MS Excel Uygulamasına giriş

Detaylı

Robot Yaz Okulu 1. DÖNEM 21 Haziran 9 Temmuz 2010

Robot Yaz Okulu 1. DÖNEM 21 Haziran 9 Temmuz 2010 Robot Yaz Okulu Diğer Dönemler: 2. Dönem : 12 Temmuz- 30 Temmuz 3. Dönem : 2 Ağustos- 20 Ağustos 4. Dönem : 23 Ağustos - 10 Eylül Robot Eğitim Paketleri Eğitim Paketi 1: Başlangıç Eğitim Paketi 2: Temel

Detaylı

İş Analitiği'ne Netezza ile Yüksek Performans Katın

İş Analitiği'ne Netezza ile Yüksek Performans Katın İş Analitiği'ne Netezza ile Yüksek Performans Katın Umut ŞATIR İleri Analitik Çözüm Mimarı 2012 IBM Corporation Netezza and IBM Business Analytics Baştan sona bir İş Analitiği çözümü Performans Kolaylık

Detaylı

Başarsoft Bilgi Teknolojileri A.Ş.

Başarsoft Bilgi Teknolojileri A.Ş. EĞİTİM İÇERİĞİ Başarsoft Bilgi Teknolojileri A.Ş. Web site: http://www.basarsoft.com.tr Kontak mail: egitim@basarsoft.com.tr Ankara Merkez Adres Ehlibeyt Mah. Ceyhun Atıf Kansu Cad. No: 114 Bayraktar Center

Detaylı

Matematiksel modellerin elemanları

Matematiksel modellerin elemanları Matematiksel modellerin elemanları Op#mizasyon ve Doğrusal Programlama Maksimizasyon ve Minimizasyon örnekleri, Doğrusal programlama modeli kurma uygulamaları 6. DERS 1. Karar değişkenleri: Bir karar verme

Detaylı

Çimento Operatörleri ve Bakım Personeli için Simulatör sistemi: ECS/CEMulator

Çimento Operatörleri ve Bakım Personeli için Simulatör sistemi: ECS/CEMulator Çimento Operatörleri ve Bakım Personeli için Simulatör sistemi: ECS/CEMulator ECS/CEMulator, Çimento operatörlerini ve proses mühendislerini, simülatör ortamında eğitmeyi amaçlayan bir sistemdir. Çimento

Detaylı

HP Yazılım Zirvesi - İstanbul 20 May 2015 - Wyndham Grand Levent Pınar Uğurlu Kirazcı Bulut Tabanlı Servis Masası

HP Yazılım Zirvesi - İstanbul 20 May 2015 - Wyndham Grand Levent Pınar Uğurlu Kirazcı Bulut Tabanlı Servis Masası HP Yazılım Zirvesi - İstanbul 20 May 2015 - Wyndham Grand Levent Pınar Uğurlu Kirazcı Bulut Tabanlı Servis Masası Yazılım Denetlemeleri DevOps IT performans metrikleri BYOD Zorunluluk Beklentiler değişiyor...

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

En ZOR Durumlarda nasıl Karar verilir? yorumlamalar PROF.ZERRİN TOPRAK KARAMAN 2014, İZMİR

En ZOR Durumlarda nasıl Karar verilir? yorumlamalar PROF.ZERRİN TOPRAK KARAMAN 2014, İZMİR En ZOR Durumlarda nasıl Karar verilir? yorumlamalar PROF.ZERRİN TOPRAK KARAMAN 2014, İZMİR AMACIMIZ NEDİR? tanımlama İyi karar ALMA, AMACIN NET BİR ŞEKİLDE BELİRTİLMESİNİ GEREKTİRİR Netleştirilmiş, Ölçülebilir,

Detaylı

Sosyal Bilimler İçin Veri Analizi El Kitabı

Sosyal Bilimler İçin Veri Analizi El Kitabı 292 Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18 (2012) 292-297 KİTAP İNCELEMESİ Sosyal Bilimler İçin Veri Analizi El Kitabı Editör Doç. Dr. Şener BÜYÜKÖZTÜRK Dilek SEZGİN MEMNUN 1 Bu çalışmada,

Detaylı

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel

Detaylı

Ücret Bütçe Simülasyonu

Ücret Bütçe Simülasyonu DESTEK DOKÜMANI Ürün Bölüm : Bordro Plus : Ücret Bütçe Simülasyonu Ücret Bütçe Simülasyonu İnsan Kaynakları Ücret Simülasyonu Genel bütçeye hazırlık için IK bölümlerinin ücret ve bordro maliyetlerini senaryolaştırabileceği

Detaylı

Risk Yönetimi. *PMI PMBOK Chapter 11 - Project Risk Management

Risk Yönetimi. *PMI PMBOK Chapter 11 - Project Risk Management Risk Yönetimi Risk yönetimi sistematik olarak proje risklerinin belirlenmesi, analizi ve bu risklere yanıt verilmesi sürecidir.* Risk yönetimi kapsamında yapılanlar pozitif olayların proje hedeflerine

Detaylı

Proje/Sipariş/İş Emri (PSI) Bazında Maliyet Analizi

Proje/Sipariş/İş Emri (PSI) Bazında Maliyet Analizi Proje/Sipariş/İş Emri (PSI) Bazında Maliyet Analizi Amaç ve Fayda Bilindiği gibi mamul maliyetleri direkt hammadde (direkt ilk madde ve ambalaj), direkt işçilik ve genel üretim giderlerinden oluşmaktadır.

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 316 BENZETİM ÖDEV SETİ ÖDEV 1: El ile Benzetim Bir depo ve 7 adet müşterisi olan bir taşımacılık sisteminde müşterilerden gelen siparişler araç ile taşınmaktadır. İki tür sipariş söz konusudur. Birincisi

Detaylı

SİSTEM ANALİZİ ve TASARIMI. ÖN İNCELEME ve FİZİBİLİTE

SİSTEM ANALİZİ ve TASARIMI. ÖN İNCELEME ve FİZİBİLİTE SİSTEM ANALİZİ ve TASARIMI ÖN İNCELEME ve FİZİBİLİTE Sistem Tasarım ve Analiz Aşamaları Ön İnceleme Fizibilite Sistem Analizi Sistem Tasarımı Sistem Gerçekleştirme Sistem Operasyon ve Destek ÖN İNCELEME

Detaylı

KTS (Kolay Ticari Set) yazılımınızı bilgisayarınıza kurmak son derece kolaydır. Tek yapmanız gereken indirdiğiniz kurulum programını çalıştırmaktır.

KTS (Kolay Ticari Set) yazılımınızı bilgisayarınıza kurmak son derece kolaydır. Tek yapmanız gereken indirdiğiniz kurulum programını çalıştırmaktır. KTS Kurulumu KTS (Kolay Ticari Set) yazılımınızı bilgisayarınıza kurmak son derece kolaydır. Tek yapmanız gereken indirdiğiniz kurulum programını çalıştırmaktır. Kurulum programı çalışınca aşağıdakine

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

SİMULASYON MODELLEME VE ANALİZ. Giriş. Arena Ortamı. Simulasyon Dilleri HAFTA 2. Yrd.Doç.Dr.Beyazıt Ocaktan

SİMULASYON MODELLEME VE ANALİZ. Giriş. Arena Ortamı. Simulasyon Dilleri HAFTA 2. Yrd.Doç.Dr.Beyazıt Ocaktan SİMULASYON MODELLEME VE ANALİZ 1 2 Giriş Bu derste ARENA ortamında modelleme yeteneklerini genel olarak tanıtmak için basit bir model sunulacaktır. HAFTA 2 Yrd.Doç.Dr.Beyazıt Ocaktan Simulasyon Dilleri

Detaylı

PHILIPS FORTE GAMA KAMERA SİSTEMİNİN MONTE CARLO SİMÜLASYONU

PHILIPS FORTE GAMA KAMERA SİSTEMİNİN MONTE CARLO SİMÜLASYONU PHILIPS FORTE GAMA KAMERA SİSTEMİNİN MONTE CARLO SİMÜLASYONU Gülçin İrim Çelik 1, Türkay Toklu 2, Şerife İpek Karaaslan 1, Nalan Alan Selçuk 2, Didar Talat 3 1 Yeditepe Üniversitesi Fizik Bölümü 2 Yeditepe

Detaylı

2. BÖLÜM: REGRESYON ANALİZİ

2. BÖLÜM: REGRESYON ANALİZİ 2. BÖLÜM: REGRESYON ANALİZİ Bu bölümde; Basit bir Regresyon Analizi EViews çalışma dosyası oluşturma EViews çalışma dosyasına veri girme EViews ta grup oluşturma EViews ta grafik çizme EViews ta yeni değişken

Detaylı

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 ÜNİTE:1 İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2 Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 Ortalamalar, Değişkenlik ve Dağılma Ölçüleri ÜNİTE:4 Endeksler ÜNİTE:5

Detaylı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SİVİL HAVACILIK ANABİLİM DALI YENİ DERS ÖNERİSİ/ DERS GÜNCELLEME

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SİVİL HAVACILIK ANABİLİM DALI YENİ DERS ÖNERİSİ/ DERS GÜNCELLEME / DERS GÜNCELLEME Dersin Kodu SHA 615 Dersin Adı İSTATİSTİKSEL SİNYAL İŞLEME Yarıyılı GÜZ Dersin İçeriği: Olasılık ve olasılıksal süreçlerin gözden geçirilmesi. Bayes kestirim kuramı. Büyük olabilirlik

Detaylı

11. BÖLÜM: EŞANLI DENKLEM SİSTEMLERİ

11. BÖLÜM: EŞANLI DENKLEM SİSTEMLERİ 11. BÖLÜM: EŞANLI DENKLEM SİSTEMLERİ Bu bölümde; Yapısal denklemleri kullanarak vergiler ve net ihracatın zaman serilerini oluşturma EKK ile CO tahmini EViews TSLS metodu ile iki aşamalı EKK regresyon

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

İÇİNDEKİLER BÖLÜM-1. BİLGİSAYARIN TANIMI VE ÇALIŞMA PRENSİBİ...1 BÖLÜM-2. WİNDOWS XP İŞLETİM SİSTEMİ...27

İÇİNDEKİLER BÖLÜM-1. BİLGİSAYARIN TANIMI VE ÇALIŞMA PRENSİBİ...1 BÖLÜM-2. WİNDOWS XP İŞLETİM SİSTEMİ...27 İÇİNDEKİLER BÖLÜM-1. BİLGİSAYARIN TANIMI VE ÇALIŞMA PRENSİBİ...1 1.1. GİRİŞ...1 1.2. BİLGİSAYARIN TANIMI VE TARİHSEL GELİŞİMİ...3 1.3. BİLGİSAYARIN FONKSİYONLARI...3 1.4. BİLGİSAYARIN YAPISI VE BİLGİSAYARI

Detaylı

ArcGIS ile Elektrik Dağıtımı Uygulamaları Eğitimi

ArcGIS ile Elektrik Dağıtımı Uygulamaları Eğitimi ArcGIS ile Elektrik Dağıtımı Uygulamaları Eğitimi http://facebook.com/esriturkey https://twitter.com/esriturkiye egitim@esriturkey.com.tr Kursun Süresi: 5 Gün 30 Saat ArcGIS ile Elektrik Dağıtımı Uygulamaları

Detaylı

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV SETİ Ödev 1. Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması

Detaylı

İÇİNDEKİLER BÖLÜM - I

İÇİNDEKİLER BÖLÜM - I İÇİNDEKİLER BÖLÜM - I Eleştirel Düşünme Nedir?... 1 Bazı Eleştirel Düşünme Tanımları... 1 Eleştirel Düşünmenin Bazı Göze Çarpan Özellikleri... 3 Eleştirel Düşünme Yansıtıcıdır... 3 Eleştirel Düşünme Standartları

Detaylı

Kolektif zekayı oluşturmak ve kullanmak isteyen yöneticiler için pratik bir program

Kolektif zekayı oluşturmak ve kullanmak isteyen yöneticiler için pratik bir program Sorunlara farklı açılardan bakıp, değer katarak çözüm üretmek ve akıllıca konuşarak avantaj sağlamak Kolektif zekayı oluşturmak ve kullanmak isteyen yöneticiler için pratik bir program Konuşarak Fark Yaratma

Detaylı

REIDIN.com Konut Satın Alma ve Kiralama Gücü Endeksleri

REIDIN.com Konut Satın Alma ve Kiralama Gücü Endeksleri REIDIN.com Konut Satın Alma ve Kiralama Gücü Endeksleri Firma Hakkında: REIDIN.com, özellikli olarak gelişmekte olan ülkeler ile ilgilenen gayrimenkul sektörü profesyonellerinin ihtiyaç duyduğu bilgi,

Detaylı

Entbus Web Tabanlı Enerji İzleme

Entbus Web Tabanlı Enerji İzleme Entbus Web Tabanlı Enerji İzleme ENTBUS PRO WEB TABANLI ENERJİ İZLEME YAZILIMI Entbus Pro kompanzasyon ve enerji kalitesini analiz etmeyi sağlayan bir Enerji Yönetimi yazılımıdır. İşletmelerde yer alan

Detaylı

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis Keziban KOÇAK İstatistik Anabilim Dalı Deniz ÜNAL İstatistik Anabilim Dalı ÖZET Son yıllarda

Detaylı

Nagios XI Günümüzün talep gören kurumsal gereksinimleri için en güçlü BT altyapısı gözetim ve uyarı çözümüdür.

Nagios XI Günümüzün talep gören kurumsal gereksinimleri için en güçlü BT altyapısı gözetim ve uyarı çözümüdür. Nagios Enterprises, kurumsal ölçekte, BT altyapı gözetiminde endüstri standardı olan Nagios için resmi ürünler, hizmetler ve çözümler sunuyor. Dünya çapında yüz binlerce kullanıcıyla Nagios bilgi teknolojileri

Detaylı