Hafta 7 Görüntü Onarma ve Geriçatma (Kısım 1)
|
|
|
- Can Dilaver
- 8 yıl önce
- İzleme sayısı:
Transkript
1 BLM429 Görüntü İşlemeye Giriş Hafta 7 Görüntü Onarma ve Geriçatma (Kısım 1) Yrd. Doç. Dr. Caner ÖZCAN Gördüğümüz şeyler tek başlarına ne gördüğümüz değildir... Hislerimizin algı yeteneğinden ayrı olarak nesnelerin kendi başlarına ne olabildikleri bizim için tamamen bilinmeyendir. Onları hissetme biçimimizin dışında hiçbir şey bilmeyiz. ~Immanuel Kant
2 İçerik 5. Görüntü Onarma ve Geriçatma Görüntü Bozulma/Onarma Sürecinin Modeli Gürültü Modelleri Sadece Gürültü Varken Onarma-Uzamsal Filtreleme Frekans Bölgesinde Filtreleme ile Periyodik Gürültü Azaltma Doğrusal, Konumla Değişmeyen Bozulmalar Ters Filtreleme En Küçük Ortalama Karesel Hata (Wiener) Filtreleme Kısıtlı En Küçük Kareler Filtreleme Geometrik Ortalama Filtresi İzdüşümlerden Görüntü Geriçatma 2
3 Görüntü Onarma Görüntü Onarma: bozulmaya uğrayan bir görüntüyü bozulma olayına ait önsel bilgileri kullanarak düzeltmeye çalışır. Onarma teknikleri, bozulmanın modellenmesi ve orijinal görüntüyü elde etmek maksadıyla ters işlemin uygulanmasına yönelmektedir. 3
4 Görüntü Bozulma/Onarma Sürecinin Modeli Bozulma Bozulma fonksiyonu H Toplanır gürültü ( x, y) 4
5 Görüntü Bozulma/Onarma Sürecinin Modeli H linear, position-invariant If H doğrusal, is a konumla değişmeyen bir süreç process, ise bozulmuş then the görüntünün degraded uzamsal image is düzlemde given in şu the şekilde spatial verilmektedir. domain by g( x, y) h( x, y) f ( x, y) ( x, y) 5
6 Gürültü Modelleri Sayısal görüntülerdeki gürültünün başlıca kaynakları görüntü elde etme ve/veya iletim esnasında ortaya çıkar. Görüntü elde etme İletim örneğin ışık seviyesi, algılayıcı sıcaklığı, vb. örneğin kablosuz bir ağdaki yıldırım veya diğer atmosferik parazitler 6
7 Gürültü Modelleri Uzamsal periyodik gürültü dışında, gürültünün uzamsal koordinatlardan bağımsız ve görüntünün kendisiyle ilintisiz olduğu kabul edilmektedir. 7
8 Gürültü Modelleri Gauss gürültüsü Elektronik devre gürültüsü, kötü aydınlanma ve/veya yüksek sıcaklığa bağlı algılayıcı gürültüsü Rayleigh gürültüsü Uzaklık görüntüleme 8
9 Uzaklık Görüntüleme "High Dynamic Range Imaging" ifadesinin kısaltmasıdır. HDRI normal bir görüntüleme işlemi ile elde edilenden daha büyük bir dinamik alan sağlayan bir görüntüleme tekniğidir. "Ton mapping" ve "bracketed" işlemlerinde popüler olarak kullanılır. ing.html 9
10 Uzaklık Görüntüleme Örneği Tower Bridge in Sacramento, CA 10
11 Uzaklık Görüntüleme Örneği Sydney Harbour Bridge HDRi daha fazla ayrıntı ve daha az gölge üretir. 11
12 Gürültü Modelleri Erlang (gama) gürültüsü: Lazer görüntüleme Üstel gürültü: Lazer görüntüleme Bir biçimli gürültü: En az tanımlayıcı. Benzetimlerde kullanılan çok sayıdaki rasgele sayı üreteci temeli için kullanışlıdır. Dürtü gürültüsü: yanlış anahtarlama gibi görüntülemede yer alan hızlı geçişlerin olduğu durumlarda bulunur. Dürtü Gürültüsü 12
13 Gauss Gürültüsü z, Gauss rastgele değişkeninin PDF si The PDF of Gaussian random variable, z, is given by p( z) 1 e ( zz) /2 where, z represents intensity burada, z yeğinliği zz is, z nin the mean beklenen (average) (ortalama) value of zdeğeri, σ, is standart the standard sapma deviation σ 2 : z nin varyansı 13
14 Gauss Gürültüsü z, Gauss rastgele değişkeninin PDF si The PDF of Gaussian random variable, z, is given by p( z) 1 e ( zz) /2 Değerlerinin yaklaşık %70 i bu aralıkta: 70% of its values will be in the range ( ),( ) Değerlerinin yaklaşık %95 i bu aralıkta: 95% of its values will be in the range ( 2 ),( 2 ) 14
15 Rayleigh Gürültüsü The Rayleigh PDF of gürültüsü Rayleigh PDF si noise is given by pz ( ) 2 2 ( ) ( za) / b for z a e z a b 0 for z a için için Bu yoğunluğun ortalama ve varyansı The mean and variance of this density are given by z a b / 4 2 b(4 ) 4 15
16 Erlang (Gama) Gürültüsü Erlang The PDF gürültüsü of Erlang PDF si noise is given by b b1 az az e for z 0 pz ( ) ( b 1)! 0 for z a için için Bu yoğunluğun ortalama ve varyansı The mean and variance of this density are given by z b / a b/ a
17 Üstel Gürültü The Üstel PDF gürültü of exponential PDF si noise is given by pz ( ) az ae for z 0 için 0 for z a için Bu yoğunluğun ortalama ve varyansı The mean and variance of this density are given by z 1/ a 1/ a
18 Bir Biçimli Gürültü Bir The biçimli PDF of gürültü uniform PDF si noise is given by 1 for a zb için pz ( ) b a 0 diğer otherwise Bu yoğunluğun ortalama ve varyansı The mean and variance of this density are given by z ( a b) / 2 ( ba) /
19 Dürtü (Tuz ve Biber) Gürültüsü The Dürtü PDF (çift of kutuplu) (bipolar) gürültü impulse PDF si noise is given by Pa for z a için p( z) Pb for z b için 0 otherwise diğer b>a if b ise, a, b gray-level yeğinliği görüntüde b will appear açık as bir a light nokta dot, olarak görünür. Bunun tersine, a seviyesi koyu while level a will appear like a dark dot. bir nokta gibi görünür. If either P or P is zero, the impulse noise is called a b Eğer P unipolar a ve P b sıfırsa dürtü gürültüsü tek kutuplu olarak adlandırılır. 19
20 20
21 Gürültü Örneği: Orijinal Görüntü 21
22 Gürültü Örneği: Gürültülü Görüntüler 22
23 Gürültü Örneği: Gürültülü Görüntüler 23
24 Periyodik Gürültü Görüntü elde etme esnasında genellikle elektriksel veya elektromekanik girişimden ortaya çıkar. Uzamsal bağımlı bir gürültü tipidir. Periyodik gürültü frekans düzlemi filtresi yoluyla önemli ölçüde azaltılabilir. 24
25 Periyodik Gürültü Örneği 25
26 Gürültü Parametrelerinin Kestirimi Periyodik gürültü parametreleri genellikle görüntünün Fourier spektrumunun incelenmesiyle kestirilir. 26
27 Gürültü Parametrelerinin Kestirimi S ile gösterilen bir şerit (alt görüntü) düşünün ve L tüm görüntüdeki Consider a subimage denoted by S, and let p ( z ), i 0, 1,..., L -1, s i olası yeğinlik sayısı olmak üzere, S deki piksel yeğinliklerinin kestirim denote the probability estimates of the intensities of the pixels in S. olasılıklarını p s z i, i = 0,1,, L 1 göstersin. S deki piksellerin ortalaması ve varyansını şu şekilde hesaplarız: The mean and variance of the pixels in S: ve z L1 i0 z p ( z ) i s i L1 2 2 zi z ps zi i0 and ( ) ( ) 27
28 Sadece Gürültü Varken Onarma Uzamsal Filtreleme Noise Tek bozucu model gürültü without olduğunda degradation model g( x, y) f ( x, y) ( x, y) and ve G( u, v) F( u, v) N( u, v) 28
29 Uzamsal Filtreleme: Ortalama Filtreler (x, Let y) S noktasında represent the ortalanmış set of coordinates m x n boyutunda xy in a rectangle dikdörtgen bir alt görüntü penceresinin koordinat subimage window of size mn, centered at ( x, y). kümesi S xy olsun. Arithmetic mean filter Aritmetik ortalama filtre 1 f ( x, y) g( s, t) mn f(x, y) ( s, t) S xy 29
30 Uzamsal Filtreleme: Ortalama Filtreler Geometric Geometrik mean ortalama filter filtre f(x, f ( x, y) y) g( s, t) ( s, t) Sxy 1 mn Geometrik ortalama filtre aritmetik ortalama filtre ile karşılaştırılabilecek bir yumuşatma gerçekleştirir ancak süreç daha az görüntü detayının kaybolmasına yol açar. 30
31 Uzamsal Filtreleme: Ortalama Filtreler Harmonik Harmonic ortalama mean filter filtre f(x, f ( x, y) y) ( s, t) S xy mn 1 g( s, t) Tuz gürültüsü için çok başarılıdır ancak biber gürültüsü için başarısız olur. Gauss gürültüsüne benzer diğer çeşit gürültüler için de başarılıdır. 31
32 Uzamsal Filtreleme: Ortalama Filtreler Kontra Contraharmonic harmonik mean ortalama filter filtre ff(x, ( x, yy) ) ( s, t) S xy ( s, t) S xy g( s, t) g( s, t) Q1 Q Q filtrenin derecesi. Tuz ve biber gürültüsünün etkilerini fiilen ortadan kaldırmak veya azaltmak için çok uygundur. Q>0 için biber gürültüsünü ve Q<0 için tuz gürültüsünü ortadan kaldırır. Q=0 için aritmetik ortalama filtre, Q= -1 için harmonik ortalama filtre olur. 32
33 Uzamsal Filtreleme: Örnek 33
34 Uzamsal Filtreleme: Örnek 34
35 Uzamsal Filtreleme: Örnek 35
36 Uzamsal Filtreleme: Sıra İstatistiği Filtreler Median Medyan filter filtre Max filtre Max filter Min filtre Min filter f(x, f ( x, y) y) median g( s, t) f(x, y) ( s, t) S xy ( s, t) S xy f ( x, y) max g( s, t) f(x, y) ( s, t) S xy f ( x, y) min g( s, t) 36
37 Uzamsal Filtreleme: Sıra İstatistiği Filtreler Orta Midpoint nokta filter filtre 1 f(x, f ( x, y) y) max (, ) min (, ) 2 g s t g s t ( s, t) S xy ( s, t) S xy 37
38 Uzamsal Filtreleme: Sıra İstatistiği Filtreler Alpha-trimmed mean filter Alfa ince ayarlı ortalama filtre 1 f ( x, y) g ( s, t) f(x, y) mn d ( s, t) S xy r We delete the d / 2 lowest and the d / 2 highest intensity values of S xy komşuluğundaki g s, t nin en yüksek d/2 ve en düşük d/2 g( s, t) in the neighborhood Sxy. Let gr ( s, t) represent the remaining yeğinlik değerlerini sildiğimizi düşünelim. D değeri 0 dan mn 1 mn - d pixels. aralığında olmak üzere, g r (s, t) kalan mn d pikseli tanımlasın. 38
39
40 Uzamsal Filtreleme
41
42 Uzamsal Filtreleme: Uyarlanır Filtreler Uyarlanır filtreler Davranışları The behavior m x changes n boyutlu based S xy dikdörtgen on statistical penceresi characteristics tarafından tanımlanan of the image süzgeç inside bölgesi the içindeki filter region görüntünün defined istatiksel by the mхn rectangular window. karakteristiklerini temel almaktadır. The performance is superior to that of the filters discussed Şu ana kadar tartışılan süzgeçlerden daha üstün başarıma sahiptirler. Süzgeç karmaşıklığı artmaktadır. 42
43 Uyarlanır, Yerel Gürültü Azaltma Filtresi S xy : local yerel region bölge The Bölgenin response merkezlendiği of the filter herhangi at the center bir (x,y) point noktasındaki (x,y) of Sxyfiltre is tepkisi based dört on four niceliğin quantities: üzerine temellenir. (a) g(x,y) ( ynoktasındaki ), the value gürültülü of the noisy görüntünün image at değeri ( x, y); g(x,y) (b) 2 g(x,y) yi, the variance oluşturan of f(x,y) the noise bozulma corrupti gürültüsünün ng f ( x, y) varyansı σ η 2 to form g( x, y); (c) Sm xy, deki the local piksellerin mean of yerel the ortalaması pixels in Sm L ; L 2 (d), the local variance of the pixels 2 S xy L deki piksellerin yerel varyansı σ L in Sxy. xy 43
44 Uyarlanır, Yerel Gürültü Azaltma Filtresi Filtrenin The behavior davranışı: of the filter: 2 (a) if 2 σ η sıfırsa, is zero, süzgeç the filter yalnızca should g(x,y) return değerini simply the value of vermelidir. g( x, y). 2 (b) Yerel if the local varyans variance σ 2 η ye is göre high yüksekse, relative to süzgeç, the filter g(x,y) ye should return yakın a value bir değer close vermelidir. to g( x, y); (c) if İki the varyans two variances eşitse S xy are deki equal, piksellerin the filter returns aritmetik the arithmetic ortalama değerini mean value vermesini of the pixels isteriz. in S. xy 44
45 Uyarlanır, Yerel Gürültü Azaltma Filtresi An adaptive expression for obtaining f ( x, y) f(x, y) yi elde etmek için uyarlanır bir ifade şu şekilde yazılabilir: based on the assumptions: 2 2 L f(x, f ( x, y) y) g( x, y) g( x, y) ml 45
46 46
47 Kaynaklar Sayısal Görüntü İşleme, Palme Yayıncılık, Üçüncü Baskıdan Çeviri (Orj: R.C. Gonzalez and R.E. Woods: "Digital Image Processing", Prentice Hall, 3rd edition, 2008). Lecture Notes, CS Digital Image Processing, F.(Qingzhong) Liu, Ders Notları, BIL717-Image Processing, E.Erdem Ders Notları, EBM537-Görüntü İşleme, F.Karabiber 47
Bölüm 6 Görüntü Onarma ve Geriçatma
BLM429 Görüntü İşlemeye Giriş Bölüm 6 Görüntü Onarma ve Geriçatma Dr. Öğr. Üyesi Caner ÖZCAN Gördüğümüz şeyler tek başlarına ne gördüğümüz değildir... Hislerimizin algı yeteneğinden ayrı olarak nesnelerin
Hafta 5 Uzamsal Filtreleme
BLM429 Görüntü İşlemeye Giriş Hafta 5 Uzamsal Filtreleme Yrd. Doç. Dr. Caner ÖZCAN If the facts don't fit the theory, change the facts. ~Einstein İçerik 3. Yeğinlik Dönüşümleri ve Uzamsal Filtreleme Temel
Bölüm 4 Yoğunluk Dönüşümleri ve Histogram İşleme
BLM429 Görüntü İşlemeye Giriş Bölüm 4 Yoğunluk Dönüşümleri ve Histogram İşleme Dr. Öğr. Üyesi Caner ÖZCAN It makes all the difference whether one sees darkness through the light or brightness through the
Hafta 3 Görüntü İşleme ile İlgili Temel Kavramlar
BLM429 Görüntü İşlemeye Giriş Hafta 3 Görüntü İşleme ile İlgili Temel Kavramlar Yrd. Doç. Dr. Caner ÖZCAN Those who wish to succeed must ask the right preliminary questions. (Başarmak isteyenler doğru
Hafta 2 Görüntünün Alınması ve Sayısallaştırılması
BLM429 Görüntü İşlemeye Giriş Hafta 2 Görüntünün Alınması ve Sayısallaştırılması Yrd. Doç. Dr. Caner ÖZCAN When something can be read without effort, great effort has gone into its writing. ~E. J. Poncela
Hafta 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar
BLM429 Görüntü İşlemeye Giriş Hafta 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar Yrd. Doç. Dr. Caner ÖZCAN Fall in love with the process, and the results will come. ~ Eric Thomas Derse Giriş Ders
Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme
BLM429 Görüntü İşlemeye Giriş Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme Yrd. Doç. Dr. Caner ÖZCAN It makes all the difference whether one sees darkness through the light or brightness through the
Bölüm 7 Renkli Görüntü İşleme
BLM429 Görüntü İşlemeye Giriş Bölüm 7 Renkli Görüntü İşleme Dr. Öğr. Üyesi Caner ÖZCAN Genç sanatçının, rengin sadece tanımlayıcı değil aynı zamanda kişisel ifade anlamına geldiğini anlaması renge dokunmasından
Bölüm 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar
BLM429 Görüntü İşlemeye Giriş Bölüm 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar Dr. Öğr. Üyesi Caner ÖZCAN Fall in love with the process, and the results will come. ~ Eric Thomas Derse Giriş Ders
Bilgisayarla Görüye Giriş
Bilgisayarla Görüye Giriş Ders 5 Görüntü Süzgeçleme ve Gürültü Giderimi Alp Ertürk [email protected] Motivasyon: Gürültü Giderimi Bir kamera ve sabit bir sahne için gürültüyü nasıl azaltabiliriz?
Bölüm 3 Görüntü İşleme ile İlgili Temel Kavramlar
BLM429 Görüntü İşlemeye Giriş Bölüm 3 Görüntü İşleme ile İlgili Temel Kavramlar Dr. Öğr. Üyesi Caner ÖZCAN Those who wish to succeed must ask the right preliminary questions. (Başarmak isteyenler doğru
MOD419 Görüntü İşleme
MOD419 Görüntü İşleme Ders Kitabı: Digital Image Processing by Gonzalez and Woods Puanlama: %30 Lab. %20 Vize %10 Quizes %40 Final %60 devam mecburiyeti Görüntü İşleme ye Giriş Görüntü İşleme Nedir? Özellikle
Bölüm 2 Görüntünün Alınması ve Sayısallaştırılması
BLM429 Görüntü İşlemeye Giriş Bölüm 2 Görüntünün Alınması ve Sayısallaştırılması Dr. Öğr. Üyesi Caner ÖZCAN When something can be read without effort, great effort has gone into its writing. ~E. J. Poncela
Görüntü Restorasyonu. BMÜ-357 Sayısal Görüntü İşeme Yrd. Doç. Dr. İlhan AYDIN
Görüntü Restorasyonu BMÜ-357 Sayısal Görüntü İşeme Yrd. Doç. Dr. İlhan AYDIN Görüntü İyileştirme (İmage restoration) Görüntü restorasyonu konusu, bir görüntünün oluşumu esnasında oluşabilen veri kayıplarını
GÜVEN ARALIKLARI ve İSTATİSTİKSEL ANLAMLILIK. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı
GÜVEN ARALIKLARI ve İSTATİSTİKSEL ANLAMLILIK Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Kestirim Pratikte kitle parametrelerinin doğrudan hesaplamak olanaklı değildir. Bunun yerine
GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME
GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME DERS İÇERİĞİ Histogram İşleme Filtreleme Temelleri HİSTOGRAM Histogram bir resimdeki renk değerlerinin sayısını gösteren grafiktir. Histogram dengeleme
Appendix B: Olasılık ve Dağılım Teorisi
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım
İLERİ GÖRÜNTÜ İŞLEME Ders-1
İLERİ GÖRÜNTÜ İŞLEME Ders- Elektromanyetik Spektrum Görünür Bölge 7 nm 4 nm Temel Kavramlar (Prof. Dr. Sarp ERTÜRK) 9/24/24 2 Hazırlayan: M. Kemal GÜLLÜ Sayısal İmge Gösterimi f x, y imgesi örneklendiğinde
UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI
1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en
Kinematik Modeller. Kesikli Hale Getirilmiş Sürekli Zaman Kinematik Modeller: Rastgele giriş yok ise hareketi zamanın bir polinomu karakterize eder.
1 Kinematik durum modelleri konumun belirli bir türevi sıfıra eşitlenerek elde edilir. Rastgele giriş yok ise hareketi zamanın bir polinomu karakterize eder. Böyle modeller polinom modeller olarak ta bilinir
Digital Görüntü Temelleri Görüntü Oluşumu
Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim
Bilgisayarla Görüye Giriş
Bilgisayarla Görüye Giriş Ders 6 Kenar, Köşe, Yuvarlak Tespiti Alp Ertürk [email protected] KENAR TESPİTİ Kenar Tespiti Amaç: Görüntüdeki ani değişimleri / kesintileri algılamak Şekil bilgisi elde
13. Olasılık Dağılımlar
13. Olasılık Dağılımlar Mühendislik alanında karşılaşılan fiziksel yada fiziksel olmayan rasgele değişken büyüklüklerin olasılık dağılımları için model alınabilecek çok sayıda sürekli ve kesikli fonksiyon
Regresyon. Regresyon korelasyon ile yakından ilişkilidir
Regresyon Regresyona Giriş Regresyon korelasyon ile yakından ilişkilidir Regresyon bir bağımlı değişken ile (DV) bir veya daha fazla bağımsız değişken arasındaki doğrusal ilişkiyi inceler. DV için başka
SÜREKLİ OLASILIK DAĞILIŞLARI
SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla
YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi
YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi
Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı [email protected]
Uasal Görüntü İileştirme/Filtreleme Doç. Dr. Fevi Karslı [email protected] İileştirme Herhangi bir ugulama için, görüntüü orijinalden daha ugun hale getirmek Ugunluğu her bir ugulama için sağlamak. Bir
OLASILIK ve KURAMSAL DAĞILIMLAR
OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine
Chapter 3 Image Enhancement in the Spatial Domain. 2002 R. C. Gonzalez & R. E. Woods
Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the
Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003
Görüntü İşleme K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 İçerik Görüntü İşleme Nedir? Görüntü Tanımlamaları Görüntü Operasyonları Görüntü İşleme
İSTATİSTİK MHN3120 Malzeme Mühendisliği
İSTATİSTİK MHN3120 Malzeme Mühendisliği CBÜ - Malzeme Mühendisliği Bölümü Ofis: Mühendislik Fakültesi A Blok Ofis no:311 Tel: 0 236 2012404 E-posta :[email protected] YARDIMCI KAYNAKLAR Mühendiler
DAĞILMA YADA DEĞİ KENLİK ÖLÇÜLERİ (MEASURE OF DISPERSION) Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ
DAĞILMA YADA DEĞİ KENLİK ÖLÇÜLERİ (MEASURE OF DISPERSION) 1 AMAÇ... Mevcut veri seti için bulunan merkezi eğilim ölçüsünün yorumlamak Birden fazla veri seti için dağılımlar arası kıyaslama yapabilmek amaçlarıyla
CHAPTER 7: DISTRIBUTION OF SAMPLE STATISTICS. Sampling from a Population
CHAPTER 7: DISTRIBUTION OF SAMPLE STATISTICS Sampling from a Population Örnek: 2, 4, 6, 6, 7, 8 say lar ndan oluşan bir populasyonumuz olsun Bu say lardan 3 elemanl bir örneklem (sample) seçebiliriz. Bu
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani
Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.
Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler
BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ
1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel
Görüntü İşleme Dersi Ders-8 Notları
Görüntü İşleme Dersi Ders-8 Notları GRİ SEVİYE DÖNÜŞÜMLERİ Herhangi bir görüntü işleme operasyonu, görüntüdeki pikselin gri seviye değerlerini dönüştürme işlemidir. Ancak, görüntü işleme operasyonları;
İşaret ve Sistemler. Ders 1: Giriş
İşaret ve Sistemler Ders 1: Giriş Ders 1 Genel Bakış Haberleşme sistemlerinde temel kavramlar İşaretin tanımı ve çeşitleri Spektral Analiz Fazörlerin frekans düzleminde gösterilmesi. Periyodik işaretlerin
Digital Görüntü Temelleri Görüntü Oluşumu
Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 06 Kasım
ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SİVİL HAVACILIK ANABİLİM DALI YENİ DERS ÖNERİSİ/ DERS GÜNCELLEME
/ DERS GÜNCELLEME Dersin Kodu SHA 615 Dersin Adı İSTATİSTİKSEL SİNYAL İŞLEME Yarıyılı GÜZ Dersin İçeriği: Olasılık ve olasılıksal süreçlerin gözden geçirilmesi. Bayes kestirim kuramı. Büyük olabilirlik
2018 YILI BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI İSTATİSTİK VE OLASILIK 29 NİSAN 2018
2018 YILI BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI İSTATİSTİK VE OLASILIK 29 NİSAN 2018 Sigortacılık Eğitim Merkezi (SEGEM) tarafından hazırlanmış olan bu sınav sorularının her hakkı saklıdır. Hangi amaçla olursa
EME 3117 SİSTEM SİMÜLASYONU. Rassal Sayı ve Rassal Değer. Üretimi. Rassal Sayı Üretimi
..4 EME 7 Rassal Sayı ve Rassal Değer Üretimi SİSTEM SİMÜLASYONU Rassal Sayı ve Rassal Değer Üretimi Ders Girdi Analizi bölümünde gözlemlerden elde edilen verilere en uygun dağılımı uydurmuştuk. Bu günkü
SPSS de Tanımlayıcı İstatistikler
SPSS de Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı SPSS programında belirtici istatistikler 4 farklı menüden yararlanılarak
Bilgisayarla Görüye Giriş
Bilgisayarla Görüye Giriş Ders 10 Nesne / Yüz Tespiti ve Tanıma Alp Ertürk [email protected] Nesne Tespiti Belirli bir nesnenin sahne içindeki konumunun tespitidir Tespit edilecek nesne önceden
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki
TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ
TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ 1 İstatistik İstatistik, belirsizliğin veya eksik bilginin söz konusu olduğu durumlarda çıkarımlar yapmak ve karar vermek için sayısal verilerin
Güzide Miray PERİHANOĞLU 1, Ufuk ÖZERMAN 2, Dursun Zafer ŞEKER 3
1013 [936] DİJİTAL GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK GÖRÜNTÜLERDEN DETAY ÇIKARIMI Güzide Miray PERİHANOĞLU 1, Ufuk ÖZERMAN 2, Dursun Zafer ŞEKER 3 1 Öğr. Gör., Yüzüncü Yıl Üniversitesi, Mülkiyet Koruma
KABLOSUZ İLETİŞİM
KABLOSUZ İLETİŞİM 805540 MODÜLASYON TEKNİKLERİ SAYISAL MODÜLASYON İçerik 3 Sayısal modülasyon Sayısal modülasyon çeşitleri Sayısal modülasyon başarımı Sayısal Modülasyon 4 Analog yerine sayısal modülasyon
IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R
IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık
İÇİNDEKİLER ÖN SÖZ...
İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN
Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5
Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın
Quality Planning and Control
Quality Planning and Control END 3618 KALİTE PLANLAMA VE KONTROL Prof. Dr. Mehmet ÇAKMAKÇI Dokuz Eylül Üniversitesi Endüstri Mühendisliği Anabilim Dalı 1 İstatistiksel Proses Kontrol Kontrol Kartları Kontrol
BULANIK SİNİR AĞLARI YARDIMIYLA BİYOMEDİKAL İMGELERİN GÜRÜLTÜ BİLEŞENLERİNDEN ARINDIRILMASI
BULANIK SİNİR AĞLARI YARDIMIYLA BİYOMEDİKAL İMGELERİN GÜRÜLTÜ BİLEŞENLERİNDEN ARINDIRILMASI M. Emin YÜKSEL 1 Alper BAŞTÜRK 1 M. Tülin YILDIRIM 2 1 Erciyes Üniversitesi, Mühendislik Fakültesi, Elektronik
AKÜ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ
GÖRÜNTÜ İŞLEME DERS-8 YARDIMCI NOTLARI -2018 Gri Seviye Dönüşümleri Herhangi bir görüntü işleme operasyonu, görüntüdeki pikselin gri seviye değerlerini dönüştürme işlemidir. Ancak, görüntü işleme operasyonları;
İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM)
İşaret ve Sistemler İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL [email protected] oda no: 303 (T4 / EEM) Kaynaklar: 1. Signals and Systems, Oppenheim. (Türkçe versiyonu: Akademi Yayıncılık)
SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım
SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin
BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2
1 BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 Bu bölümde bir veri seti üzerinde betimsel istatistiklerin kestiriminde SPSS paket programının kullanımı açıklanmaktadır. Açıklamalar bir örnek üzerinde hareketle
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
BULANIK UYARLAMALI ORTALAMA F
5 Uluslararası İleri Teknoloiler Sempozyumu (IATS 09), 3-5 Mayıs 2009, Karabük, Türkiye BULANIK UYARLAMALI ORTALAMA FİLTRESİ KULLANARAK MR GÖRÜNTÜLERİNDEKİ DARBE GÜRÜLTÜSÜNÜN BASTIRILMASI IMPULSE NOISE
Görüntü İşleme Ders-7 AND, NAND. % bir görüntüde küçük bir alanın kesilip çıkartılması. >> y=imread('headquarters-2and.jpg');
Görüntü İşleme Ders-7 AND, NAND % bir görüntüde küçük bir alanın kesilip çıkartılması. >> x=imread('headquarters-2.jpg'); >> y=imread('headquarters-2and.jpg'); >> x=rgb2gray(x); >> y=rgb2gray(y); >> imshow(y)
İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme
İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle
EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ
EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme
RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 2007
RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 007 1 Tekdüze Dağılım Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk
BULANIK DENETLEÇ UYUMLAMASI KULLANILAN KALMAN FİLTRESİ İLE GÖRÜNTÜ STABİLİZASYONU
BULANIK DENETLEÇ UYUMLAMASI KULLANILAN KALMAN FİLTRESİ İLE GÖRÜNTÜ STABİLİZASYONU M.Kemal GÜLLÜ 1 Eylem YAMAN 2 Sarp ERTÜRK 3 Elektronik ve Haberleşme Mühendisliği Bölümü Mühendislik Fakültesi Kocaeli
ISSN : 1308-7231 [email protected] 2010 www.newwsa.com Elazig-Turkey
ISSN:1306-3111 e-journal of New World Sciences Academy 011, Volume: 6, Number:, Article Number: 1A0173 ENGINEERING SCIENCES Burhan Ergen Received: November 010 Muhammet Baykara Accepted: February 011 Firat
Bilgisayar ne elde eder (görüntüden)? Dijital Görüntü İşleme Fevzi Karslı, KTÜ. 08 Ekim 2013 Salı 51
Bilgisayar ne elde eder (görüntüden)? 08 Ekim 2013 Salı 51 Zorluk 1: bakış açısı 2012, Selim Aksoy 08 Ekim 2013 Salı 52 Zorluk 2: aydınlatma 08 Ekim 2013 Salı 53 Zorluk 3: oklüzyon (ölü bölge oluşumu)
BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ
BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ İŞTİRME Araştırma rma SüreciS 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması
Jeodezide Yaklaşım Yöntemleri: Enterpolasyon ve Kollokasyon
Jeodezide Yöntemleri: ve Lisansüstü Ders Notları Yrd. Doç. Dr. Aydın ÜSTÜN Selçuk Üniversitesi Fen Bilimleri Enstitüsü e-posta: [email protected] Konya, 2007 A. Üstün yöntemleri 1 / 28 Bir soruyu ya
Dijital Görüntü İşleme (COMPE 464) Ders Detayları
Dijital Görüntü İşleme (COMPE 464) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Dijital Görüntü İşleme COMPE 464 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i
İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı
İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t test) Ölçümle
Kümülatif Dağılım Fonksiyonu (Sürekli)
Kümülatif Dağılım Fonksiyonu (Sürekli) sürekli bir rastgele değişken olsun. Bu durumda kümülatif dağılım fonksiyonu şu şekilde tanımlanır. F ( ) = Pr[ ] Tipik bir KDF şu şekilde görünür:.0 F () 0 Kümülatif
EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ
EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme
Matris Cebiriyle Çoklu Regresyon Modeli
Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β
DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ
DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS OLASILIK VE İSTATİSTİK FEB-222 2/ 2.YY 3+0+0 3 3 Dersin Dili Dersin Seviyesi
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 8: Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır. Bu anlamda, anakütleden çekilen
BAZI ÖNEMLİ SÜREKLİ DEĞİŞKEN DAĞILIMLARI
BAZI ÖNEMLİ SÜREKLİ DEĞİŞKEN DAĞILIMLARI BAZI SÜREKLİ OLASILIK DAĞILIMLARI 1. SÜREKLİ DÜZGÜN (UNIFORM) DAĞILIM 2. NORMAL DAĞILIM 3. BİNOM DAĞILIMINA NORMAL YAKLAŞIM 4. POISSON DAĞILIMINA NORMAL YAKLAŞIM
WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ
ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ SÜREKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 WEIBULL DAĞILIMI Weibull dağılımı, pek çok farklı sistemlerin bozulana kadar geçen süreleri ile ilgilenir. Dağılımın
İstatistiksel Kavramların Gözden Geçirilmesi
İstatistiksel Kavramların Gözden Geçirilmesi Anlamlı Basamaklar Konusu ve Olasılık Ekonometri 1 Konu 1 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı...
İÇİNDEKİLER Ön Söz... Saymanın Temel Kuralları... Permütasyon (Sıralama)... 8 Kombinasyon (Gruplama)... 6 Binom Açılımı... Olasılık... 9 İstatistik... 8... Dağılımlar... 5 Genel Tarama Sınavı... 6 RASTGELE
Anahtarlama Modlu DA-AA Evirici
Anahtarlama Modlu DA-AA Evirici Giriş Anahtarlama modlu eviricilerde temel kavramlar Bir fazlı eviriciler Üç fazlı eviriciler Ölü zamanın PWM eviricinin çıkış gerilimine etkisi Diğer evirici anahtarlama
Ekonometri I VARSAYIMLARI
Ekonometri I ÇOK DEĞİŞKENLİ REGRESYON MODELİNİN VARSAYIMLARI Hüseyin Taştan Temmuz 23, 2006 İçindekiler 1 Varsayım MLR.1: Parametrelerde Doğrusallık 1 2 Varsayım MLR.2: Rassal Örnekleme 1 3 Varsayım MLR.3:
AKTİF SES FİLTRELEME Gebze Teknik Üniversitesi Sayısal İşaret İşlemenin Temelleri Dersi Proje Çalışması
AKTİF SES FİLTRELEME Gebze Teknik Üniversitesi Sayısal İşaret İşlemenin Temelleri Dersi Proje Çalışması Grup 14 Yusuf Kaya 101024071 [email protected] Bünyamin Söğüt 101024016 [email protected] Nuri
Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri
Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini
KABLOSUZ İLETİŞİM
KABLOSUZ İLETİŞİM 805540 DENKLEŞTİRME, ÇEŞİTLEME VE KANAL KODLAMASI İçerik 3 Denkleştirme Çeşitleme Kanal kodlaması Giriş 4 Denkleştirme Semboller arası girişim etkilerini azaltmak için Çeşitleme Sönümleme
Ankara Üniversitesi, SBF İstatistik 2 Ders Notları Prof. Dr. Onur Özsoy 1
1 Rastgele bir denemede ortaya çıkması olası sonuçların tamamıdır Örnek: bir zar bir kez yuvarlandığında S= Yukarıdaki sonuçlardan biri elde edilecektir. Sonuçların her biri basit olaydır Örnek: Bir deste
Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü
Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu
Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble.
1 Rastgele Süreçler Olasılık taması Rastgele Deney Çıktı Örnek Uzay, S (s) Zamanın Fonksiy onu (t, s) Olayları Tanımla Rastgele süreç konsepti (Ensemble) deney (t,s 1 ) 1 t Örnek Fonksiyonlar (t,s ) t
ÇİFT EŞİK DEĞERLİ GÖRÜNTÜ NETLEŞTİRME YÖNTEMİ
ÇİFT EŞİK DEĞERLİ GÖRÜNTÜ NETLEŞTİRME YÖNTEMİ Ali S Awad *, Erhan A İnce* *Doğu Akdeniz Üniversitesi Elektrik ve Elektronik Mühendisliği Mağosa, KKTC İnce@eeneteeemuedutr, Asawad@emuedutr Özetçe Beyaz
Copyright 2004 Pearson Education, Inc. Slide 1
Slide 1 Bölüm 2 Verileri Betimleme, Keşfetme, ve Karşılaştırma 2-1 Genel Bakış 2-2 Sıklık Dağılımları 2-3 Verilerin Görselleştirilmesi 2-4 Merkezi Eğilim Ölçüleri 2-5 Değişimin Ölçülmesi 2-6 Nispi Sabitlerin
Dijital Görüntü İşleme Teknikleri
Teknikleri Ders Notları, 2013 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 08 Ekim 2013 Salı 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar, kaynaklar.
ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ İLETİŞİM LABORATUARI SAYISAL FİLTRELER
SAYISAL FİLTRELER Deney Amacı Sayısal filtre tasarımının ve kullanılmasının öğrenilmesi. Kapsam Ayrık zamanlı bir sistem transfer fonksiyonunun elde edilmesi. Filtren frekans tepkes elde edilmesi. Direct
Hafta 12 Morfolojik Görüntü İşleme
BLM429 Görüntü İşlemeye Giriş Hafta 12 Morfolojik Görüntü İşleme Yrd. Doç. Dr. Caner ÖZCAN Biçim ve özellik, yüz ve dudak.. Tıpkı kardeşim gibi büyüdüm.. Benzerliklerimiz sanki beni o yaptı.. Ve birimiz
Ders 6: Sürekli Olasılık Dağılımları
Ders 6: Sürekli Olasılık Dağılımları Normal Dağılım Standart Normal Dağılım Binom Dağılımına Normal Yaklaşım Düzgün (uniform) Dağılım Üstel Dağılım Dağılımlar arası ilişkiler Bir rastgele değişkenin, normal
Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL
ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli
Appendix C: İstatistiksel Çıkarsama
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama
DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI
DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI AMAÇ: DTMF işaretlerin yapısının, üretim ve algılanmasının incelenmesi. MALZEMELER TP5088 ya da KS58015 M8870-01 ya da M8870-02 (diğer eşdeğer entegreler
GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ
GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME Hafta Hafta 1 Hafta 2 Hafta 3 Hafta 4 Hafta 5 Hafta 6 Hafta 7 Hafta 8 Hafta 9 Hafta 10 Hafta 11 Hafta 12 Hafta 13 Hafta 14 Konu Giriş Digital Görüntü Temelleri-1
