3.Hafta Master Teorem ve Böl-Fethet Metodu

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "3.Hafta Master Teorem ve Böl-Fethet Metodu"

Transkript

1 1 3.Hafta Master Teorem ve Böl-Fethet Metodu

2 2 Ana Metod (The Master Method) Ana method aşağıda belirtilen yapıdaki yinelemelere uygulanır: T(n) = at(n/b) + f (n), burada a 1, b > 1, ve f asimptotik olarak pozitiftir. T(n) bir algoritmanın çalışma süresidir. n/b boyutunda a tane alt problem recursive olarak çözülür ve her biri T(n/b) süresindedir. f(n) problemin bölünmesi ve sonuçların birleştirilmesi için geçen süredir. Örnek: Merge-sort için T(n)=2T(n/2)+ (n) yazılabilir.

3 Ana Metod (The Master Method) Üç yaygın uygulama 3

4 4 Ana Metod (The Master Method) Üç yaygın uygulama c=(1-ε), ε >

5 Örnekler 5

6 Örnekler 6

7 Master teoremdeki düşünce 7

8 Master teoremdeki düşünce 8

9 Master teoremdeki düşünce 9

10 Master teoremdeki düşünce 1

11 Master teoremi ispat 11 Durum 2: Eğer f n = θ n log ba, ise T n = θ n log ba logn İspat: Eğer f n = θ nlogba, o zaman f n cn log ba olur T n = n logba log + σ b n 1 j= a j f n b j n logba log + c σ b n 1 j= a j n b j log b a = n logba + cn logba log σ b n 1 j= a j 1 b log b a j a = n logba + cn logba n 1 log σ b j= 1 = n log b a + cn logba log b n cn log ba log n Bu yüzden, f n = θ n log ba ise T n = O n log ba logn dir. Durum 1 ve Durum 3 te benzerdir.( Önerilen ders kitabını inceleyiniz)

12 12 Master teoremi Örnek: çalışma zamanını bulunuz? ise Çözüm: Durum 1:, için

13 13 Master teoremi Örnek: çalışma zamanını bulunuz? ise Çözüm:, ve Durum 2:

14 14 Master teoremi Örnek: ise çalışma zamanını bulunuz? Çözüm:, ve Durum 3: için düzenlilik koşulu,, burada için

15 15 Master teoremi ispat

16 16 Karakteristik denklemler kullanarak yinelemeleri çözme Doğrusal Yineleme (Rekürans) Bağıntısı Bir yinelemeli bağıntıda t n, dizinin önceki terimlerinin katlarının toplamına eşitse doğrusal (lineer) dır. (t n T(n) ) t n = t n-1 + t n-2 doğrusal t n = t n-1 + t 2 n-2 doğrusal değildir, t 2 n-2 önceki terimin katı değildir. Homojen Yineleme (Rekürans) Bağıntısı: t n sadece önceki terimlerin katlarına bağlı ise homojen (türdeş) olarak adlandırılır. t n = t n-1 + t n-2 homojen t n = 2t n-1 +1 homojen değildir. "+1" terimi t j katı değildir.

17 17 Karakteristik denklemler kullanarak özyinelemeleri çözme Yinelemeli bağıntıdaki terimlerin katsayıları sabit ise; sabit katsayılı homojen doğrusal yineleme formu aşağıdaki gibidir. c t n +c 1 t n-1 + +c k t n-k = Burada, t i : özyinelemeli bağıntının değerlerini, c i : sabit katsayılı terimlerini ifade eder. c i,reel sayılardır ve c i. k : ise özyinelemeli bağıntının derecesidir.

18 18 Karakteristik denklemler kullanarak özyinelemeleri çözme Doğrusal özyinelemelerde t i+j, t i2 şeklinde terimler bulunmaz. Öz yineleme homojendir, çünkü t i nin doğrusal kombinasyonundan dolayı (sıfır) a eşittir. Bu öz yinelemeler k başlangıç koşullarını içerir. t n =c t 1 =c 1 t k =c k Fibonacci dizisi için özyineleme f n =f n-1 +f n-2, f n -f n-1 -f n-2 =, burada k=2, c =1 ve c 1 = c 2 = -1 dir.

19 19 Karakteristik denklemler kullanarak özyinelemeleri çözme Sabit katsayılı homojen doğrusal yineleme bağıntılarını çözmek için basit bir yöntem vardır. Bu yöntem; k bir sabit olmak üzere, t k = x k ; t n =c 1 t n-1 +c 2 t n-2 + +c k t n-k nın bir çözümü kabul edilir ve bağıntıda yerine konulursa x n =c 1 x n-1 + c 2 x n-2 + +c k x n-k elde edilir. Burada, x bilinmeyen bir sabit ve x dır. Bu ifadenin her iki yanını x n-k ile bölersek: x k -c 1 x k-1 -c 2 x k-2 - -c k = bulunur ve derecesi k olan ve genelde k adet kökü olan bu polinoma yineleme bağıntısının karakteristik denklemi (characteristic equation) adı verilir. Bu denklemin kökü birden fazla veya karmaşık olabilir.

20 2 Karakteristik denklemler kullanarak özyinelemeleri çözme

21 21 Karakteristik denklemler kullanarak özyinelemeleri çözme t n için genel çözümü yaz

22 22 Karakteristik denklemler kullanarak özyinelemeleri çözme

23 23 Karakteristik denklemler kullanarak özyinelemeleri çözme

24 24 Karakteristik denklemler kullanarak özyinelemeleri çözme

25 25 Karakteristik denklemler kullanarak özyinelemeleri çözme

26 26 Karakteristik denklemler kullanarak yinelemeleri çözme Homojen Olmayan Yineleme Bağıntıları t n sadece önceki terimlerin katlarına bağlı değil ise homojen olmayan bağıntı olarak adlandırılır. t n = t n-1 + t n-2 homojen t n = 2t n-1 +1 homojen değildir. "+1" terimi t j katı değildir. Yinelemeli bağıntıların genel formu c t n +c 1 t n-1 + +c k t n-k =f(n) şeklinde ifade edilir. f(n) = eşit ise homojen, sıfırdan farklı ise homojen olmayan yinelemeli bağıntıdır. f(n) = b n p(n) şeklinde ifade edilirse b sıfırdan farklı bir sabiti p(n) ise d. dereceden n nin bir polinomudur.

27 27 Karakteristik denklemler kullanarak yinelemeleri çözme Örnek: Aşağıda verilen reküransı çözünüz t n - 2t n-1 = 3 n burada b=3, p(n) d =1 ve polinom derecesi d= dır. İlk olarak her iki tarafı 3 ile çarpalım: 3t n - 6t n-1 = 3 n+1 Eğer n, n+1 ile yer değiştirirsek: t n+1-2t n = 3 n+1 denklemini elde ederiz. Her iki denklemi bir birinden çıkarırsak yeni denklem t n+1-5t n + 6t n-1 = olur.

28 28 Karakteristik denklemler kullanarak yinelemeleri çözme Homojen durumda olduğu gibi çözüm yaparsak karakteristik denklem x 2-5x+6 =, (x-2)(x-3)= Dikkat edilecek olursa (x-2) değeri orijinal rekürans ta sol tarafı, x-3 ise sağ taraftaki polinomu ifade etmekte. Buna göre karakteristik denklemin basit genel formunu aşağıdaki şekilde ifade edebiliriz: (c x k +c 1 x k-1 +c 2 x k-2 + +c k )(x-b) d+1 =, burada d, p(n) polinomunun derecesidir. Bu denklem elde edildikten sonra homojen durumunda olduğu gibi çözüm yapılır.

29 29 Karakteristik denklemler kullanarak yinelemeleri çözme

30 3 Karakteristik denklemler kullanarak yinelemeleri çözme c t n +c 1 t n-1 + +c k t n-k =b n p(n) homojen olmayan denklemler için verilen basit genel formu daha da genelleştirirsek c t n +c 1 t n-1 + +c k t n-k =b 1n p 1 (n)+b 2n p 2 (n)+ formunu elde ederiz. Buna göre karakteristik denklem: (c x k +c 1 x k-1 +c 2 x k-2 + +c k )(x-b 1 ) d1+1 (x-b 2 ) d2+1 =,

31 31 Karakteristik denklemler kullanarak yinelemeleri çözme d 1 =1,d 2 =

32 32 Karakteristik denklemler kullanarak yinelemeleri çözme Çözüm yolu: Gaus yok etme yöntemi, bilinmeyenlerin ileriye doğru elenmesi. İlk adım ilk bilinmeyeni (c 1 ), 2. denklemden n. Denkleme kadar elemektir. 2.denklem a 21 -(a 21 /a 11 )*a 11 + a 22 -(a 21 /a 11 )*a a 2n -(a 21 /a 11 )*a 1n = c 2 -(a 21 /a 11 )*c 1 3. denklem a 31 -(a 31 /a 11 )*a 11 + a 32 -(a 31 /a 11 )*a a 3n -(a 31 /a 11 )*a 1n = c 3 -(a 31 /a 11 )*c 1 n.denklem a n1 -(a n1 /a 11 )*a 11 + a n2 -(a n1 /a 11 )*a a nn -(a n1 /a 11 )*a 1n = c n -(a n1 /a 11 )*c 1 Buna göre ilk durumda matrisimiz c 1 c 2 c 3 c 4 = c 1 c 2 c 3 c 4 =

33 Karakteristik denklemler kullanarak yinelemeleri çözme 33 İkinci adım ikinci bilinmeyeni (c 2 ), 3. denklemden n. denkleme kadar elemektir. 3.denklem a 32 -(a 32 /a 22 )*a 22 + a 33 -(a 32 /a 22 )*a a 3n -(a 32 /a 22 )*a 2n = c 3 -(a 32 /a 22 )*c 2 n.denklem a n2 -(a n2 /a 22 )*a 22 + a n3 - (a n2 /a 22 )* a a nn -(a n2 /a 22 )*a 2n = c n - (a n2 /a 22 )* c c 1 c 2 c 3 c 4 = c 1 c 2 c 3 c 4 =

34 34 Karakteristik denklemler kullanarak yinelemeleri çözme Diğer adımlarda benzer şekilde yapılır c 1 c 2 c 3 c 4 = c 1 c 2 c 3 c 4 = c 4 = 1, c 3 = 2, c 2 = 1, c 1 = 2 olur. T n = 2 n + 2 n+2 + n2 n T(n) θ(n2 n )

35 35 Karakteristik denklemler kullanarak yinelemeleri çözme

36 36 Karakteristik denklemler kullanarak yinelemeleri çözme 2

37 37 Karakteristik denklemler kullanarak yinelemeleri çözme

38 38 Karakteristik denklemler kullanarak yinelemeleri çözme Aralık dönüşümleri (Range Transformations): Yinelemelerin çözümünde değişkenlerin değişimi yerine bazen aralık dönüşümü kullanmak daha faydalı olabilir. Örnek: T(n)= nt(n/2) 2, n>1, T(1)=6 n, değerini 2 k (burada k=logn dir) ile yer değiştirirsek T(2 k )=2 k T(2 k-1 ) 2, elde ederiz. t k =T(2 k ) =T(n) ise, t k =2 k t 2 k-1, k> için t =6 İlk bakışta gördüğümüz tekniklerin hiç biri bu yineleme için uygulanamaz çünkü hem doğrusal değil, hem de katsayılardan biri sabit değildir. Aralık dönüşümü yapmak için V k =log t k koyarak yeni bir yineleme oluşturulur.

39 39 Karakteristik denklemler kullanarak yinelemeleri çözme

40 4 Karakteristik denklemler kullanarak yinelemeleri çözme

41 41 Böl-ve-Fethet (Divide & Conquer) Böl ve fethet tekniğiyle algoritma tasarımı: Problem kendisine benzer küçük boyutlu alt problemlere bölünür. Alt problemler çözülür ve bulunan çözümler birleştirilir. Divide: Problem iki veya daha fazla alt problemlere bölünür. Conquer: Alt problemleri özyinelemeli olarak çözüp, onları fethet. Combine: Alt problem çözümlerini birleştir.

42 Merge Sort (Birleştirme sıralaması) Algoritması 1. Böl: Eğer S en az iki elemana sahipse (S sıfır veya bir elemana sahipse hiçbir işlem yapılmaz), bütün elemanlar S 'e n alınır ve S 1 ve S 2 adlı iki alana yerleştirilir, her biri S dizisinin yarısına sahiptir, (örn. S 1 ilk n/2 elemana ve S 2 ise ikinci n/2 elemana sahiptir). 2. Fethet: S 1 ve S 2 Merge Sort kullanılarak sıralanır. 3. Birleştir: S 1 and S 2 içindeki sıralı elemanlar tekrar S içerisine tek bir sıralı dizi oluşturacak şekilde aktarılır. 42

43 43 Birleştirme sıralaması 1. Bölmek: Kolay. 2. Hükmetmek: 2 alt dizilimi özyinelemeli sıralama. 3. Birleştirmek: Doğrusal-zamanda birleştirme.

44 Master teoremi (hatırlatma) 44

45 45 İkili arama (Binary Search) Sıralı dizilimin bir elemanını bulma: 1. Böl: Orta elemanı belirle. 2. Hükmet: 1 alt dizilimde özyinelemeli arama yap. 3. Birleştir: Kolay. Örnek: 9' u bul.

46 İkili arama (Binary Search) 46

47 İkili arama için yineleme 47

48 48 Bir sayının üstellenmesi Problem: a n 'yi n N iken hesaplama. Saf (Naive) algorithm: Θ(n). Böl-ve-fethet algoritması:

49 Fibonacci sayıları 49

50 5 Fibonacci sayılarını hesaplama

51 51 Özyineleme ile kare alma (Recursive squaring)

52 52 Özyineleme ile kare alma (Recursive squaring)

53 53 Matrislerde çarpma

54 54 Matrislerde çarpma Standart algoritma

55 Böl-ve-fethet algoritması 55

56 56 Böl-ve-Fethet algoritmasının çözümlemesi

57 57 Strassen in fikri 2 2 matrisleri yalnız 7 özyinelemeli çarpmayla çöz.

58 58 Strassen in fikri 2 2 matrisleri yalnız 7 özyinelemeli çarpmayla çöz.

59 59 Strassen in algoritması 1. Böl: A ve B'yi (n/2) (n/2) altmatrislere böl. + ve kullanarak çarpılabilecek terimler oluştur. (Θ(n 2 )) 2. Fethet: (n/2) (n/2) altmatrislerde özyinelemeli 7 çarpma yap (P 1, P 2, P 3, P 7.) 3. Birleştir: + ve kullanarak (n/2) (n/2) altmatrislerde C 'yi oluştur. (Θ(n 2 )) T(n) = 7 T(n/2) + Θ(n 2 )

60 6 Strassen in algoritması 2.81 değeri 3' den çok küçük görünmeyebilir ama, fark üstelde olduğu için, yürütüm süresine etkisi kayda değerdir. Aslında, n 32 değerlerinde Strassen in algoritması günün makinelerinde normal algoritmadan daha hızlı çalışır. Bugünün en iyi değeri (teorik merak açısından): Θ(n )

61 Böl ve Fethet VLSI (Very Large Scale Integration) yerleşimi (Çok Büyük Çapta Tümleşim) Bilgisayar çipleri yada yongaları bildiğiniz gibi çok büyük çapta tümleşim kullanırlar. Elimizde bir devre olduğunu düşünelim ve bu devrenin de bir ikili ağaç olduğunu kabul edelim. Ama şimdilik bu devrenin bir kısmını ele alalım ama siz bunu tüm devre kabul edin. 61 Problem: n yaprağı olan tam bir ikili ağacı en az alan kullanarak bir ızgaraya gömmek.

62 VLSI (Very Large Scale Integration) yerleşimi (Çok Büyük Çapta Tümleşim) 62 Problem: n yaprağı olan tam bir ikili ağacı en az alan kullanarak bir ızgaraya gömmek.

63 H-ağacını gömme 63

64 64 Sonuç Böl ve Fethet algoritma tasarımının güçlü tekniklerinden sadece biridir. Böl ve Fethet algoritmaları yinelemeler ve Ana (Master) metot kullanarak çözümlenebilir. Böl ve Fethet stratejisi genellikle verimli algoritmalara götürür.

65 65 Ortak Reküranslar Rekürans İlişkisi Kapalı Form Örnek c(1) = a c(n) = b + c(n-1) c(n) = O(n) Linear search c(n) = b*n + c(n-1) c(n) = O(n 2 ) Quicksort c(n) = b + c(n/2) c(n) = O(log(n) Binary search c(n) = b*n + c(n/2) c(n) = b + kc(n/k) c(n) = O(n) c(n) = O(n) c(n) = b*n + 2c(n/2) c(n) = O(nlog(n)) Mergesort c(n) = b*n + kc(n/k) c(n) = O(nlog(n) c(2) = b c(n) = c(n-1) + c(n-2) + d c(n) = O(2n ) Fibonacci

66 66 Sorular 1.T(n)=3T( 2n )+2 tekrarlı bağıntısını çözünüz. 2. T(n)=3T( n/5 )+n tekrarlı bağıntısının çözümünü iteratif yolla gerçekleştiriniz. Bu bağıntının Özyineleme ağacı nedir? 3. Özyineleme ağacını kullanarak T(n)=T(n/3)+T(2n/3)+n bağıntısının çözümünü elde ediniz. 4. b 1 bir sabit olmak üzere T(n)=T(n/b)+T(b)+n tekrarlı bağıntısının Özyineleme ağacını elde ediniz ve bu bağıntının çözümü nedir? 5. <a<1 sabit olmak üzere T(n)=T(an)+T((1-a)n)+n tekrarlı bağıntısının Özdevinim ağacını elde ediniz ve asimptotik davranışı hakkında bilgi veriniz.

67 67 Sorular 6. a)t n = nt n + n çalışma zamanı mertesbesininin O(nloglogn) olduğunu iterasyon veya öz yineleme ağacı ile bulunuz. b) T n = nt n/2 + n 7. Master yöntemini kullanarak aşağıdaki tekrarlı bağıntıları çözünüz. a) T(n)=3T(n/3)+n b)t(n)=3t(n/3)+n 2 c) T(n)=3T(n/3)+n 3 d) T(n)=3T(n/3)+n k 8. Aşağıdaki tekrarlı bağıntı verilmiş olsun. T(n)=2T(n/3)+lg(n) a) İteratif yöntem ile bu bağıntının mertebesini (çalışma zamanını) elde ediniz. b) Master yöntemi ile bu bağıntının mertebesini (çalışma zamanını) elde ediniz.

68 68 Sorular 9. Aşağıdaki tekrarlı bağıntıları karakteristik denklem ve üreten fonksiyon yöntemleri ile çözünüz. a) a n =5a n-1-6a n-2, a 1 =36 ve a = b) a n =3a n-1-2a n-2 +2 n n, a 1 =29 ve a =9 c) a n =a n-2 +4n, a 1 =4 ve a =1 d) a n =3a n-1-2a n n-1, a 1 =12 ve a = 1. Master teoremini kullanarak aşağıdaki bağıntının mertebesini (çalışma zamanını) elde ediniz. T(n)=16T(n/4)+O(n 2 ) 11. f(n)=n 2 +4nlogn+9 ve g(n)=n 2 +45logn+h(n) fonksiyonları verilmiştir ve h(n) lineer olan bir polinomdur. f(n) ile g(n) arasındaki asimptotik ilişki nedir? f(n) ve g(n) arasındaki asimptotik ilişkiyi belirlerken h(n) polinomuna ihtiyaç var mıdır? Hangi durumlarda ihtiyaç duyulur veya duyulmaz?

69 4.Hafta Sıralama Algoritmaları Çabuk Sıralama, Rastgele Algoritmalar 69

Algoritmalar. DERS 3 Böl ve Fethet(Divide and Conquer) İkili arama Sayı üstelleri Fibonacci sayıları Matriks çarpımı Strassen in algoritması

Algoritmalar. DERS 3 Böl ve Fethet(Divide and Conquer) İkili arama Sayı üstelleri Fibonacci sayıları Matriks çarpımı Strassen in algoritması Algoritmalar DERS 3 Böl ve Fethet(Divide and Conquer) İkili arama Sayı üstelleri Fibonacci sayıları Matriks çarpımı Strassen in algoritması September 14, 2005 Copyright 2001-5 Erik D. Demaine and Charles

Detaylı

2.Hafta Algoritmaların Analizi. Araya Yerleştirme Sırlaması (Insert Sort) Birleştirme Sıralaması (Merge Sort ) Yinelemeler

2.Hafta Algoritmaların Analizi. Araya Yerleştirme Sırlaması (Insert Sort) Birleştirme Sıralaması (Merge Sort ) Yinelemeler 2.Hafta Algoritmaların Analizi Araya Yerleştirme Sırlaması (Insert Sort) Birleştirme Sıralaması (Merge Sort ) Yinelemeler 1 2 Sıralama (sorting) problemi Girdi: dizi a 1, a 2,, a n sayıları. Çıktı: a'

Detaylı

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K);

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K); 2009-2010 BAHAR DÖNEMİ MC 689 ALGORİTMA TASARIMI ve ANALİZİ I. VİZE ÇÖZÜMLERİ 1. a) Böl ve yönet (divide & conquer) tarzındaki algoritmaların genel özelliklerini (çalışma mantıklarını) ve aşamalarını kısaca

Detaylı

Algoritmalara Giriş 6.046J/18.401J DERS 2

Algoritmalara Giriş 6.046J/18.401J DERS 2 Algoritmalara Giriş 6.046J/18.401J DERS 2 Asimptotik Simgelem O-, Ω-, ve Θ-simgelemi Yinelemeler Yerine koyma metodu Yineleme döngüleri Özyineleme ağacı Ana Metot (Master metod) Prof. Erik Demaine September

Detaylı

Algoritmalar. Sıralama Problemi ve Analizi. Bahar 2017 Doç. Dr. Suat Özdemir 1

Algoritmalar. Sıralama Problemi ve Analizi. Bahar 2017 Doç. Dr. Suat Özdemir 1 Algoritmalar Sıralama Problemi ve Analizi Bahar 2017 Doç. Dr. Suat Özdemir 1 Sıralama Problemi ve Analizi Bu bölümde öncelikle bir diğer böl-ve-yönet yöntemine dayalı algoritma olan Quick Sort algoritması

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ Algoritma Analizi Çerçevesi Algoritma Analizinde Göz Önünde Bulundurulması Gerekenler Neler? Algoritmanın Doğruluğu (Correctness) Zaman

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN1002 BİLGİSAYAR PROGRAMLAMA 2 SIRALAMA ALGORİTMALARI Sunu Planı Büyük O Notasyonu Kabarcık Sıralama (Bubble Sort) Hızlı Sıralama (Quick Sort) Seçimli Sıralama (Selection Sort) Eklemeli Sıralama (Insertion

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

Problem Set 1 Çözümler

Problem Set 1 Çözümler Algoritmalara Giriş Eylül 30, 2005 Massachusetts Institute of Technology 6.046J/18.410J Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 8 0J Professors Erik D. Demaine ve Charles E. Leiserson

Detaylı

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü 2 Özyinelemeler veya artık teknik Türkçeye girmiş olan rekürsiflik en çok duyulan fakat kullanımında zorluklar görülen tekniklerdendir.

Detaylı

Algoritmalar. Doğrusal Zamanda Sıralama. Bahar 2017 Doç. Dr. Suat Özdemir 1

Algoritmalar. Doğrusal Zamanda Sıralama. Bahar 2017 Doç. Dr. Suat Özdemir 1 Algoritmalar Doğrusal Zamanda Sıralama Bahar 2017 Doç. Dr. Suat Özdemir 1 Sıralama Özet - Insertion sort Kodlaması kolay Küçük veri setleri için hızlı (~50 element) Neredeyse sıralı veri setleri için en

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği BÖLÜM - 2 Bu bölümde, Algoritma Analizi, Çalışma Zamanı Analizi

Detaylı

Yrd. Doç. Dr. A. Burak İNNER Bilgisayar Mühendisliği

Yrd. Doç. Dr. A. Burak İNNER Bilgisayar Mühendisliği Yrd. Doç. Dr. A. Burak İER Bilgisayar Mühendisliği Algoritma Analizi İçerik: Temel Kavramlar Yinelemeli ve Yinelemesiz Algoritma Analizi Asimptotik otasyonlar Temel Kavramlar Algoritma: Bir problemin çözümüne

Detaylı

Yrd. Doç. Dr. Ümit ATİLA

Yrd. Doç. Dr. Ümit ATİLA Yrd. Doç. Dr. Ümit ATİLA Sıralama Bir grup veriyi azalan veya artan şekilde yerleştirme. Bilgisayar sistemleri için veri sıralama çok önemlidir. Sıralama işlemi, hem arama işlemlerini hem de bir grup veriyi

Detaylı

ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL

ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Emel ERGÖNÜL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI... 3 2. GİRİŞ... 3

Detaylı

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1 Algoritmalar Arama Problemi ve Analizi Bahar 2016 Doç. Dr. Suat Özdemir 1 Arama Problemi Sıralama algoritmaları gibi arama algoritmaları da gerçek hayat bilgisayar mühendisliği problemlerinin çözümünde

Detaylı

5.Hafta Alt Sınırları Sıralama Doğrusal-Zaman (linear time) Sıralaması (devam)

5.Hafta Alt Sınırları Sıralama Doğrusal-Zaman (linear time) Sıralaması (devam) 1 5.Hafta Alt Sınırları Sıralama Doğrusal-Zaman (linear time) Sıralaması (devam) Alt Sınırları Sıralama Karar ağaçları Doğrusal-Zaman Sıralaması Sayma sıralaması Taban sıralaması Kova sıralaması Sayma

Detaylı

VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ. Yard. Doç. Dr. Deniz KILINÇ

VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ. Yard. Doç. Dr. Deniz KILINÇ VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ Yard. Doç. Dr. Deniz KILINÇ CELAL BAYAR ÜNİVERSİTESİ, YAZILIM MÜHENDİSLİĞİ 2015-2016 1. ALGORİTMA TANIMI Verilen herhangi bir sorunun çözümüne ulaşmak

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2 YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2 Özyineli Olmayan (Nonrecursive) Algoritmaların Matematiksel Analizi En büyük elemanı bulma problemi En Büyük Elemanı Bulma Problemi Girdi

Detaylı

Alıştırma 1: Yineleme

Alıştırma 1: Yineleme Alıştırma 1: Yineleme Alıştırma 2: Yineleme H10->H2 çevrimini yapınız 7 2 1 3 2 1 1 1 2 0 Hafta 3: Yineleme Alıştırmaları(1) E1. (44/174) S değerini yineleme kullanarak hesap ediniz S = 1 + 2 + 3 + n Hafta3:

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036 atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİŞKEK 2012 Ahmet Atakan

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

DENKLEM DÜZENEKLERI 1

DENKLEM DÜZENEKLERI 1 DENKLEM DÜZENEKLERI 1 Dizey kuramının önemli bir kullanım alanı doğrusal denklem düzeneklerinin çözümüdür. 2.1. Doğrusal düzenekler Doğrusal denklem düzeneği (n denklem n bilinmeyen) a 11 x 1 + a 12 x

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Algoritmalar. Heap Sort. Bahar 2017 Doç. Dr. Suat Özdemir 1

Algoritmalar. Heap Sort. Bahar 2017 Doç. Dr. Suat Özdemir 1 Algoritmalar Heap Sort Bahar 2017 Doç. Dr. Suat Özdemir 1 Heap Sort Heap Sort algoritması Merge Sort ve Insertion Sort algoritmalarının iyi özelliklerini bir arada toplar. Algoritma Insertion Sort gibi

Detaylı

Dinamik Programlama. En uzun ortak altdizi En uygun altyapı Altproblemlerin çakışması

Dinamik Programlama. En uzun ortak altdizi En uygun altyapı Altproblemlerin çakışması Dinamik Programlama En uzun ortak altdizi En uygun altyapı Altproblemlerin çakışması 1 2 Dinamik Programlama (Dynamic programming) Fibonacci sayıları örneği Optimizasyon problemleri Matris çarpım optimizasyonu

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

Algoritma Analizi. Özelliklerinin analizi Algoritmanın çalışma zamanı Hafızada kapladığı alan

Algoritma Analizi. Özelliklerinin analizi Algoritmanın çalışma zamanı Hafızada kapladığı alan Karmaşıklık Giriş 1 Algoritma Analizi Neden algoritmayı analiz ederiz? Algoritmanın performansını ölçmek için Farklı algoritmalarla karşılaştırmak için Daha iyisi mümkün mü? Olabileceklerin en iyisi mi?

Detaylı

28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31

28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31 SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 11 32159 Rasyonel sayı kavramını açıklar. 2 12 32151 İki ya da daha çok doğal sayının en büyük ortak bölenini ve en küçük ortak katını bulur.

Detaylı

b) Algoritmanızın en kötü durumda işlem zamanını asimptotik olarak bulunuz

b) Algoritmanızın en kötü durumda işlem zamanını asimptotik olarak bulunuz 2014 Soru 1. (15 puan) 5,2,4,1,15,8,11,13,7,6 dizisinin elemanlarından maksimum özellikli bir yığın(heap) oluşturulmasını adım adım yazınız. Heapsort algoritmasının yardımıyla yapılacak sıralamayı anlatınız.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

Ayrık zamanlı sinyaller için de ayrık zamanlı Fourier dönüşümleri kullanılmatadır.

Ayrık zamanlı sinyaller için de ayrık zamanlı Fourier dönüşümleri kullanılmatadır. Bölüm 6 Z-DÖNÜŞÜM Sürekli zamanlı sinyallerin zaman alanından frekans alanına geçişi Fourier ve Laplace dönüşümleri ile mümkün olmaktadır. Laplace, Fourier dönüşümünün daha genel bir şeklidir. Ayrık zamanlı

Detaylı

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-7 Sıralama Algoritmaları

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-7 Sıralama Algoritmaları BLM-112 PROGRAMLAMA DİLLERİ II Ders-7 Sıralama Algoritmaları Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Sıralama Bir grup veriyi azalan veya artan şekilde yerleştirme.

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

10. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

10. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. . HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 2- İTERATİF YÖNTEMLER Doğrusal denklem sistemlerinin çözümünde

Detaylı

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ EKİM 07-08 EĞİTİM - ÖĞRETİM YILI 0. SINIF MATEMATİK DERSİ 0... Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. 0... Sınırsız sayıda tekrarlayan nesnelerin dizilişlerini

Detaylı

İkinci Mertebeden Lineer Diferansiyel Denklemler

İkinci Mertebeden Lineer Diferansiyel Denklemler A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Amacı: Metalik Oranların elde edildiği ikinci dereceden denklemin diskriminantını ele alarak karmaşık sayılarla uygulama yapmak ve elde

Detaylı

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması.

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Projenin Amacı: Aritmetik bir dizinin ilk n-teriminin belirli tam sayı kuvvetleri toplamının

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#6: AZALT VE FETHET YÖNTEMİ

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#6: AZALT VE FETHET YÖNTEMİ YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#6: AZALT VE FETHET YÖNTEMİ Azalt ve Fethet Algoritmaları Problemi daha küçük bir örneğine çevir: Küçük örneği çöz Çözümü asıl probleme genişlet 3 tipi vardır:

Detaylı

x 0 = A(t)x + B(t) (2.1.2)

x 0 = A(t)x + B(t) (2.1.2) ÖLÜM 2 LİNEER SİSTEMLER Genel durumda diferansiyel denklemlerin çözümlerini açık olarak elde etmek veya çözümlerin bazı önemli özelliklerini araştırmak için genel yöntemler yoktur, çoğu zaman denkleme

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. ALGORİTMA ANALİZİ VE TASARIMI Ders Saati (T+U+L) Kredi AKTS BG-315 3/1 3+0+0 3+0 5 Dersin Dili : TÜRKÇE Dersin

Detaylı

Binary Search. (Yarılama) Bölüm Dizide Bir Öğe Arama

Binary Search. (Yarılama) Bölüm Dizide Bir Öğe Arama Bölüm 39 Binary Search (Yarılama) 39.1 Dizide Bir Öğe Arama İkil aramayı (yarılama yöntemi) sıralı veri kümelerinde sık sık kullanırız. Örneğin, sözlükte bir sözcüğü ararken, sözlüğün bütün sayfalarını

Detaylı

Pratik Ara Sınav 1 Çözümleri

Pratik Ara Sınav 1 Çözümleri Kitapçık 11: Pratik Ara Sınav 1 Algoritmalara Giriş Massachusetts Institute of Technology Profesörler Erik D. Demaine ve Charles E. Leiserson 6 Ekim 2005 6.046J/18.410J Kitapçık 11 Pratik Ara Sınav 1 Çözümleri

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

ÖZDEĞERLER- ÖZVEKTÖRLER

ÖZDEĞERLER- ÖZVEKTÖRLER ÖZDEĞERLER- ÖZVEKTÖRLER GİRİŞ Özdeğerler, bir matrisin orijinal yapısını görmek için kullanılan alternatif bir yoldur. Özdeğer kavramını açıklamak için öncelikle özvektör kavramı ele alınsın. Bazı vektörler

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek)

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek) HAZIRLAYAN MUSA DEMIRELLI BISHKEK KYRGYZ TURKISH BOYS HIGH SCHOOL education.online.tr.tc compsources0.tripod.com Olimpiyat Soruları 1- Bir diziyi ters çeviren algoritma ve program 2- Bir diziyi sıralayan

Detaylı

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR Algoritmaların Karşılaştırılması Doç. Dr. Aybars UĞUR Giriş Bir programın performansı genel olarak programın işletimi için gerekli olan bilgisayar zamanı ve belleğidir. Bir programın zaman karmaşıklığı

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Algoritma Nedir? Algoritma

Algoritma Nedir? Algoritma Algoritma Nedir? Algoritma Bir problemin çözümü için geliştirilmiş özel metot Girdileri çıktılara dönüştüren sıralı hesaplama adımları Tanımlanmış bir problemin çözümü için kullanılan araç «Bir problemin

Detaylı

NÜMER IK ANAL IZ. Nuri ÖZALP. Sabit Nokta ve Fonksiyonel Yineleme. Bilimsel Hesaplama Matemati¼gi

NÜMER IK ANAL IZ. Nuri ÖZALP. Sabit Nokta ve Fonksiyonel Yineleme. Bilimsel Hesaplama Matemati¼gi NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP Sabit Nokta ve Fonksiyonel Yineleme Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 3 7! Sabit Nokta ve Fonksiyonel Yineleme 1 / 23 Sabit Nokta

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği Bu bölümde, BÖLÜM - 6 Sıralama(Sort) Algoritmaları 1. Bubble Sort

Detaylı

Mustafa Özdemir İrtibat İçin : veya Altın Nokta Yayınevi

Mustafa Özdemir İrtibat İçin : veya Altın Nokta Yayınevi 2 Matematik Olimpiyatlarına Hazırlık 4 Mustafa Özdemir MATEMATİK OLİMPİYATLARINA HAZIRLIK 4 (336 sayfa) ANALİZ CEBİR 1 TANITIM DÖKÜMANI (Kitabın içeriği hakkında bir bilgi verilmesi amacıyla bu döküman

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ Öğrenci Adı Soyadı: Öğrenci Numarası: S1 S2 S3 S4 S5 Toplam HACETTEPE ÜNİVERSİTESİ 2013-2014 BAHAR DÖNEMİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BBM202 Algoritmalar 1. Ara Sınav 18.03.2014 Sınav Süresi: 50 dakika

Detaylı

Chapter 9. Elektrik Devreleri. Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd

Chapter 9. Elektrik Devreleri. Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd Elektrik Devreleri Eşanlı Denklemler Bölüm 9 daki devre analizi yöntemleri eşanlı (paralel) denklem kullanımını gerektirmektedir. Eşanlı denklemlerin çözümünü basitleştirmek için, denklemler genelde standart

Detaylı

Özyineleme (Recursion)

Özyineleme (Recursion) Özyineleme tanımlamaları Özyineleme çağırma Tail özyineleme Nontail özyineleme Dolaylı (Indirect) özyineleme İçiçe (Nested) özyineleme Yrd.Doç.Dr. M. Ali Akcayol Kendi kendisini doğrudan veya dolaylı olarak

Detaylı

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir.

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir. 3. Yüksek Mertebeden Adi Diferansiyel Denklemler Geçmiş konularda şu ana kadar ele alınan 1.mertebe-1.dereceden adi diferensiyel denklemler ancak 1.mertebe seviyesindeki belirli problemleri ifade edebilmektedir.

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri H a z ı r l aya n : D r. N u r d a n B i l g i n Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Bir önceki

Detaylı

Bölüm Özeti. Algoritmalar. Fonksiyonların Büyümesi. Algoritmaların Karmaşıklığı. Örnek Algoritmalar Algoritmik Paradigmalar

Bölüm Özeti. Algoritmalar. Fonksiyonların Büyümesi. Algoritmaların Karmaşıklığı. Örnek Algoritmalar Algoritmik Paradigmalar Bölüm 3 Bölüm Özeti Algoritmalar Örnek Algoritmalar Algoritmik Paradigmalar Fonksiyonların Büyümesi Büyük-O ve diğer gösterimler Algoritmaların Karmaşıklığı Bölüm 3.1 Bölüm Özet Algoritmaların Özellikleri

Detaylı

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)

Detaylı

ndrgemel Dzler Ders Notlar

ndrgemel Dzler Ders Notlar ndrgemel Dzler Ders Notlar c wwww.sbelian.wordpress.com Bu ders notunda diziler konusunun bir alt konusu olan First Order Recursions ve Second Order Recursions konular anlatlm³ ve bu konularla alakal örnekler

Detaylı

Doğrusal Denklemler Sis./Sys. of Linear Equations

Doğrusal Denklemler Sis./Sys. of Linear Equations Doğrusal Denklemler Sis./Sys. of Linear Equations Uygulama alanı: Lineer olan her sistem Notation: Ax 1 = b Augmented [A l b] Uniqueness A = 0, A nxa Bu şekilde yazılan sistemler Overdetermined (denklem

Detaylı

4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ

4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x a x a x b 11 1 12 2 1n n 1 a x a x a x b 21 1 22 2 2n n

Detaylı

TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 10. SINIF MATEMATİK DERSİ YILLIK PLANI

TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 10. SINIF MATEMATİK DERSİ YILLIK PLANI 9 Eylül- Eylül 0-07 TEKİRDAĞ SOSYAL BİLİMLER LİSESİ 0. SINIF MATEMATİK DERSİ YILLIK PLANI Veri, Sayma ve Sayma. Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. Sıralama

Detaylı

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ 25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ a-) Routh Hurwitz Kararlılık Ölçütü b-) Kök Yer Eğrileri Yöntemi c-) Nyquist Yöntemi d-) Bode Yöntemi 1 2 3 4 a) Routh Hurwitz Kararlılık

Detaylı

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b Bölüm 1 Temel Kavramlar Bu bölümde bağıntı ve fonksiyon gibi bazı temel kavramlar üzerinde durulacak, tamsayıların bazı özellikleri ele alınacaktır. Bu çalışma boyunca kullanılacak bazı kümelerin gösterimleri

Detaylı

Tek Değişkenli Optimizasyon OPTİMİZASYON. Gradient Tabanlı Yöntemler. Bisection (İkiye Bölme) Yöntemi

Tek Değişkenli Optimizasyon OPTİMİZASYON. Gradient Tabanlı Yöntemler. Bisection (İkiye Bölme) Yöntemi OPTİMİZASYON Gerçek hayatta, çok değişkenli optimizasyon problemleri karmaşıktır ve nadir olarak problem tek değişkenli olur. Bununla birlikte, tek değişkenli optimizasyon algoritmaları çok değişkenli

Detaylı

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Bilgisayar Programlama Ders 9 Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Dizileri Fonksiyonlara Dizileri Fonksiyonlara Bir dizi argümanını fonksiyon içinde bir değer olarak kullanabilmek

Detaylı

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır. 1. GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir., ) cebirsel 1) a b cg,, için a( bc) ( ab) c (Birleşme özelliği)

Detaylı

BIP116-H14-1 BTP104-H014-1

BIP116-H14-1 BTP104-H014-1 VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Algoritma Analizi Big O

Algoritma Analizi Big O Algoritma Analizi Big O 0 {\} /\ Suhap SAHIN Onur GÖK Giris Verimlilik Karsılastırma Giris Hangisi daha iyi? Hangi kritere göre? Giris Hangisi daha iyi? Hangi kritere göre? Giris Giris? Verimin ölçülmesi

Detaylı

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

6.Hafta Bilinen Probleme İndirgeme Tasarım Yöntemi

6.Hafta Bilinen Probleme İndirgeme Tasarım Yöntemi 1 6.Hafta Bilinen Probleme İndirgeme Tasarım Yöntemi 2 Bilinen Probleme İndirgeme Bu yöntemde, karmaşık olan problem çözümü yapılmadan önce problem bilinen problemlerden birine dönüştürülür ve ondan sonra

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı