2. BASİT DOĞRUSAL REGRESYON 12

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "2. BASİT DOĞRUSAL REGRESYON 12"

Transkript

1 1. GİRİŞ Regresyon ve Model Kurma / Veri Toplama / Regresyonun Kullanım Alanları / Bilgisayarın Rolü / BASİT DOĞRUSAL REGRESYON Basit Doğrusal Regresyon Modeli / Parametrelerin En Küçük Kareler Kestirimi / ve in Kestirimi / En Küçük Kareler Kestiricilerinin Özellikleri ve Uydurulan Regresyon Modeli / nin Kestirimi / Modelin Alternatif Biçimi / Eğim ve Kesim Noktası Üzerine Hipotez Testleri / T Testlerinin Kullanılması / Regresyonun Anlamlılık Testi / Varyans Analizi / Basit Doğrusal Regresyonda Aralık Kestirimi / ve İçin Güven Aralıkları / Ortalama Yanıtın Aralık Kestirimi / Yeni Gözlemlerin Önkestirimi / Belirtme Katsayısı / Regresyonun Hizmet Sektörü Uygulaması / Basit Doğrusal Regresyon İçin SAS ve R Kullanımı / Regresyonun Kullanımına İlişkin Bazı Düşünceler / Orijinden Geçen Regresyon / 45 xi

2 xii İÇİNDEKİLER 2.11 En Çok Olabilirlik Kestirimi / Bağımsız Değişkenin Rastgele Olduğu Durum / Bileşik Dağılımlı X ve Y / Bileşik Normal Dağılımlı X ve Y: Korelasyon Modeli / 53 Problemler / ÇOKLU DOĞRUSAL REGRESYON Çoklu Doğrusal Regresyon Modeli / Model Parametrelerinin Kestirimi / Regresyon Katsayılarının En Küçük Kareler Kestirimi / En Küçük Karelerin Geometrik Açıklaması / En Küçük Karelerin Özellikleri / nin Kestirimi / Çoklu Regresyonda Saçılım Grafiğinin Yetersizliği / En Çok Olabilirlik Kestirimi / Çoklu Doğrusal Regresyonda Hipotez Testi / Regresyonun Anlamlılık Testi / Tek Tek Regresyon Katsayıları ve Katsayıların Alt Kümeleri İçin Testler / X teki Dik Sütunların Özel Durumu / Genel Doğrusal Hipotez Testleri / Çoklu Regresyonda Güven Aralıkları / Regresyon Katsayılarının Güven Aralıkları / Ortalama Yanıtın Güven Aralığı Kestirimi / Regresyon Katsayılarının Eş Zamanlı Güven Aralıkları / Yeni Gözlemlerin Önkestirimi / Hasta Memnuniyeti Verileri İçin Çoklu Regresyon Modeli / Çoklu Doğrusal Regresyon İçin SAS ve R nin Kullanımı / Regresyonda Gizlenmiş Dış Değer Bulma / Standartlaştırılmış Regresyon Katsayıları / Çoklu Bağlantı / Niçin Regresyon Katsayıları Yanlış İşarete Sahip Olur? / 119 Problemler / MODEL YETERLİLİĞİNİN KONTROLÜ Giriş / Artık Analizi / Artıkların Tanımı / Artıkları Ölçeklemek İçin Yöntemler / Artık Çizimleri / 136

3 xiii Kısmi Regresyon ve Kısmi Artık Grafikleri / Artık Analizi İçin Minitab, SAS ve R nin Kullanımı / Diğer Artık Çizimleri ve Analiz Yöntemleri / Press İstatistiği / Aykırı Değerlerin Saptanması ve Düzeltilmesi / Regresyon Modelinin Uyum Eksikliği / Uyum Eksikliği İçin Uygun Bir Test / Yakın Komşuluklardan Yalın Hata Kestirimi / 160 Problemler / MODEL YETERSİZLİKLERİNİ DÜZELTMEK İÇİN DÖNÜŞÜMLER VE AĞIRLIKLANDIRMA Giriş / Varyans Dengeleme Dönüşümleri / Modeli Doğrusallaştırmak İçin Dönüşümler / Dönüşüm Seçimi İçin Analitik Yöntemler / Üzerinde Dönüşümler: Box-Cox Yöntemi / Bağımsız Değişkenler Üzerinde Dönüşümler / Genelleştirilmiş ve Ağırlıklı En Küçük Kareler / Genelleştirilmiş En Küçük Kareler / Ağırlıklı En Küçük Kareler / Bazı Pratik Konular / Rastgele Etkilerle Regresyon Modelleri / Alt Örnekleme / Tek Rastgele Etkili Regresyon Modeli İçin Genel Durum / Regresyonda Karma Modelin Önemi / 202 Problemler / KALDIRAÇ VE ETKİNLİK İÇİN TANILAR Etkili Gözlemleri Saptamanın Önemi / Kaldıraç / Etkinlik Ölçüleri: Cook un D Uzaklığı / Etkinlik Ölçüleri: DFFITS ve DFBETAS / Model Performansının Bir Ölçüsü / Etkili Gözlem Gruplarının Saptanması / Etkili Gözlemleri Değerlendirme / 220 Problemler / POLİNOMİYAL REGRESYON MODELLERİ Giriş / Tek Değişkenli Polinomiyal Modeller / 223

4 xiv İÇİNDEKİLER Temel İlkeler / Parçalı Polinomiyal Uydurma (Splaynlar) / Polinomiyal ve Trigonometrik Terimler / Parametrik Olmayan Regresyon / Kernel Regresyon / Yerel Olarak Ağırlıklı Regresyon (Loess) / Son Uyarılar / İki ya da Daha Çok Değişkenli Polinomiyal Modeller / Dik Polinomlar / 248 Problemler / GÖSTERGE DEĞİŞKENLER Genel Gösterge Değişkenler Kavramı / Göstermelik Değişkenlerin Kullanımı Üzerine Yorumlar / Kodların Atandığı Regresyona Karşı Gösterge Değişkenler / Nicel Bir Bağımsız Değişken Yerine Gösterge Değişkenler / Varyans Analizine Regresyon Yaklaşımı / 275 Problemler / ÇOKLU BAĞLANTI Giriş / Çoklu Bağlantının Kaynakları / Çoklu Bağlantının Etkileri / Çoklu Bağlantı Tanıları / Korelasyon Matrisinin İncelenmesi / Varyans Şişme Değerleri / in Öz Değer-Öz Vektör Analizi / Diğer Tanılar / Çoklu Bağlantı Tanılaması İçin SAS ve R Kodları Üretme / Çoklu Bağlantıyı Giderme Yöntemleri / Ek Verilerin Toplanması / Modelin Yeniden Belirlenmesi / Ridge Regresyon / Temel Bileşenler Regresyonu / Yanlı Kestiricilerin Karşılaştırması ve Değerlendirmesi / Ridge ve Temel Bileşenler Regresyonu İçin SAS Kullanımı / 321 Problemler / DEĞİŞKEN SEÇİMİ VE MODEL KURMA Giriş / Model Kurma Problemi / Yanlış Model Belirlemenin Sonuçları / 329

5 xv Alt Küme Regresyon Modellerini Değerlendirmek İçin Ölçütler / Değişken Seçimi İçin Hesaplama Teknikleri / Tüm Olası Regresyonlar / Adımsal Regresyon Yöntemleri / Değişken Seçimi ve Model Kurma Stratejisi / Uygulama: SAS Kullanarak Gorman ve Toman Asfalt Verilerinin İncelenmesi / 354 Problemler / REGRESYON MODELLERİNİN GEÇERLİLİĞİ Giriş / Geçerlilik Teknikleri / Model Katsayılarının ve Önkestirim Değerlerinin Analizi / Yeni Veriler Toplama-Doğrulama Gözlemleri / Verilerin Bölünmesi / Planlanmış Deneylerden Veriler / 385 Problemler / DOĞRUSAL OLMAYAN REGRESYONA GİRİŞ Doğrusal ve Doğrusal Olmayan Regresyon Modelleri / Doğrusal Regresyon Modelleri / Doğrusal Olmayan Regresyon Modelleri / Doğrusal Olmayan Modellerin Kökeni / Doğrusal Olmayan En Küçük Kareler / Doğrusal Modele Dönüşüm / Doğrusal Olmayan Sistemde Parametre Kestirimi / Doğrusallaştırma / Diğer Parametre Kestirim Yöntemleri / Başlangıç Değerleri / Doğrusal Olmayan Regresyonda İstatistiksel Çıkarsama / Doğrusal Olmayan Regresyon Modellerinin Örnekleri / Sas ve R Kullanımı / 412 Problemler / GENELLEŞTİRİLMİŞ DOĞRUSAL MODELLER Giriş / Lojistik Regresyon Modelleri / İki Sonuçlu Yanıt Değişkenli Modeller / Lojistik Regresyon Modelinde Parametrelerin Kestirimi / Lojistik Regresyon Modelinde Parametrelerin Yorumu / 428

6 xvi İÇİNDEKİLER Model Parametrelerinde İstatistiksel Çıkarsama / Lojistik Regresyonda Tanı Denetimi / İkili Yanıt Değişkeni İçin Diğer Modeller / İkiden Daha Fazla Kategorik Sonuçlar / Poisson Regresyonu / Genelleştirilmiş Doğrusal Modeller / Bağ Fonksiyonları ve Doğrusal Yanıt Fonksiyonları / GLM de Çıkarsama ve Parametre Kestirimi / GLM ile Önkestirim ve Kestirim / GLM de Artık Analizi / GLM Analizini Uygulamada R Kullanmak / Aşırı Yayılım / 461 Problemler / ZAMAN SERİSİ VERİLERİNİN REGRESYON ANALİZİ Zaman Serisi Verileri İçin Regresyon Modellerine Giriş / Otokorelasyonun Belirlenmesi: Durbın-Watson Testi / Zaman Serisi Regresyon Modellerinde Parametrelerin Kestirilmesi / 480 Problemler / REGRESYON ÇÖZÜMLEMESİNİN KULLANILMASINDA DİĞER KONULAR Sağlam Regresyon / Sağlam Regresyon İhtiyacı / M Kestiricileri / Sağlam Kestiricilerin Özellikleri / Bağımsız Değişkenlerde Ölçüm Hatalarının Etkisi / Basit Doğrusal Regresyon / Berkson Modeli / Ters Kestirim Ayarlama Problemi / Regresyonda Bootstrap / Regresyonda Bootstrap Örneklemesi / Bootstrap Güven Aralıkları / Sınıflama ve Regresyon Ağaçları (CART) / Sinir Ağları / Regresyon İçin Deney Tasarımı / 529 Problemler / 537

7 xvii EK A. İSTATİSTİKSEL TABLOLAR 541 EK B. ALIŞTIRMALAR İÇİN VERİ KÜMELERİ 553 EK C. EK TEKNİK MALZEME 574 C.1 Temel Test İstatistiklerinin Arka Planı / 574 C.2 Doğrusal Modeller Kuramının Arka Planı / 577 C.3 SS R ve SS Res Üzerine Önemli Sonuçlar / 581 C.4 Gauss-Markov Teoremi, / 587 C.5 Çoklu Regresyonda Hesaplama / 589 C.6 Matris Tersi Üzerine Bir Sonuç / 590 C.7 PRESS İstatistiğinin Çıkarımı / 591 C.8 nin Çıkarımı / 593 C.9 R-Student e Dayalı Aykırı Değer Testi / 594 C.10 Artıkların ve Uyum Değerlerinin Bağımsızlığı / 596 C.11 Gauss-Markov Teoremi, / 597 C.12 Model Eksik Belirtildiğinde MS Res deki Yan / 599 C.13 Etki Tanılarını Hesaplama / 600 C.14 Genelleştirilmiş Doğrusal Modeller / 601 EK D. SAS A GİRİŞ 613 D.1 Temel Veri Girişi / 614 D.2 Kalıcı SAS Veri Kümelerini Oluşturmak / 618 D.3 EXCEL Dosyasından Veri Almak / 619 D.4 Çıktı Komutu / 620 D.5 Log Dosyası / 620 D.6 Var olan SAS Veri Kümesine Değişkenler Eklemek / 622 EK E. DOĞRUSAL REGRESYON ÇÖZÜMLEMESİ UYGULAMAK İÇİN R A GİRİŞ 623 E.1 R Üzerine Temel Arka Plan / 623 E.2 Temel Veri Girişi / 624 E.3 R deki Diğer İşlevsellikler Üzerine Kısa Yorumlar / 626 E.4 R Commander / 627 KAYNAKÇA 628 DİZİN 642

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

ortalama ve ˆ ˆ, j 0,1,..., k

ortalama ve ˆ ˆ, j 0,1,..., k ÇOKLU REGRESYONDA GÜVEN ARALIKLARI Regresyon Katsayılarının Güven Aralıkları y ( i,,..., n) gözlemlerinin, xi ortalama ve i k ve normal dağıldığı varsayılsın. Herhangi bir ortalamalı ve C varyanslı normal

Detaylı

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri ÖNSÖZ Gerçekte herhangi bir olguyu etkileyen dinamikler çok karmaşıktır ve her alanda olayların akışını etkileyen faktörler çok sayıda (genellikle sonsuz sayıda) özellik tarafından belirlendiğinden çok

Detaylı

1: DENEYLERİN TASARIMI VE ANALİZİ...

1: DENEYLERİN TASARIMI VE ANALİZİ... İÇİNDEKİLER Bölüm 1: DENEYLERİN TASARIMI VE ANALİZİ... 1 1.1. Deneyin Stratejisi... 1 1.2. Deneysel Tasarımın Bazı Tipik Örnekleri... 11 1.3. Temel Kurallar... 16 1.4. Deneyleri Tasarlama Prensipleri...

Detaylı

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1 İÇİNDEKİLER ÖNSÖZ... v 1. BÖLÜM Örneklem Genişliğinin Elde edilmesi... 1 1.1. Kitle ve Parametre... 1 1.2. Örneklem ve Tahmin Edici... 2 1.3. Basit Rastgele Örnekleme... 3 1.4. Tabakalı Rastgele Örnekleme...

Detaylı

İÇİNDEKİLER. Birinci Bölüm UYGULAMA VERİLERİ

İÇİNDEKİLER. Birinci Bölüm UYGULAMA VERİLERİ İÇİNDEKİLER Birinci Bölüm UYGULAMA VERİLERİ VERİ GRUBU 1. Yüzücü ve Atlet Verileri... 1 VERİ GRUBU 2. Sutopu, Basketbol ve Voleybol Oyuncuları Verileri... 4 VERİ 3. Solunum Yolları Verisi... 7 VERİ 4.

Detaylı

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ İÇİNDEKİLER ÖNSÖZ... v TEŞEKKÜR... vi İKİNCİ BASKIYA ÖNSÖZ VE TEŞEKKÜR... vii İÇİNDEKİLER... ix ŞEKİLLER LİSTESİ... xviii TABLOLAR LİSTESİ... xx BİRİNCİ KISIM: TASARIM BİRİNCI BÖLÜM PAZARLAMA ARAŞTIRMASINA

Detaylı

DOĞRUSAL REGRESYON ANALİZİNE GİRİŞ INTRODUCTION TO LINEAR REGRESSION ANALYSIS

DOĞRUSAL REGRESYON ANALİZİNE GİRİŞ INTRODUCTION TO LINEAR REGRESSION ANALYSIS DOĞRUSAL REGRESYON ANALİZİNE GİRİŞ INTRODUCTION TO LINEAR REGRESSION ANALYSIS DOĞRUSAL REGRESYON ANALİZİNE GİRİŞ Beşinci Basımdan Çeviri Çeviri Editörü: PROF. DR. M. AYDIN ERAR INTRODUCTION TO LINEAR

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

BÖLÜM 1: YAşAM ÇÖzÜMLEMEsİNE GİRİş... 1

BÖLÜM 1: YAşAM ÇÖzÜMLEMEsİNE GİRİş... 1 ÖN SÖZ...iii BÖLÜM 1: Yaşam Çözümlemesine Giriş... 1 1.1. Giriş... 1 1.2. Yaşam Süresi... 2 1.2.1. Yaşam süresi verilerinin çözümlenmesinde kullanılan fonksiyonlar... 3 1.2.1.1. Olasılık yoğunluk fonksiyonu...

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

İçindekiler. Pazarlama Araştırmalarının Önemi

İçindekiler. Pazarlama Araştırmalarının Önemi İçindekiler Birinci Bölüm Pazarlama Araştırmalarının Önemi 1.1. PAZARLAMA ARAŞTIRMALARININ TANIMI VE ÖNEMİ... 1 1.2. PAZARLAMA ARAŞTIRMASI İŞLEVİNİN İŞLETME ORGANİZASYONU İÇİNDEKİ YERİ... 5 1.3. PAZARLAMA

Detaylı

Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları

Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistiğe Giriş-II STAT 202 Bahar 3 0 0 3 5 Ön Koşul

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

8. BÖLÜM: DEĞİŞEN VARYANS

8. BÖLÜM: DEĞİŞEN VARYANS 8. BÖLÜM: DEĞİŞEN VARYANS Bu bölümde; Değişen Varyans Tespiti için Grafik Çizme Değişen Varyans Testi: Park Testi Değişen Varyans Testi: White Testi Değişen Varyans Probleminin Çözümü: Ağırlıklandırılmış

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

1 PAZARLAMA ARAŞTIRMASI

1 PAZARLAMA ARAŞTIRMASI İÇİNDEKİLER ÖNSÖZ III Bölüm 1 PAZARLAMA ARAŞTIRMASI 11 1.1. Pazarlama Araştırması Kavramı ve Kapsamı 12 1.2. Pazarlama Araştırmasının Tarihçesi 14 1.3. Pazarlama Araştırması Pazarlama Bilgi Sistemi ve

Detaylı

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2 Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 5, Sayı:2, 2003 YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI Sibel SELİM 1 Efe SARIBAY

Detaylı

İLERİ ARAŞTIRMA SORU HAVUZU

İLERİ ARAŞTIRMA SORU HAVUZU 1 ) Bir ölçümde bağımlı değişkenlerdeki farklılıkların bağımsız değişkenlerdeki farklılıkları nasıl etkilediğini aşağıdakilerden hangisi ölçer? A) Bağımlı Değişken B) Bağımsız Değişken C) Boş Değişken

Detaylı

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS Deneysel Tasarım EKO60 Bahar Ön Koşul Dersin Dili. Zorunlu

DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS Deneysel Tasarım EKO60 Bahar Ön Koşul Dersin Dili. Zorunlu DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS Deneysel Tasarım EKO60 Bahar 3+0 3 5 Ön Koşul Dersin Dili Türkçe Dersin Seviyesi Lisans Dersin Türü Dersi Veren Öğretim Elemanı Dersin Yardımcıları

Detaylı

Dayanıklı İstatistiksel Yöntemler ve R Uygulamaları

Dayanıklı İstatistiksel Yöntemler ve R Uygulamaları ÖZLEM YORULMAZ Dayanıklı İstatistiksel Yöntemler ve R Uygulamaları İstanbul - 2016 Beta Yayın No : 3440 İşletme Ekonomi Dizisi : 825 1. Baskı - Kasım 2016 - İSTANBUL ISBN 978-605 - 333-769 -0 Copyright

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı REGRESYON ANALİZİ VE UYGULAMA Yrd. Doç. Dr. Hidayet Takcı htakci@cumhuriyet.edu.tr Sunum içeriği Bu sunumda; Lojistik regresyon konu anlatımı Basit doğrusal regresyon problem çözümleme Excel yardımıyla

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Yazarlar Yrd.Doç.Dr.Nizamettin Erbaş Yrd.Doç.Dr.Tuğba Altıntaş Dr.Yeliz Sevimli Saitoğlu A. Zehra Çelenli Başaran Azize Sağır

Detaylı

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010)

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) BİRİNCİ YIL Güz Dönemi (1. Yarıyıl) STAT 101 Temel İstatistik I (3 2 4) İstatistik bilimi. Verilerin görsel sunumu. Frekans tablosu oluşturma. Gövde yaprak

Detaylı

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI .. MAK MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Polinom MATLAB p=[8 ] d=[ - ] h=[ -] c=[ - ] POLİNOMUN DEĞERİ >> polyval(p, >> fx=[ -..9 -. -.9.88]; >> polyval(fx,9) ans =. >> x=-.:.:.; >> y=polyval(fx,;

Detaylı

İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMINDA OKUTULAN ZORUNLU VE SEÇMELİ DERSLER VE İÇERİKLERİ

İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMINDA OKUTULAN ZORUNLU VE SEÇMELİ DERSLER VE İÇERİKLERİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMINDA OKUTULAN ZORUNLU VE SEÇMELİ DERSLER VE İÇERİKLERİ IST 101 Olasılık-1: Kümeler, küme işlemleri, sigma cebir, rasgele deney, örnek uzay ve olaylar, sayma teknikleri,

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

İçindekiler. I Varyans Analizi (ANOVA) 1. Önsöz. Simgeler ve Kısaltmalar Dizini

İçindekiler. I Varyans Analizi (ANOVA) 1. Önsöz. Simgeler ve Kısaltmalar Dizini İçindekiler Önsöz Simgeler ve Kısaltmalar Dizini v xv I Varyans Analizi (ANOVA) 1 1 Varyans Analizine Giriş 3 1.1 TemelKavramlar... 3 1.2 Deney Tasarımının Temel İlkeleri... 5 1.2.1 Bloklama... 5 1.2.2

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

İÇİNDEKİLER. Giriş... BİRİNCİ BÖLÜM FİNANSAL TABLOLARIN DENETLENMESİNDEKİ AMAÇLAR VE GEREKLİLİĞİ

İÇİNDEKİLER. Giriş... BİRİNCİ BÖLÜM FİNANSAL TABLOLARIN DENETLENMESİNDEKİ AMAÇLAR VE GEREKLİLİĞİ İÇİNDEKİLER Giriş... v BİRİNCİ BÖLÜM FİNANSAL TABLOLARIN DENETLENMESİNDEKİ AMAÇLAR VE GEREKLİLİĞİ 1.1. Finansal Tabloların Denetlenmesindeki Amaçlar... 2 1.1. 1. Bilgilendirme Amacı... 2 1.1.2. Koruyu

Detaylı

İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM

İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM I. İSTATİSTİK KAVRAMI ve TANIMI... 1 A. İSTATİSTİK KAVRAMI... 1 B. İSTATİSTİĞİN TANIMI... 2 C. İSTATİSTİĞİN TARİHÇESİ... 2 D. GÜNÜMÜZDE İSTATİSTİK VE ÖNEMİ...

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

İLERİ BİYOİSTATİSTİK KURSU

İLERİ BİYOİSTATİSTİK KURSU 1.GÜN (14 Eylül 2017) 08:30-09:00 Kurs Kayıt Açılış Konuşması 09:00-10:00 Tanışma -Katılımcıların Temel İstatistik Bilgisinin Değerlendirilmesio Çok Değişkenli İstatistiksel Yöntemlere Giriş o Basit Doğrusal

Detaylı

Ekonometri II (ECON 302T) Ders Detayları

Ekonometri II (ECON 302T) Ders Detayları Ekonometri II (ECON 302T) Ders Detayları Ders Adı Ekonometri II Ders Kodu ECON 302T Dönemi Ders Uygulama Saati Saati Laboratuar Saati Kredi AKTS Bahar 3 0 0 3 6 Ön Koşul Ders(ler)i ECON 301 Dersin Dili

Detaylı

İÇİNDEKİLER. ÖNSÖZ... v. ŞEKİLLER LİSTESİ... xxi. ÇİZELGELER LİSTESİ... xxiii BİRİNCİ KESİM BİLİMSEL İRADE VE ARAŞTIRMA EĞİTİMİNE TOPLU BAKIŞ

İÇİNDEKİLER. ÖNSÖZ... v. ŞEKİLLER LİSTESİ... xxi. ÇİZELGELER LİSTESİ... xxiii BİRİNCİ KESİM BİLİMSEL İRADE VE ARAŞTIRMA EĞİTİMİNE TOPLU BAKIŞ İÇİNDEKİLER Sayfa ÖNSÖZ... v ŞEKİLLER LİSTESİ... xxi ÇİZELGELER LİSTESİ... xxiii BİRİNCİ KESİM BİLİMSEL İRADE VE ARAŞTIRMA EĞİTİMİNE TOPLU BAKIŞ BÖLÜM 1. BİLİMSEL İRADE ALGI ÇERÇEVESİ... 3 BİLGİNİN KAYNAĞI:

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI ANADOLU ÜNİVERSİTESİ Deney Tasarımı ve Regresyon Analizi Regresyonda Güven Aralıkları ve Hipotez Testleri Doç. Dr. Nihal ERGİNEL-2015 REGRESYON KATSAYILARININ GÜVEN ARALIĞI + in güven aralığı : i-) n 30

Detaylı

Öğretim Üyeleri İçin Ön Söz Öğrenciler İçin Ön Söz Teşekkürler Yazar Hakkında Çevirenler Çeviri Editöründen

Öğretim Üyeleri İçin Ön Söz Öğrenciler İçin Ön Söz Teşekkürler Yazar Hakkında Çevirenler Çeviri Editöründen Öğretim Üyeleri İçin Ön Söz Öğrenciler İçin Ön Söz Teşekkürler Yazar Hakkında Çevirenler Çeviri Editöründen ix xiii xv xvii xix xxi 1. Çevre Kimyasına Giriş 3 1.1. Çevre Kimyasına Genel Bakış ve Önemi

Detaylı

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur.

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. Değişen Varyans Örnek Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. 1 Aşağıda yer alan denklemi tahmin edelim; y i = β 0 + β 1 x 1i + β 2 x 2i + u i EViews

Detaylı

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ Taşınmaz Değerlemede İstatistiksel Analiz Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ 1 Taşınmaz Değerlemede İstatistiksel Analiz İçindekiler

Detaylı

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1 REGRESYON ANALĐZĐ Regresyon analizi, aralarında sebep-sonuç ilişkisi bulunan iki veya daha fazla değişken arasındaki ilişkiyi belirlemek ve bu ilişkiyi kullanarak o konu ile ilgili tahminler (estimation)

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

Ekonometri 1 Ders Notları

Ekonometri 1 Ders Notları Ekonometri 1 Ders Notları A. TALHA YALTA TÜRKİYE BİLİMLER AKADEMİSİ AÇIK DERS MALZEMELERİ PROJESİ SÜRÜM 2.0 EKİM 2011 İçindekiler 1 İstatistiksel Kavramların Gözden Geçirilmesi 1 1.1 Anlamlı Basamaklar

Detaylı

ĐST 474 Bayesci Đstatistik

ĐST 474 Bayesci Đstatistik ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan haydarde@hacettepe.edu.tr Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

Sosyal Bilimler İçin Veri Analizi El Kitabı

Sosyal Bilimler İçin Veri Analizi El Kitabı 292 Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18 (2012) 292-297 KİTAP İNCELEMESİ Sosyal Bilimler İçin Veri Analizi El Kitabı Editör Doç. Dr. Şener BÜYÜKÖZTÜRK Dilek SEZGİN MEMNUN 1 Bu çalışmada,

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS DİSKRİMİNANT ANALİZİ (AYIRIM) Emre KUZUGÜDENL DENLİ Doç.Dr.Serdar CARUS Bu analiz ile; Bir bireyin hangi gruptan geldiği (p değişkeni kullanarak, bireyi uygun bir gruba atar ) Her bir değişkenin atama

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK Soru 1 X rassal değişkeninin olasılık yoğunluk fonksiyonu x x, x> f ( x) = 0, dy. 1 werilmiş ve Y = rassal değişkeni tanımlamış ise, Y değişkenin 0< 1 X 1 y için olasılık yoğunluk fonksiyonu aşağıdaki

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : İSTATİSTİK II Ders No : 0020050027 Teorik : 3 Pratik : 0 Kredi : 3 ECTS : 4 Ders Bilgileri Ders Türü Öğretim Dili Öğretim

Detaylı

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A 2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır

Detaylı

T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI DERS İÇERİKLERİ

T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI DERS İÇERİKLERİ T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI I.YARIYIL: IST101 BİLGİSAYAR PROGRAMLAMA I (223) Bilgisayar Donanımı, İşletim Sistemleri, Windows Kullanımı, Microsoft Word,

Detaylı

HATA VE HATA KAYNAKLARI...

HATA VE HATA KAYNAKLARI... İÇİNDEKİLER 1. GİRİŞ... 1 1.1 Giriş... 1 1.2 Sayısal Analizin İlgi Alanı... 2 1.3 Mühendislik Problemlerinin Çözümü ve Sayısal Analiz... 2 1.4 Sayısal Analizde Bilgisayarın Önemi... 7 1.5 Sayısal Çözümün

Detaylı

JEODEZİK AĞLARIN OPTİMİZASYONU

JEODEZİK AĞLARIN OPTİMİZASYONU JEODEZİK AĞLARIN OPTİMİZASYONU Jeodezik Ağların Tasarımı 10.HAFTA Dr.Emine Tanır Kayıkçı,2017 OPTİMİZASYON Herhangi bir yatırımın gerçekleştirilmesi sırasında elde bulunan, araç, hammadde, para, işgücü

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI

MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI I.YARIYIL MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI 3715055832012 Z Uzmanlık Alan Dersi 3715055702017 Z Bilimsel Araştırma Yöntemleri ve

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME

4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME 4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME Bu bölümde; Bir grup değişkenin çalışma sayfası görüntüsünü görüntüleme Bir grup değişkenin tanımlayıcı istatistiklerini görüntüleme Bir grup içerisindeki

Detaylı

Akdeniz Üniversitesi

Akdeniz Üniversitesi F. Ders Tanıtım Formu Dersin Adı Öğretim Dili Akdeniz Üniversitesi İSTATİSTİKSEL ANALİZ I Türkçe Dersin Verildiği Düzey Ön Lisans ( ) Lisans (*) Yüksek Lisans( ) Doktora ( ) Eğitim Öğretim Sistemi Örgün

Detaylı

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir.

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. . nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. Buna göre, n C r + n C r toplamı aşağıdakilerden hangisine eşittir? A) n + C r B)

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Hasan ERTAŞ ÇOKLU LİNEER REGRESYONDA SAPAN DEĞERLERİN BELİRLENMESİ İÇİN TANILAMA ÖLÇÜLERİ İSTATİSTİK ANABİLİM DALI ADANA, 2011 ÖZ YÜKSEK

Detaylı

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU Dersin Adı-Kodu: BİS 601 Örnek Genişliği ve Güç Programın Adı: Biyoistatistik Dersin düzeyi Doktora Ders saatleri ve Teori Uyg. Lab. Proje/Alan Çalışması

Detaylı

ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI

ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI Araştırmalarda incelenen olaylar göstermektedir ki tek değişkenli istatistiklerin kullanılması problemi açıklamakta yetersiz ve eksik kalmaktadır.

Detaylı

Önsöz. İçindekiler Algoritma Algoritma Nasıl Hazırlanır? Yazılımda Algoritma Mantığı Nedir? 1.2. Algoritma Örnekleri ve Sorular

Önsöz. İçindekiler Algoritma Algoritma Nasıl Hazırlanır? Yazılımda Algoritma Mantığı Nedir? 1.2. Algoritma Örnekleri ve Sorular Önsöz Giriş İçindekiler V VII IX 1.1. Algoritma 1.1.1. Algoritma Nasıl Hazırlanır? 1.1.2. Yazılımda Algoritma Mantığı Nedir? 1.2. Algoritma Örnekleri ve Sorular 2.1. Programın Akış Yönü 19 2.2. Başlama

Detaylı

17.ULUSAL TURİZM KONGRESİ

17.ULUSAL TURİZM KONGRESİ 17.ULUSAL TURİZM KONGRESİ 2016 YILI BİLDİRİLERİ ÜZERİNE BİR DEĞERLENDİRME Prof. Dr. A. Celil ÇAKICI Mersin Üniversitesi Turizm Fakültesi YAZAR SAYISI YAZARLARIN UNVAN DAĞILIMI (İlk üç) 1.Yazarın Üniversitesi

Detaylı

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri Elementary Education Online, 12(1), k: 1 6, 2013. İlköğretim Online, 12(1), b:1 6, 2013. [Online]: http://ilkogretim online.org.tr KİTAP İNCELEMESİ SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

Detaylı

TABLO-1 KPSS DE UYGULANACAK TESTLERİN KAPSAMLARI Yaklaşık Ağırlığı Genel Yetenek

TABLO-1 KPSS DE UYGULANACAK TESTLERİN KAPSAMLARI Yaklaşık Ağırlığı Genel Yetenek TABLO-1 KPSS DE UYGULANACAK TESTLERİN KAPSAMLARI Yaklaşık Ağırlığı Genel Yetenek Yaklaşık Ağırlığı 1) Sözel Bölüm %50 2) Sayısal Bölüm %50 Sözel akıl yürütme (muhakeme) becerilerini, dil bilgisi ve yazım

Detaylı

yöneylem araştırması Nedensellik üzerine diyaloglar I

yöneylem araştırması Nedensellik üzerine diyaloglar I yöneylem araştırması Nedensellik üzerine diyaloglar I i Yayın No : 3197 Eğitim Dizisi : 149 1. Baskı Ocak 2015 İSTANBUL ISBN 978-605 - 333-225 1 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

BÖLÜM EN KÜÇÜK KARELER REGRESYONUNDA KARŞILAŞILAN PROBLEMLER

BÖLÜM EN KÜÇÜK KARELER REGRESYONUNDA KARŞILAŞILAN PROBLEMLER BÖLÜM 10 10. EN KÜÇÜK KARELER REGRESYONUNDA KARŞILAŞILAN PROBLEMLER En küçük kareler yöntemi, hataların eklenebilir, sabit varyansa sahip ve birbirinden bağımsız normal dağılış gösteren şans değişkenleri

Detaylı

İçindekiler. 1 Giriş 2. 3 Psikoloji Araştırmalarında Etik Meseleler Bilimsel Yöntem 27. KISIM I Genel Meseleler 1

İçindekiler. 1 Giriş 2. 3 Psikoloji Araştırmalarında Etik Meseleler Bilimsel Yöntem 27. KISIM I Genel Meseleler 1 Ön Söz xiii KISIM I Genel Meseleler 1 1 Giriş 2 PSİKOLOJİ BİLİMİ 3 BİLİMİN BAĞLAMI 6 Tarihsel Bağlam 6 Sosyal ve Kültürel Bağlam 9 Ahlakî Bağlam 13 BİR ARAŞTIRMACI GİBİ DÜŞÜNMEK 14 Medyada Yayımlanan Araştırma

Detaylı

İçindekiler. KISIM I Giriş. Bölüm 1. Bilimsel Araştırmaya Giriş / 1

İçindekiler. KISIM I Giriş. Bölüm 1. Bilimsel Araştırmaya Giriş / 1 İçindekiler KISIM I Giriş Bölüm 1. Bilimsel Araştırmaya Giriş / 1 Giriş / 2 Bilgiyi Edinme Yöntemleri /3 Sezgi / 3 Otorite / 4 Akılcılık (Rasyonellik) / 5 Deneyimcilik ( Görgücülük) / 5 Bilim / 6 Tümevarım

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

MAN502T İŞLETME YÖNETİMİ İÇİN ARAŞTIRMA YÖNTEMLERİ

MAN502T İŞLETME YÖNETİMİ İÇİN ARAŞTIRMA YÖNTEMLERİ MAN502T İŞLETME YÖNETİMİ İÇİN ARAŞTIRMA YÖNTEMLERİ Prof. Dr. Dilek Leblebici Teker Işık Üniversitesi İşletme Bölümü dilek.teker@isikun.edu.tr 0216 528 71 28 1 BÖLÜM 1 BİLİMSEL ARAŞTIRMAYA GİRİŞ 2 BİLİMSEL

Detaylı

2 PARADİGMALAR IŞIĞINDA BİLİMSEL ARAŞTIRMA ANLAYIŞLARI

2 PARADİGMALAR IŞIĞINDA BİLİMSEL ARAŞTIRMA ANLAYIŞLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 BİLİM ve ARAŞTIRMA 11 1.1. Bilim 12 1.2. Bilimin Temel Özellikleri 13 1.3. Bilimin Dallarının Sınıflandırılması 13 1.3.1. Aksiyomatik Bilimler 13 1.3.2. Pozitif Bilimler 15

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla.

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. 7.Ders Bazı Ekonometrik Modeller Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. Kaynak: TÜĐK dönemler gayri safi yurt içi hasıla düzeyi 1987-1 8680793 1987-2 9929354 1987-3 13560135 1987-4

Detaylı

Olasılık ve Rastgele Süreçler (EE213) Ders Detayları

Olasılık ve Rastgele Süreçler (EE213) Ders Detayları Olasılık ve Rastgele Süreçler (EE213) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve Rastgele Süreçler EE213 Güz 3 0 0 3 7 Ön Koşul Ders(ler)i

Detaylı