Tahminleme Yöntemleri-2
|
|
|
- Deniz Tansel
- 10 yıl önce
- İzleme sayısı:
Transkript
1 PAU ENDÜSTRİ MÜHENDİSLİĞİ IENG Üretim Planlama ve Kontrolü 1 Tahminleme Yöntemleri-2
2 İçerik 1. Mevsimsel Değişim Bazlı Teknik 2. Box-Jenkins Modelleri 3. Tahmin Yöntemlerini Uygulamada Dikkat Edilmesi Gereken Hususlar
3 Mevsimsel Seri Yöntemleri N ( 2) dönemde bir tekrar eden bir yapıya sahip zaman serilerine Mevsimsel Seriler denir. N: mevsim uzunluğu c t : mevsimsel katsayılar, 1 t N. Σc t = N Örneğin. c 3 = 1.25 olması 3. dönem talebinin mevsimsel ortalamanın % 25 fazlası olduğunu gösterir.
4 Mevsimlik Düzeltmeler Yöntemi Herhangi bir tahmin yöntemi (Regresyon Analizi, Üstel Düzeltme Yöntemi vb.) ile tahmin değerleri hesaplanır. Geçmiş dönemlere ilişkin mevsimlik düzeltme indeksleri bulunur. Bunların mevsimler bazındaki ortalamaları hesaplanır. Tahmin yapılacak döneme ilişkin mevsimler bazında tahmini satış değerleri bulunur.
5 Örnek Yıl Dönem Satış 1.Üç ay Üç ay 3 3. Üç ay 4 4. Üç ay 2 1.Üç ay Üç ay 3 3. Üç ay 5 4. Üç ay 3 1.Üç ay Üç ay 4 3. Üç ay 6 4. Üç ay 3 1.Üç ay Üç ay 5 3. Üç ay 7 4. Üç ay 4
6 Örnek Regresyon Analizi yardımıyla bir satış tahmini çalışması Dönem (X) Satış (Y) X*Y X 2 Tahmin , , , , , , , , , , , , , , , ,
7 Trende Oran Tekniği 1 Geçmiş dönemlere ilişkin gerçekleşen satış değerleri/tahmin değerleri Örnek: 10. döneme ilişkin mevsimlik düzeltme indeksi Y/Tahmin=4/3,73=1,07
8 Trende Oran Tekniği 1 Mevsimlik Düzeltme İndeksleri Dönem Yıl Ortalama Düzeltme İndeksi 1. Üç ay 0,51 0,36 0,56 0,46 0,47 2. Üç ay 1,38 1,02 1,07 1,11 1,15 3. Üç ay 1,70 1,59 1,52 1,49 1,57 4. Üç ay 0,78 0,90 0,73 0,82 0,81 Y d =Tahmin*ODİ Y d: Mevsimlik düzeltmeler yöntemi ile elde edilen tahmin değeri Tahmin: Önceki tahmin yöntemi ile elde edilen tahmin değeri ODİ: Ortalama Düzeltme indeksi
9 Trende Oran Tekniği 2 Yıl Mevsim Toplam Ortalama 642,5 702, ,5 Elde edilen regresyon doğrusu: Y=2, *X 5.Yıl için Y değeri: Y 5 =2, *5=3730
10 Trende Oran Tekniği 2 Geçmiş yıllara ait Y değerleri: Y 1 =2, *1=2854 Y 2 =2, *2=3073 Y 3 =2, *3=3292 Y 4 =2, *4=3511 Ci, yıllık değişim etmenleri: C 1 =2800/2854=0,9810 C 2 =3070/3073=0,9990 C 3 =3460/3292=1,0510 C 4 =3400/3511=0,9683
11 Trende Oran Tekniği 2 Ortalama Yıllık Değişim Etmeni (OYDE): (0,9810+0,9990+1,0510+0,9683)/4=0,9998 Mevsimlik indeks: 1.mevsim: 600/2854=0, mevsim:650/2854=0, mevsim:700/2854=0, mevsim:850/2854=0,2978
12 Trende Oran Tekniği 2 Yıl Mevsim ,2102 0,2277 0,2452 0, ,2017 0,2277 0,2766 0, ,2126 0,2004 0,3037 0, ,1851 0,2278 0,2705 0,2848 Ortalama Düzeltme İndeksi 0,2024 0,2209 0,2740 0,3023
13 Trende Oran Tekniği 2 5. yılın mevsimlere göre satış tahminini: D i : i. Mevsime ilişkin satış değeri Y 5 : 5. yılın Y değeri OYDE: Ortalama yıllık değişim etmeni ODİ: Ortalama mevsimlik düzeltme indeksi D i =Y 5 *OYDE*ODİ D 1 =3730*0,9998*0,2024=755 D 2 =3730*0,9998*0,2209=824 D 3 =3730*0,9998*0,2740=1022 D 4 =3730*0,9998*0,3023=1127
14 Ortalama Mevsim İndeksi Tekniği Mevsimlere ilişkin satış ortalamaları hesaplanır. Ortalama mevsim indeksleri hesaplanır. S i =i. mevsimin ortalama satışı/mevsimlik genel ortalama
15 Örnek Mevsim Toplam Yıl Ortalama 642,5 702, ,5 S 1 =642,5/795,625=0,8075 S 2 =642,5/795,625=0,8829 S 3 =642,5/795,625=1,0997 S 4 =642,5/795,625=1,2097 Mevsimlik genel ortalama
16 Örnek Regresyon Analizi ile 5.yıla ilişkin toplam satış değeri: 3730 olarak tahmin edilmişti. Bu değeri, dört mevsime eşit olarak (3730/4)=932,5 paylaştıralım. D 1 =932,5*0,8075=753 D 2 =932,5*0,8829=823 D 3 =932,5*1,0997=1025 D 4 =932,5*1,2097=1128
17 Yıllık Satışlara Oran Tekniği İlgili mevsimdeki satışların, ortalama olarak yıllık toplam satışların % kaçı olduğunu gösteren bir oran, mevsim etmeni olarak alınır ve her mevsim için ortalama mevsim indeksleri hesaplanır.
18 Örnek Yıl Mevsim
19 Yıl Örnek Mevsim Ortalama Satış 1 Satış İndeks (45/250)=0,18 1,34 2,08 0,40 2 Satış İndeks (70/300)=0,23 1,23 1,97 0,57 3 Satış İndeks (100/450)=0,22 1,30 1,84 0,63 4 Satış Ortalama Düzeltme İndeksi İndeks (100/550)=0,18 1,32 2,11 0,39 1. Mevsim= 650*0,20= Mevsim=650*1,30= Mevsim=650*2,00= Mevsim=650*0,50=325 0,20 1,30 2,00 0,50
20 Box-Jenkins Modelleri Box-Jenkins tahmin modelleri belirgin derecede karmaşıktır. İki ünlü istatistikçi George E. Box (Wisconsin Üniversitesi) ve Gwilym M. Jenkins (Lancaster Üniversitesi) ile adlandırılır. Metot, zaman serilerinin otokorelasyon yapısının kullanımı üzerine kuruludur. Otokorelasyon var ise kullanılabilir. Box-Jenkins modelleri ARIMA modelleri olarak da bilinir. (ARIMA:AutoRegressive Integrated Moving Average)
21 Box-Jenkins Modelleri Model için kullanacağımız zaman serileri D 1, D 2,... olarak nitelendirilsin. Serinin durağan (stationary) olduğu varsayılsın: E(D i )=μ ve Var(D i )=σ 2, i=1,2,.. Durağan: seride artış trendi, azalış trendi yok ve varyans nispeten sabit. Durağanlık, bağımsızlık (independence) anlamına gelmemektedir. Aksine i j için D i ve D j değerlerinin bağımlı rassal değişkenler olması mümkündür. Modelde de bu bağımlılık kullanılacaktır.
22 Tahminlerin Doğruluğunu Etkileyen Unsurlar Geçmiş ürün talep bilgisinin varlığı Bilgisayar kullanımı Diğer bilgilerin tarihçesi (yeni ürünler. tasarım değişiklikleri. müşteri tabanı değişiklikleri. promosyon etkileri. ekonomik göstergeler. vb.) Tahminlerin yürütülme sorumluluğunun paylaşılarak üstlenilmesi (satış. dağıtım. ve imalat birimleri arasında)
23 Dikkat Edilecek Konular Hangi ürünler için tahmin yapılacak? Tahmin gelecekte hangi zamana kadar yapılmalıdır? Tahmin edilen miktarın geçerli olduğu zaman diliminin uzunluğu nedir? Tahmin ne kadar sık yapılmalı. gözden geçirilmeli ve değiştirilmelidir? Tahmin hatasının kabul edilebilir üst sınırı nedir?
24 Tahmin için kullanılacak araçlar Hesap Tablosu Yazılımları Örnek: Excel Veri Çözümleme Aracı Tahmin Uygulamaları Yazılımları istatistik paketleri tahmin yapmaya özgü paketler
25 Öneriler (1) Tahmin yapmadan önce eldeki verileri ayıkla Tekrar etmesi söz konusu olmayan olayları verilerden çıkar. Bu gibi veriler geçmişle ilgili doğru bir görüntü vermez. Ayarlama yapmak gereken durumlar: beklenmeyen hava şartları önemli bir müşterinin çıkması veya eklenmesi özel tanıtım promosyonları fiyat ve ambalaj değişiklikleri
26 Öneriler (2) Tahminleri elde etmek için düzenli olarak değişen farklı yöntemler uygula Her bir yöntemin doğruluk başarısının geçmişini tut En başarılı yöntemi resmi tahminler için kullan Tahmin edileceklerin bir ABC analizini yap A -tipi ürünler her ay yönetim tarafından takip edilir. B ve C sınıfında olanlarda sadece tahminler ve gerçekleşen talepler arasında ciddi farklılıklar olanlar yönetim tarafından incelenir.
Tahminleme Yöntemleri
PAU ENDÜSTRİ MÜHENDİSLİĞİ IENG 318 - Üretim Planlama ve Kontrolü Tahminleme Yöntemleri 2012-2013 Bahar Yarıyılı 1 İçerik 1. Talep Tahmini Kavramı 2. Talep Tahminlerinin Kullanım Yeri 3. Talep Tahmin Modelleri
Sürelerine Göre Tahmin Tipleri
Girişimcilik Bölüm 5: Talep Tahmini [email protected] 5.1. Talep Tahmini Tahmin: Gelecek olayları önceden kestirme bilim ve sanatı. İstatistiksel Tahmin: Geçmiş verileri matematiksel modellerde kullanarak
Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr.
Zaman Serileri-1 If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere
Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören
Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,
009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL
Soru 1: (20 puan)aşağıdaki sorularda parantez içine doğru olduğunu düşündüğünüz ifadeler için D yanlış olduğunu düşündüğünüz ifadeler için Y yazınız.
Soru 1: (20 puan)aşağıdaki sorularda parantez içine doğru olduğunu düşündüğünüz ifadeler için D yanlış olduğunu düşündüğünüz ifadeler için Y yazınız. ( D ) 1. Yüksek talep dönemlerinde müşteriyi (sipârişi)
Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.
Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri
ÜSTEL DÜZLEŞTİRME YÖNTEMİ
ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik
3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI
ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6
Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ
I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA
Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT
Ünite 10: Regresyon Analizi Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT 10.Ünite Regresyon Analizi 2 Ünitede Ele Alınan Konular 10. Regresyon Analizi 10.1. Basit Doğrusal regresyon 10.2. Regresyon denklemi
Zaman Serileri Ekonometrisine Giriş
Zaman Serileri Ekonometrisine Giriş Box-Jenkins Yöntemi Ekonometri 2 Konu 26 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported
TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ
Taşınmaz Değerlemede İstatistiksel Analiz Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ 1 Taşınmaz Değerlemede İstatistiksel Analiz İçindekiler
Ders Planı: - Talep Yapıları. - Tahmin Etmede Önemli Kararlar. - Yargısal Yöntemler. - Nedensel Yöntemler: Doğrusal Regresyon
Ders Planı: - Talep Yapıları - Tahmin Etmede Önemli Kararlar - Yargısal Yöntemler - Nedensel Yöntemler: Doğrusal Regresyon - Zaman Serisi Yöntemleri - Zaman Serisi Yönteminin Seçimi - Çoklu Tekniklerin
KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN
KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin
İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37
İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar
Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur.
Değişen Varyans Örnek Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. 1 Aşağıda yer alan denklemi tahmin edelim; y i = β 0 + β 1 x 1i + β 2 x 2i + u i EViews
İÇİNDEKİLER 1. GİRİŞ...
İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel
ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI
ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI Mehmet KURBAN 1 Ümmühan BAŞARAN FİLİK 2 Sevil ŞENTÜRK 3 1,2 Elektrik ve Elektronik Mühendisliği Bölümü, Mühendislik-Mimarlık Fakültesi,
istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A
2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır
İSTATİSTİKSEL VERİ ANALİZİ
İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı
ZAMAN SERİLERİNDE REGRESYON ANALİZİ
ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip
Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu
Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu Prof. Dr. Ahmet BurçinYERELİ Hacettepe Üniversitesi, İktisadi ve İdari Bilimler Fakültesi,
SDÜ MMF ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ ÜRETİM PLANLAMA VE KONTROL. 1. Uygulama: İhtiyaç Hesaplama. İçindekiler. Uygulamalar
SDÜ MMF ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ ÜRETİM PLANLAMA VE KONTROL 1. Uygulama: İhtiyaç Hesaplama Uygulamalar 1. İhtiyaç Hesaplama 2. Sipariş ve Parti Büyüklüğü Hesaplama 3. Dolaşım Akış Çizelgeleme/Terminleme
VERİ MADENCİLİĞİNİN GÖREVLERİ
VERİ MADENCİLİĞİNİN GÖREVLERİ VERİ MADENCİLİĞİNİN GÖREVLERİ Classification (Sınıflandırma) Karakterizasyon (Betimleme) Regression (İlişki Çıkarımı) Clustering (Kümeleme) Association (İlişki Analizi) Forecasting
NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,
NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına
İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010)
İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) BİRİNCİ YIL Güz Dönemi (1. Yarıyıl) STAT 101 Temel İstatistik I (3 2 4) İstatistik bilimi. Verilerin görsel sunumu. Frekans tablosu oluşturma. Gövde yaprak
Türkiye deki İş Kazalarının Box-Jenkins Tekniği ile İncelenmesi. Doç. Dr. Arzu ALTIN YAVUZ Ar. Gör. Barış ERGÜL Ar. Gör. Ebru GÜNDOĞAN AŞIK
Türkiye deki İş Kazalarının Box-Jenkins Tekniği ile İncelenmesi Doç. Dr. Arzu ALTIN YAVUZ Ar. Gör. Barış ERGÜL Ar. Gör. Ebru GÜNDOĞAN AŞIK Sunu Planı Giriş Bu bölümde İş Sağlığı ve Güvenliği ile ilgili
Koşullu Öngörümleme. Bu nedenle koşullu öngörümleme gerçekleştirilmelidir.
Koşullu Öngörümleme Ex - ante (tasarlanan - umulan) öngörümleme söz konusu iken açıklayıcı değişkenlerin hatasız bir şekilde bilindiği varsayımı gerçekçi olmayan bir varsayımdır. Çünkü bazı açıklayıcı
ÖĞRENCİNİN ADI SOYADI:. NO:
ÖĞRENCİNİN ADI SOYADI:. NO: İMZA: 2011-2012 ÖĞRETİM YILI TIP 1. SINIF TEMEL BİYOİSTATİSTİK DERSİ ARA SINAVI (04.11.2011) Biyoistatistik ve Tıp Bilişimi Anabilim Dalı Başarılar Temel Biyoistatistik dersi
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani
ALIŞTIRMA 2 GSYİH. Toplamsal Ayrıştırma Yöntemi
ALIŞTIRMA 2 GSYİH Bu çalışmamızda GSYİH serisinin toplamsal ve çarpımsal ayrıştırma yöntemine göre modellenip modellenemeyeceği incelenecektir. Seri ilk olarak toplamsal ayrıştırma yöntemine göre analiz
İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI
İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI 2014 İŞLETME VE ORGANİZASYON STAJI UYGULAMA ESASLARI Açıklama Staj yapılan işletmelerde
Sağlık Kurumlarında Kaynak Planlaması DERS-5
Sağlık Kurumlarında Kaynak Planlaması DERS-5 Sağlık Kurumlarında Tahmini Stok Hesaplamaları (devam) ÖĞR. GÖR. HÜSEYİN ARI Malzeme Yönetimi Uygulama Senaryosu KANAL KURULAMA M.15 Kod Malzemeler Temin KAĞIDI
BÖLÜM 10 ÖRNEKLEME YÖNTEMLERİ
İÇİNDEKİLER BÖLÜM 10 ÖRNEKLEME YÖNTEMLERİ I. ÖRNEKLEME... 1 II. ÖRNEKLEMENİN SAFHALARI... 2 III. ÖRNEK ALMA YÖNTEMLERİ 5 A. RASYONEL ÖRNEK ALMA... 5 B. TESADÜFİ ÖRNEK ALMA... 6 C. KADEMELİ ÖRNEK ALMA...
ALIŞTIRMA 1 ULUSAL SINAİ ENDEKS
ALIŞTIRMA 1 ULUSAL SINAİ ENDEKS Bu çalışmada Ulusal Sınai Endeks serisiyle ilgili analizler yapılacaktır. Öncelikle seri oluşturulur. Data dan Define Dates e girilir oradan weekly,days(5) işaretlenir ve
İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY
İstatistik 1 Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları Bu Bölümde İşlenecek Konular Temel Olasılık Teorisi Örnek uzayı ve olaylar, basit olasılık, birleşik olasılık Koşullu Olasılık İstatistiksel
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki
EAD YBU 2015 BAHAR DÖNEMİ UYGULAMALI EKONOMETRİ EĞİTİM PROGRAMI
EAD YBU 2015 BAHAR DÖNEMİ UYGULAMALI EKONOMETRİ EĞİTİM PROGRAMI Aşağıda iki güne yayılmış olarak sunulmuş olan 6 Eğitim Modülü 21 22 Mart, 11 12 Nisan ve 2 3 Mayıs tarihlerinde Yıldırım Beyazıt Üniversitesi
ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3
ÜNİTE:1 İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2 Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 Ortalamalar, Değişkenlik ve Dağılma Ölçüleri ÜNİTE:4 Endeksler ÜNİTE:5
OLASILIK ve KURAMSAL DAĞILIMLAR
OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine
İÇİNDEKİLER 1. BÖLÜM STATA PAKET PROGRAMINA GİRİŞ
3. BASKIYA ÖNSÖZ İleri Panel Veri Analizi kitabının 2012 yılında çıkan ilk baskısının çok hızlı tükenmesi üzerine, 2013 yılında çok daha fazla adetle ikinci baskısı yapılmıştır. Kitabın ikinci baskısı
ZAMAN SERİ ANALİZİNDE TEMEL KAVRAMLAR
ZAMAN SERİ ANALİZİNDE TEMEL KAVRAMLAR 1 KAVRAMLAR Öngörü: Gelecek olayları ya da koşulları tahmin etmeye öngörü denir. Karar verme sürecinde vazgeçilmez bir unsurdur. Nitel(kalitatif) Yöntemler: Öngörü
BASEL II. RİSK AĞIRLIK FONKSİYONLARI (Beklenmeyen Kayıplar)
BASEL II RİSK AĞIRLIK FONKSİYONLARI (Beklenmeyen Kayıplar) Temerrüde düşmemiş krediler için Basel II düzenlemelerinde Korelasyon Katsayısı, Vade ayarlaması, Sermaye Yükümlülüğü oranı, Sermaye yükümlülüğü
Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir.
ÇIKARSAMALI İSTATİSTİKLER Çıkarsamalı istatistikler, örneklemden elde edilen değerler üzerinde kitleyi tanımlamak için uygulanan istatistiksel yöntemlerdir. Çıkarsamalı istatistikler; Tahmin Hipotez Testleri
ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ
ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman
Ch. 12: Zaman Serisi Regresyonlarında Ardışık Bağıntı (Serial Correlation) ve Değişen Varyans
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 12: Zaman Serisi Regresyonlarında
Ooo, bir dakika müsaade et... Geçen hafta 250 teker sattık... O zaman, bu hafta ne kadar satmalıyız... Tahmin Nedir?
Ooo, bir dakika müsaade et... Geçen hafta 250 teker sattık... O zaman, bu hafta ne kadar satmalıyız... Tahmin Nedir? IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Dersin amacı Tahmin, geleceğe hazır
DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Türkçe Adı: TAMİNLEME VE ZAMAN SERİLERİ ANALİZİ
Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: TAMİNLEME VE ZAMAN SERİLERİ ANALİZİ Dersin Orjinal Adı: TAMİNLEME VE ZAMAN SERİLERİ ANALİZİ Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans,
Gediz Havzası Yağışlarının Stokastik Modellemesi
Ege Üniv. Ziraat. Fak. Derg.,, ():- ISSN - Gediz Havzası Yağışlarının Stokastik Modellemesi Kıvanç TOPÇUOĞLU Gülay PAMUK Mustafa ÖZGÜREL Summary Stochastic Modelling of Gediz Basin s Precipitation In this
İ İ İ ç çi İ İ İ ç İ İ ç Ş İ Ç Ş İ ç Ş ç İ İ İ ç İ Ç ç İ İ İ İ İ İĞİ İ İ İ İ Ş Ş Ş Ş ç Ş Ş Ş İ İ İ Ğ İ İ İ İ Ş Ç Ş Ç Ş İ İ İ ç Ç Ş Ç Ş ç İ Ç Ş İ ç ç Ö Ç ç Ü İ ç Ç İ İ ç ç İ İ ç ç ç ç ç ç ç ç ç ç ç ç ç
İİİ Ş Ş ç ç ç ç ç ç ç İ Ö İ İ Ğ ç ç ç Ö ç ç Ş ç ç ç ç ç ç ç ç ç ç ç ç İ ç Ş İ İ Ü İ Ş İ ç ç ç İ ç İ İ İç ç İ ç ç ç ç İ İ İ İ İ İ İİ İ Ç ç Ş İ Ş İ İ ç ç ç İ Ç ç Ö İ Ü İ İŞ ç ç İ Ğ Ş Ü İ ç ç Ş Ş ç İ İ Ö
İ İ İ İ İ Ö Ü İ İ İ İ Ğ Ö Ö Ö İ Ö Ç İ İ Ş Ü Ü İ Ş Ş İ İ İ İ İ İ İ «Ü İ İ Ü İ İ İÇİ İ İ Ü İ İ İ İ İ Ö Ü İ Ö İ Ü İ İ İ İ İ Ü Ö İ İ İ İ İ Ö İ İ İ Ş Ü Ü İ Ş Ş İ İ İ İ İ İ İ İ Ç»«İ Ü İ İ Ü Ç İ İ İİ İ İ Ü
KANTİTATİF TEKNİKLER - Temel İstatistik -
KANTİTATİF TEKNİKLER - Temel İstatistik - 1 İstatistik Nedir? Belirli bir amaçla verilerin toplanması, düzenlenmesi, analiz edilerek yorumlanmasını sağlayan yöntemler topluluğudur. 2 İstatistik Kullanım
Korelasyon, Korelasyon Türleri ve Regresyon
Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.
Tekirdağ&Ziraat&Fakültesi&Dergisi&
NamıkKemalÜniversitesi ISSN:1302*7050 TekirdağZiraatFakültesiDergisi Journal(of(Tekirdag(Agricultural(Faculty( ( ( ( ( ( ( An(International(Journal(of(all(Subjects(of(Agriculture( Cilt(/(Volume:(10Sayı(/(Number:(2(((((Yıl(/(Year:(2013
ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ
ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati Kredi AKTS (T+U+L) İSTATİSTİKSEL KALİTE KONTROL EN-412 4/I 3+0+0 3 5 Dersin Dili : Türkçe Dersin Seviyesi
EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi. Özet İstatistikler ve Histogram (Minitab)(1) Örnek: Eczane İçin Servis Süreleri
EME 3117 1 2 Girdi Analizi SİSTEM SIMÜLASYONU Modellenecek sistemi (prosesi) dokümante et. Veri toplamak için bir plan geliştir. Veri topla. Verilerin grafiksel ve istatistiksel analizini yap. Girdi Analizi-I
Endüstri Mühendisliğine Giriş
Endüstri Mühendisliğine Giriş 5 ve 19 Aralık 2012, Şişli-Ayazağa, İstanbul, Türkiye. Yard. Doç. Dr. Kamil Erkan Kabak Endüstri Mühendisliği Bölümü,, Şişli-Ayazağa, İstanbul, Türkiye [email protected]
İSTATİSTİK VE OLASILIK SORULARI
İSTATİSTİK VE OLASILIK SORULARI SORU 1 Meryem, 7 arkadaşı ile bir voleybol maçına katılmayı planlamaktadır. Davet ettiği arkadaşlarından herhangi bir tanesinin EVET deme olasılığı 0,8 ise, en az 3 arkadaşının
Stokastik Modellerle Rüzgar Hızı Tahmini; Karabük Örneği
Stokastik Modellerle Rüzgar Hızı Tahmini; Karabük Örneği Bayram KÖSE 1, Ziyaddin RECEBLİ 2, Mehmet ÖZKAYMAK 2 1 Öğr. Gör., Eskipazar Meslek Yüksek Okulu, Karabük Üniversitesi, Karabük, Türkiye 2 Doç. Dr.,
VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL
VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine
rasgele değişkeninin olasılık yoğunluk fonksiyonu,
3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının
Eğitim / Danışmanlık Hizmetinin Tanımı
Eğitim / Danışmanlık Hizmetinin Tanımı 1. Proje Kapsamında Eğitim Talep Edilmiş ise, Eğitimin İçeriği Hakkında bilgi veriniz. Ekonometri alanı iktisat teorisi, işletme, matematik ve istatistiğin birleşmesiyle
Bölüm 3 HAREKETLİ ORTALAMALAR VE DÜZLEŞTİRME YÖNTEMLERİ
Bölüm HAREKETLİ ORTALAMALAR VE DÜZLEŞTİRME ÖNTEMLERİ Bu bölümde üç basi öngörü yönemi incelenecekir. 1) Naive, 2)Oralama )Düzleşirme Geçmiş Dönemler Şu An Gelecek Dönemler * - -2-1 +1 +2 + Öngörü yönemi
DENİZ HARP OKULU ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ
DENİZ HARP OKULU ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS İSTATİSTİK ENM- / +0 Dersin Dili Dersin Seviyesi Dersin Önkoşulu
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan
ZAMAN SERİSİ ANALİZİ. Ne ilginçtir ki, insanlar büyük ölçüde rassal olan şeylerde anlamlı örnekler bulmaya çalışır. Mr. Data Star Trek, 1992
ZAMAN SERİSİ ANALİZİ Ne ilginçtir ki, insanlar büyük ölçüde rassal olan şeylerde anlamlı örnekler bulmaya çalışır. Mr. Data Star Trek, 1992 Zaman Serisi Analizi İçin Temel Kavramlar Durağanlık ve Durağan
9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?
9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? Ardışık bağımlılık sorunu, hata terimleri arasında ilişki olmadığı (E(u i,u j ) = 0, i j) varsayımının geçerli olmamasıdır.
KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005
KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:
Örnek 1: 2 x = 3 x = log 2 3. Örnek 2: 3 2x 1 = 2 2x 1 = log 3 2. Örnek 3: 4 x 1 = 7 x 1 = log 4 7. Örnek 4: 2 x = 3 2 x 2 = 3
Soru : f(x) = log x 4 5 fonksiyonunun tanım aralığını bulunuz? a x = b eşitliğinde a ve b belli iken x i bulmaya logaritma işlemi denir. Üstel fonksiyon bire bir ve örten olduğundan ters fonksiyonu vardır.
8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,
İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2
ZAMAN SERİSİ SÜREÇLERİ Durağan ve Durağan Olmayan Zaman Serileri
ZAMAN SERİSİ SÜREÇLERİ Durağan ve Durağan Olmayan Zaman Serileri 1 Zaman Serileri Analizi Zaman Serisi Modelleri Veri Üretme Süreci(DGP) Stokastik Süreçler Durağan Stokastik Süreçler Durağan Stokastik
JEODEZİK VERİLERİN İSTATİSTİK ANALİZİ. Prof. Dr. Mualla YALÇINKAYA
JEODEZİK VERİLERİN İSTATİSTİK ANALİZİ Prof. Dr. Mualla YALÇINKAYA Karadeniz Teknik Üniversitesi, Harita Mühendisliği Bölümü Trabzon, 2018 VERİLERİN İRDELENMESİ Örnek: İki nokta arasındaki uzunluk 80 kere
ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı
ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı Bu ders notları, 2012-2013 ve 2013-2014 Bahar yarıyılında PAÜ Endüstri Mühendisliği bölümünde
İstatistik ve Olasılık
İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel
DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci
DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri
R ILE ENERJI MODELLEMESI
DEPARTMENT OF TECHNOLOGY & OPERATIONS MANAGEMENT R ILE ENERJI MODELLEMESI EZGI AVCI, MSC,PHDC TALEP TAHMIN MODELLERI ELEKTRIK ARZ SISTEMI YONETIMI Elektrik arz sisteminin doğru planlanması ve yönetilmesi
ÖZET ...DEĞERLENDİRMELER...
.1.1.1.1 ÖZET Ağustos ayında tüketici fiyatları yüzde, oranında azalmış ve yıllık enflasyon,7 puan düşüşle yüzde,5 olmuştur. Ağustos ayı Para Politikası Kurulu Toplantı Özeti nde de ifade edildiği üzere
3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1
3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki
CEVAPLAR. n = n 1 + n 2 + n 3 + n 4 + n 5 + n 6 + n 7 = = 11 dir.
T C S D Ü M Ü H E N D İ S L İ K F A K Ü L T E S İ - M A K İ N A M Ü H E N D İ S L İ Ğ İ B Ö L Ü M Ü MAK-307 OTM317 Müh. İstatistik İstatistiği ÖĞRENCİNİN: ADI - SOYADI ÖĞRETİMİ NOSU İMZASI 1.Ö 2.Ö A B
Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK
Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Yazarlar Yrd.Doç.Dr.Nizamettin Erbaş Yrd.Doç.Dr.Tuğba Altıntaş Dr.Yeliz Sevimli Saitoğlu A. Zehra Çelenli Başaran Azize Sağır
OCAK 2013 TARİH BASKILI İSTATİSTİK II DERS KİTABINA İLİŞKİN DÜZELTME CETVELİ
OCAK 2013 TARİH BASKILI İSTATİSTİK II DERS KİTABINA İLİŞKİN DÜZELTME CETVELİ 1- Ünite 1, Sayfa 13, Şekil 1.2 aşağıdaki şekilde düzeltilmiştir. 2- Ünite 2, Sayfa 61 deki paragrafın üçüncü ve dördüncü cümleleri
Tahmin (IE 519) Ders Detayları
Tahmin (IE 519) Ders Detayları Ders AdıDers Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Tahmin IE 519 Her İkisi 3 0 0 3 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin Seviyesi
İMALAT SANAYİ EĞİLİM ANKETLERİ VE GELECEĞİN TAHMİNİ
İ&tanbul Üniversitesi İktisat Fakültesi Ord. Prof.'Şükrü Baban'a Armağan İstanbul - 1984 İMALAT SANAYİ EĞİLİM ANKETLERİ VE GELECEĞİN TAHMİNİ Dr. Süleyman Özmucur" (*) 1. GİRİŞ: Bu makalenin amacı Devlet
Nedensel Modeller Y X X X
Tahmin Yöntemleri Nedensel Modeller X 1, X 2,...,X n şeklinde tanımlanan n değişkenin Y ile ilgili olmakta; Y=f(X 1, X 2,...,X n ) şeklinde bir Y fonksiyonu tanımlanmaktadır. Fonksiyon genellikle aşağıdaki
F12 Piyasa Riskine Karşı Özel Risk Daha önceden belirtildiği gibi çok küçük bir çeşitlendirme bile değişkenlikte önemli oranda azalma sağlamaktadır. F13 Piyasa Riskine Karşı Özel Risk Doğru aynı zamanda,
Excel dosyasından verileri aktarmak için Proc/Import/Read Text-Lotus-Excel menüsüne tıklanır.
ZAMAN SERİSİ MODEL Aşağıdaki anlatım sadece lisans düzeyindeki temel ekonometri bilgisine göre hazırlanmıştır. Bir akademik çalışmanın gerektirdiği birçok ön ve son testi içermemektedir. Bu dosyalar ilk
Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları
Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.
Olasılık ve Normal Dağılım
Olasılık ve Normal Dağılım P = 0 İmkansız P =.5 Yarı yarıya P = 1 Kesin Yazı-Tura 1.5 2 1.5 2.5.5.25 Para atışı 10 kere tekrarlandığında Yazı Sayısı f % 0 3 30 1 6 60 2 1 10 Toplam 10 100 Atış 1000 kere
BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH
BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Bir değişkenin değerinin,
Gruplanmış serilerde standart sapma hesabı
Gruplanmış serilerde standart sapma hesabı Örnek: Verilen gruplanmış serinin standart sapmasını bulunuz? Sınıflar f i X X X m i f i. m i m i - (m i - ) f i.(m i - ) 0 den az 3 4 den az 7 4 6 dan az 4 6
ise, genel bir eğilim (trend) gösteriyorsa bu seriye uygun doğru ya da eğriyi bulmaya çalışırız. Trend orta-uzun dönemde her iniş, çokışı
Trend Analizi Eğer zaman serisi i rastgele dağılmış ğ değil ise, genel bir eğilim (trend) gösteriyorsa bu seriye uygun doğru ya da eğriyi bulmaya çalışırız. Trend orta-uzun dönemde her iniş, çokışı yansıtmayacak,
Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,
14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.
HAZIRLAYAN. TÜFE çekirdek enflasyon göstergelerine paralel olarak Kasım ayında azalış göstermiştir.
ÖZET KASIM AYI ENFLASYON RAPORU 15.11.13 HAZIRLAYAN Yrd. Doç. Dr. Sema ULUTÜRK AKMAN - İstatistik Araştırma Merkezi Doç. Dr. Murat Dündar DEMİRÖZ - Türkiye, Avrupa ve Ortadoğu Ekonomik Araştırmalar Merkezi
İSTATİSTİK ÖRNEK SORULARI
1. Aşağıda gruplandırılmış seri verilmiştir. (n) 0-10 den az 5 10-20 den az 6 20-30 den az 9 30-40 den az 11 40-50 den az 4 50-60 den az 3 TOPLAM 38 İSTATİSTİK ÖRNEK SORULARI a) Mod değerini bulunuz? (15
EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME
EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME Öğrenci başarısının veya başarısızlığının kaynağında; öğrenci, öğretmen, çevre ve program vardır. Eğitimde değerlendirme yapılırken bu kaynaklar dikkate alınmaz. Eğitimciler,
YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ. Umut FIRAT
YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ Umut FIRAT [email protected] Öz: Depremler yeryüzünde en çok yıkıma neden olan doğal afetlerdir. Bu durum, depremlerin önceden tahmin edilmesi fikrini
