BÜHLMANN-STRAUB KREDİBİLİTE MODELİNDE KREDİBİLİTE FAKTÖRÜNÜN İNCELENMESİ



Benzer belgeler
KLASİK KREDİBİLİTE MODELLERİNDE KREDİBİLİTE FAKTÖRÜNÜN İNCELENMESİ ABDURRAHMAN ERDAL YÜKSEK LİSANS TEZİ İSTATİSTİK

İçindekiler. Ön Söz... xiii

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

QUANTILE REGRESYON * Quantile Regression

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

Degree Department Üniversity Year B.S. Statistics Gazi University 1993 M.s. Statistics Gazi University 1998 Ph.D. Statistics Gazi University 2005

ĐST 474 Bayesci Đstatistik

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 )

İSTATİSTİKSEL DARALTICI (SHRINKAGE) MODEL VE UYGULAMALARI * A Statistical Shrinkage Model And Its Applications*

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2018 İKİNCİ SEVİYE AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME 12 MAYIS 2018

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

Actuarial Science Article / Aktüerya Bilimleri Makalesi

2001 ve 2008 Yılında Oluşan Krizlerin Faktör Analizi ile Açıklanması

İSTATİSTİK VE OLASILIK SORULARI

Matris Cebiriyle Çoklu Regresyon Modeli

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir.

BÖLÜM 1: YAşAM ÇÖzÜMLEMEsİNE GİRİş... 1

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DÖNEM PROJESİ TAŞINMAZ DEĞERLEMEDE HEDONİK REGRESYON ÇÖZÜMLEMESİ. Duygu ÖZÇALIK

ELEKTRONİK MÜHENDİSLİĞİ NDE KİMYA EĞİTİMİNİN GEREKLİLİĞİNİN İKİ DEĞİŞKENLİ KORELASYON YÖNTEMİ İLE İSTATİSTİKSEL OLARAK İNCELENMESİ

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz.

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

İÇİNDEKİLER ÖN SÖZ...

Ekonometri I VARSAYIMLARI

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ

14 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

İÇİNDEKİLER 1. GİRİŞ...


İstatistik ve Olasılık

Appendix B: Olasılık ve Dağılım Teorisi

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

İstatistik ve Olasılık

İstatistik ve Olasılık

SÜREKLİ RASSAL DEĞİŞKENLER

altında ilerde ele alınacaktır.

The Study of Relationship Between the Variables Influencing The Success of the Students of Music Educational Department

Korelasyon testleri. Pearson korelasyon testi Spearman korelasyon testi. Regresyon analizi. Basit doğrusal regresyon Çoklu doğrusal regresyon

Sağlık Sigortasında Toplam Hasar Tutarının Kestirimi için Tek-kısım ve İki-kısım Modellerin Karşılaştırılması

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SIRADAN EN KÜÇÜK KARELER (OLS)

EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi. Özet İstatistikler ve Histogram (Minitab)(1) Örnek: Eczane İçin Servis Süreleri

1: DENEYLERİN TASARIMI VE ANALİZİ...

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

İstatistik ve Olasılık

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

BÖLÜM 10 ÖRNEKLEME YÖNTEMLERİ

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU

İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı...

1 PAZARLAMA ARAŞTIRMASI

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY

Koşullu Öngörümleme. Bu nedenle koşullu öngörümleme gerçekleştirilmelidir.

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI.

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK

0,5749. Menkul Kıymet Getirisi ve Riskinin Hesaplanması Tek dönemlik basit getiri (Kesikli getiri)

DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS Çok Değişkenli İstatistik EKO428 Bahar Ön Koşul Dersin Dili

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1


Ders 1 Minitab da Grafiksel Analiz-I

Çeşitli periyotlar için "Preston-Bennet yöntemi" ile ölüm düzeylerinin hesaplanması ve regresyon modellemesi

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

5.HAFTA Ders içeriği. Sağlık sigortacılığında fiyatlandırma. Sağlık sigortasının diğer sigorta dallarından farklı yanları

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir:

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

FİNANS YATIRIM VE RİSK YÖNETİMİ SINAVI ÇÖZÜMLÜ SET EKİM 2017

Yatırım Analizi ve Portföy Yönetimi 5. Hafta

Olasılık Teorisi ve İstatistik (MATH392) Ders Detayları

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BÖLÜM 12 STUDENT T DAĞILIMI

T.C. Hitit Üniversitesi. Sosyal Bilimler Enstitüsü. İşletme Anabilim Dalı

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT

OLASILIK ve İSTATİSTİK Hipotez Testleri

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

OLASILIK ve KURAMSAL DAĞILIMLAR

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Risk-Getiri İlişkisi ve Portföy Yönetimi I

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X)

Ersin Pak Melda Şuayipoğlu Nalan Öney

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015

Transkript:

SAÜ Fen Edebiyat Dergisi (213-II) BÜHLMANN-STRAUB KREDİBİLİTE MODELİNDE KREDİBİLİTE FAKTÖRÜNÜN İNCELENMESİ Abdurrahman ERDAL *1, Meral EBEGİL ** *1 Türkiye Çalışma ve İş Kurumu /ANKARA ** Gazi Üniversitesi Fen Fakültesi İstatistik Bölümü/ANKARA, e-posta: mdemirel@gazi.edu.tr ÖZET Kredibilite teorisi, geçmişe ait veriler ile son döneme ilişkin veriler arasında dengeli bir paylaştırma yapmak için hayat dışı sigorta branşlarında prim belirlemede kullanılan ağırlıklı tahmini hesaplama yöntemidir. Ağırlıklandırma işlemi Z kredibilite faktörü ile yapılmaktadır. ni belirlemek için çeşitli yöntemler bulunmaktadır. Bu yöntemler, kredibilite modelleri olarak isimlendirilir. Kredibilite modelleri sınırlı dalgalanmalı kredibilite ve klasik kredibilite modelleri olmak üzere iki ana başlıkta incelenebilir. Bazı durumlarda Z kredibilite faktörünün sıfır alınması gerekebilir. Bu durumlar klasik kredibilite modellerinin iyi çalışmadığı durumlardır. Z kredibilite faktörünün sıfır alınması, sigortalılar açısından adaletsizliğe yol açacaktır. Buradan yola çıkarak bu çalışmada klasik kredibilite modellerinin iyi çalışmadığı durumlar ortaya çıkarılmaya çalışılmıştır. Bu amaçla, Monte Carlo simülasyon yöntemi kullanılarak, Z kredibilite faktörünün aralık tahmini incelenmiş, sonuçlar karşılaştırılmalı olarak yorumlanmıştır. Anahtar kelimeler: Bayesci İstatistik, Kredibilite Modelleri, Bühlmann Modeli, Bühlmann-Straub Modeli, Kredibilite Faktörü. 39

SAÜ Fen Edebiyat Dergisi (213-II) STUDYING CREDIBILITY FACTOR IN BÜHLMANN- STRAUB CREDIBILITY MODELS ABSTRACT Credibility theory which is used to determine the premium in the non-life branches of insurance. is a calculation method which is used for weigted estimation to make balanced allocation between past period data and recent period data. The process of weighting is done with the Z credibility factor. There are various methods to assess Z value. These methods are named as credibility models. Credibility models can be examined under two main groups namely, limited fluctuation credibility models and classical credibility models. In certain cases it may be necessary to take the credibility factor Z as zero. Such cases are usually the ones where classical credibility models do not work properly. Taking the credibility factor as zero shall lead to injustice for the insured. Taking this into account, in this study it was tried to explore the situations where the classical credibility models do not work properly. For this aim, interval estimation for the credibility factor Z were examined using Monte Carlo simulation method and the results were analysed comparatively Key words: Bayesian Statistics, Credibility Models, Bühlmann Models, Bühlmann-Straub Models, Credibility Factor. 1. Giriş Kredibilite kelimesi, aktüerin prim belirlemesi için bir kısım sigortalının tecrübelerini hangi ölçüde değerlendirmeye alması, olarak tanımlanmıştır. Kısaca, kredibilite aktüeryal bilimde güvenin ölçüsü olarak adlandırılır [1]. Kredibilite konusunda ilk tanım Mowbray (1914) tarafından yapılmıştır. Mowbray çalışmasında, poliçelerin fiyatlandırılması amacıyla bir riske ilişkin geçmişe ait bilgi ve tecrübelerin miktarını kredibilite olarak tanımlamıştır. Bu nedenle, kredibilite, hasar aktüerya biliminde (casualty actuarial science) en önemli yöntemlerden birisidir [2]. 4

SAÜ Fen Edebiyat Dergisi (213-II) Sigortacılık uygulamalarında temel amaç portföydeki bütün primlerden elde edilen toplam gelirin her bir sigorta sözleşmesine dağıtılmasıdır [3]. Bu dağıtma işlemini, hem sigortalı hem de sigorta şirketi için daha adil, gerçekçi ve sağlıklı bir şekilde yapmak amacıyla geliştirilen sistemlerden en yaygın kullanılanı, kredibilite teorisidir. Kredibilite teorisi, son döneme ilişkin veriler ile geçmişe ait veriler (önsel hipotez) arasında dengeli bir paylaştırma yapmak için kullanılan ağırlıklı tahmini hesaplama yöntemdir. Ağırlıklandırma, Z kredibilite faktörü ile yapılmaktadır. Z değerini belirlemek için çeşitli yöntemler bulunmaktadır. Bu yöntemler kredibilite modelleri olarak isimlendirilir. Kredibilite teorisi, 189 ların sonlarına doğru işverenlerin mesuliyet sigortalarının fiyatlandırma çalışmalarıyla ortaya çıkmıştır [2]. Whitney (1918), gelecek dönemdeki hasarın, bireyin hasar bilgisi ile risk sınıfına ilişkin hasar bilgisinin ağırlıklandırılmış biçiminde elde edileceğini göstermiştir. Burada ağırlıklandırma normal ve binom dağılımlarının varyanslarının fonksiyonu olan kredibilite faktörü ile yapılmıştır [4]. Modern kredibilitenin kurucusu sayılan Arthur Bailey (1945 ve 195) in çalışmaları kredibilite teorisine Bayesci (Bayesian) yöntem ile yol gösterir [5, 6]. Mayerson (1964), kredibilite teorisinde sağlam bir teorik temel kurulmasına ilişkin yönteme dikkat çekmiştir [7]. Bühlmann 1967 de, dağılımdan bağımsız, Bayes yönteminin en iyi doğrusal yaklaşımı şeklinde ifade edilebilecek, bir kredibilite formülü elde ederek Bühlmann kredibilite modelini oluşturmuştur [8]. Bu çalışmanın ardından Bühlmann ve Straub (197), riske maruz kalan birim sayılarının bireylere göre farklılık göstermesi durumunu da dikkate alıp Bühlmann modelinin genelleştirilmiş hali olan Bühlmann-Straub kredibilite modelini sunmuşlardır. Bühlmann-Straub kredibilite modelinde, varyans homojenliği varsayımı bozularak, modele varyans heterojenliği özelliği eklenmiştir [9]. 41

SAÜ Fen Edebiyat Dergisi (213-II) Kredibilite teorisi 197 lerden sonra hızlı bir gelişim sürecine girmiştir. Jewell (1975) de hiyerarşik modeli, Hachemeister (1975) doğrusal regresyon modelini geliştirmiştir [1]. Kuram üzerine çalışmalar 197-198 yılları arasında genelleştirmeler üzerine, 198 den sonraki yıllarda parametrelerin tahmin edicileri üzerine yoğunlaşmıştır. 198 li yılların sonunda ve 199 lı yılların başında, modern ve yüksek hızlı bilgisayarların gelişmesiyle Bayesci metodoloji yavaş yavaş kredibilite teorisinin temeline oturmuştur. Kredibilite teorisi Bayes üzerine kurulmuş bir teoridir. Kredibilite daha tanımlayıcı bir analiz olan Bayesci analizin kısaltılmış bir şekli olarak düşünülebilir. Ama kredibilite için Bayes dışı çalışmalarda yapılmıştır. Gerber (1982) ve Norberg (1985) kredibilite için Bayes dışı tahmin ediciler üzerine yapılan çalışmalardandır [1,11]. Klugman (1992) de, her risk için titizlikle koşullu kayıp ve parametrik bir önsel bilgi seçerek kredibilite teorisine Bayesci bir analiz getirdi [12]. Son yıllarda iyi bilinen bazı istatistiksel modeller, kredibilite teorisine uygulanmaktadır. Bu çalışmalara örnek olarak varyans bileşenleri modelleri verilebilir [13]. Dannenburg ve ark. (1996), kredibilite modellerinin açıklanması zor olan risk parametresi koşulunun oluşturulması durumunda, gruplar veya bireyler arasında birden fazla risk parametresi olması nedeniyle analizin zorlaşacağını, bunun yerine risk değişkenlerinin birbirinden bağımsız varyans bileşenlerine ayrılmasının kolaylık sağlayacağını belirtmiş ve kredibilite kestiricilerinin elde edilmesinde varyans bileşenleri modelini kullanmıştır [14]. Nelder ve Verrall (1997), hiyerarşik genelleştirilmiş doğrusal model (HGDM) leri kullanarak, klasik kredibilite teorisinin Genelleştirilmiş Doğrusal Model (GDM) ler çerçevesi içinde yorumlanmasına imkan veren bir yöntem tanımlamışlardır. Bu yöntemde, kredibilite teorisinin içinde yer alan Bühlmann modeli için kredibilite formülünü, HGDM lerden yararlanarak üstel aileler için nasıl türetildiği gösterilmiştir. Diğer bir ifadeyle, Bühlmann kredibilite modelinin genelleştirilmiş doğrusal Karma model (GDKM) ler içinde yer alan HGDM lerle bağlantısı kurulmuştur [15]. Ebegil (26), Nelder ve Verrall (1997) in çalışmalarını, Bühlmann-Straub kredibilite modelinin HGDM lerle bağlantısı kurarak genişletmiştir [16]. 42

SAÜ Fen Edebiyat Dergisi (213-II) Kredibilite kuramı, geçmiş hasar bilgileri bilinen benzer risk birimlerinden oluşan bir grupta, herhangi bir birimin gelecek dönemdeki beklenen hasarların kestiriminde kullanılan yöntemleri inceler [17]. İstatistiksel olarak, kredibilite teorisi sonuca sezgisel olmayan bir biçimde ulaşmayı hedefleyen bir yöntemdir. Önsel bilginin varlığında, örnek ortalaması veya başka sapmasız tahmin ediciler kullanılabilir. Ancak kredibilite teorisi, bu deneyime sadece kısmi ağırlık verir ve geri kalan ağırlığı diğer (güncel) bilgilerden oluşan tahmin ediciye verir. Kredibilite teorisi, sigortacının bu sorununa nicel olarak çözüm getirmesini sağlayan yöntemleri içerir [18]. Gau ve ark. (28), kredibilite faktörünü özellikle de kredibilite faktörünün aralık tahminini incelemişlerdir [19]. Atanasiu (29), Bühlmann-Straub kredibilite modelinin bazı uzantılarını sunmuştur. Daha sonra kovaryans yapılarına dayalı olarak oluşan güncellenmiş kredibilite formülünü tanımlamıştır. Yeni düzenlenen bu kredibilite primi, önceki dönem ve geçerli olan dönemdeki hasarlarda net prim fiyatının ağırlıklı ortalaması olarak hesaplanabileceği gösterilmiştir [2]. Wen ve Deng (211), risklerin bağımlı olduğu durumda kredibilite primlerini incelemişlerdir. Risklerin eşit korelasyon yapılarını açıklamak için Bühlmann kredibilite formülünü geliştirmişler ve bu modelde parametre tahminlerini dikkate almışlardır [21]. Kredibilite faktörü, hem sigortalı hem de sigorta şirketi açısından adil prim değerleri belirlemek için önemli bir kavramdır. Daha öncede söylenildiği gibi bazı durumlarda Z kredibilite faktörünün sıfır alınması gerekebilir. Bu durumda sigortalının geçmiş hasar verisi dikkate alınmadan sadece güncel hasar verisi kullanılarak prim hesaplaması yapılacaktır. Eğer sigortalının geçmiş verisindeki hasar deneyimi fazla ise primin bu şekilde belirlenmesi ilgili sigortalının faydasına olurken diğer sigortalıların zararına olacaktır. Diğer bir ifade ile, bu durumlar klasik kredibilite modellerinin iyi çalışmadığı durumlardır. Çünkü Z kredibilite 43

SAÜ Fen Edebiyat Dergisi (213-II) faktörünün sıfır alınması, sigortalılar açısından adaletsizliğe yol açacaktır [22]. Buradan yola çıkarak bu çalışmada klasik kredibilite modellerinin iyi çalışmadığı durumlar ortaya çıkarılmaya çalışılmıştır. Bu çalışmanın ikinci bölümünde, kredibilite modellerinden Bühlmann- Straub kredibilite modeli teorik olarak özetlenmeye çalışılmıştır. Üçüncü bölümde, MATLAB paket programından yararlanılarak Bühlmann-Straub kredibilite modeli için, farklı yığın ortalamaları ve varyansları kullanılarak 1 tekrara dayalı bir simülasyon çalışması yapılmış ve Z kredibilite faktörleri hesaplanmıştır. Hesaplanan kredibilite faktörlerinin, sıfır çıkan değerlerini daha net görmek amacıyla bu veriler öncelikle histogramlarla, daha sonra ise tablolarla özetlenmiş ve uygun olmayan sonuçlar belirlenerek gerekli yorumlamalar yapılmıştır. Diğer bir ifadeyle, kredibilite faktörü tahmin değerlerinin, farklı durumlarda nasıl hareket ettikleri belirlenmiş ve sonuçlar yorumlanmıştır. 2. Kredibilite Modelleri Kredibilite teorisi, son döneme ilişkin veriler ile önsel hipotez arasında (geçmişe ait veriler arasında) dengeli bir paylaştırma sonucu ortaya çıkan gerçek beklentinin doğrusal tahminini içerir. Yani kredibilite, ağırlıklı tahmin değerinin hesaplanması için kullanılan bir yöntemdir. Ağırlıklandırma işlemi Z kredibilite faktörü ile yapılmaktadır. ni belirlemek için çeşitli yöntemler bulunmaktadır. Bu yöntemler, kredibilite modelleri olarak isimlendirilir [1]. Temel kredibilite modelleri, Sınırlı dalgalanmalı kredibilite (the limited fluctuation credibility) ve Klasik kredibilite (the greatest accuracy credibility) modelleri olarak iki başlık altında incelenebilir. Sınırlı dalgalanmalı kredibilite modeli, tam kredibilite (full credibility) yaklaşımı ve Kısmi kredibilite (partial credibility) yaklaşımı olmak üzere iki gruba ayrılır. 44

SAÜ Fen Edebiyat Dergisi (213-II) Sınırlı dalgalanmalı kredibilite teorisinde, kredibilite faktörü Z yı belirlemek ve tam kredibilite için gerekli beklenen hasar sayısını bulmak için frekans dağılımlı modeller kullanılır. Klasik kredibilite modeli ise, Bayesci yaklaşım, Bühlmann kredibilite modeli ve Bühlmann-Straub kredibilite modeli olmak üzere 3 ana başlık altında incelenebilir. Bu çalışmada Bühlmann-Straub kredibilite modeli üzerinde durulacaktır. 2.1. Bühlmann-Straub Kredibilite Modeli: Bu bölümde kredibilite modellerinden olan Bühlmann-Straub kredibilite modeli tanıtılmıştır. Bühlmann ve Straub (197), Bühlmann modelinin genelleştirilmiş şeklini sunmuşlardır [9, 18]. Her poliçe sahibi için, geçmiş kayıplar, hasarlar veya hasar tutarları X = (X 1, X 2,, X r ) ile gösterilsin. Θ rassal değişkeni yardımıyla tanımlanan yığının risk karakteristikleri hakkında bazı önsel bilgilerin var olduğu varsayılsın. Buradan θ, bir derecelendirme sınıfında her poliçe sahibinin risk seviyesini karakterize eden bir risk parametresi olmak üzere, Θ = θ iken X = (X 1, X 2,, X r ) aynı ortalama, fakat farklı varyansa sahip, bağımsız ve aynı dağılımlı rassal değişkenlerdir. Bu durumda Bühlmann-Straub kredibilite modeli, E(X n+1 ) = C = ZX + (1 Z)μ, Z = m (m + k), Z 1 biçiminde özetlenebilir. Burada k = υ a, r X = (m i m) X i, X i = n i j=1 m ijx ij m i i=1 olmak üzere, m i ; bireylerin i. poliçe döneminde bilinen bir riske maruz kalma değeri, υ; süreç varyansının beklenen değeri, a ; hipotetik ortalamaların varyansı ve m = m 1 + m 2 + + m r olmak üzere, m bütün poliçe dönemleri için toplam riske maruz kalma (total exposure) değeridir. Bühlmann-Straub modelinin özelliğinden dolayı kredibilite faktörü Z her 45

SAÜ Fen Edebiyat Dergisi (213-II) sınıf için ayrı hesaplanmalıdır. Bühlmann-Straub kredibilite prim tahmin edicisi, Z i = m i (m i + k ), ve k = υ a olmak üzere, C i = Z ix i + (1 Z i)μ (1) şeklinde ifade edilebilir. Kısacası, Bühlmann-Straub kredibilite modelleri ile belirli bir sigorta şirketine ait eski bilgiler ve yeni bilgiler kredibilite faktörü ile ağırlıklandırılarak bir sonraki sigorta dönemi için prim tahmini elde edilebileceği gibi, sınıflar arası prim saptamasında da kullanılabilmektedir. Aslında, kredibilite teorisi bir prim saptama yöntemidir. Bu amaç doğrultusunda, prim değeri (1) de verilen kredibilite prim tahmin edicisi C i ile hesap edilmektedir. Bühlmann-Straub modeli için, μ nün sapmasız bir tahmin edicisi, r i=1 n i j=1 μ = X = 1 m m ijx ij şekilde ifade edilebilir. υ için sapmasız bir tahmin edici, grup içi hatalar için ağırlıkların (m ij lerin) dahil edilmesiyle aşağıdaki gibi ifade edilir, υ = r n m ij(x ij X i) 2 i i=1 j=1 r. (2) (n i 1) i=1 Son olarak, a için çok kullanılan bir tahmin edici, a = r i=1 m i(x i X ) 2 (r 1)υ m r i=1 m i 2 m (3) dır [23]. Bazı durumlarda, a değeri negatif sonuçlar verir. Bunun sonucunda, prim değeri hesaplanırken, Z kredibilite faktörü sıfır alınır. Bu (1) de verilen kredibilite prim tahmininin, ilgili sigortalının kendi deneyimine sıfır ağırlık verilerek, sadece bütün sigortalıların genel ortalamasına göre yapıldığı anlamına gelir. Diğer bir ifade ile, sigortalının kendi deneyimi prim tahmini hesaplanırken işlem dışı tutulur. Eğer bu sigortalının hasar deneyimi, diğer sigortalılara göre daha fazla ise, prim tahmininin sadece genel ortalama alınarak yapılması, bu sigortalının lehine olurken, diğer sigortaların aleyhine olacaktır. Bu ise, sigortalılar açısından bir 46

SAÜ Fen Edebiyat Dergisi (213-II) adaletsizliğe neden olacaktır. Buradan yola çıkarak, bu çalışmada sigortalılar açısından adaletsizliğe neden olan durumlar incelenmeye çalışılmıştır. Bu amaçla, MATLAB paket programından yararlanılarak Bühlmann-Straub kredibilite modeli için, farklı yığın ortalaması ve varyansı kullanarak 1 tekrara dayalı bir simülasyon çalışması yapılmış ve Z kredibilite faktörleri hesaplanmıştır. Hesaplanan kredibilite faktörlerini incelemek amacıyla bu veriler histogramlarla özetlenmiş ve uygun olmayan sonuçlar belirlenerek gerekli yorumlamalar yapılmıştır. Diğer bir ifadeyle, kredibilite faktörü tahmin değerlerinin, farklı durumlarda nasıl hareket ettikleri belirlenmiş ve sonuçlar yorumlanmıştır. 3. Kredibilite Faktörünün İncelenmesi İçin Monte Carlo Simülasyon Çalışması Dannenburg, Kaas, ve Goovaerts (1996) varyans bileşen modellerinin kredibilite problemine uygulanabileceğini göstermişlerdir [14]. Varyans bileşen modelinde, her bir hücre ( j yılındaki i. poliçe sahibi ) m ij sözleşmelerinin sayısını içerir. Burada m ij ler i. sözleşme için n i gözlem döneminin sayılarının üzerinde olacak şekilde gözlemlenir. Daha sonra, portföydeki i. sözleşme için, i = 1,....., r, yılda j = 1,...., n i, hasar tecrübesi, X ij = μ + i + ε ij, i = 1,....., r ve j = 1,...., n i (4) dayanarak, 7 sigortalının bulunduğu 7 yıllık dönemi içeren bir portföyü dikkate alınmıştır. Her bir poliçe sahibinin sadece bir tane hasarı olduğunu varsayalım. Yani (4) deki modelde r =7, n i =7 ve m ij =1 olarak alalım. (4) den, 1. μ=5 2. Ortalaması ve varyansı 81 olmak üzere i normal dağılıma sahip ve 3. Ortalaması ve varyansı 9 olmak üzere ε ij normal dağılıma sahip olduğunu varsayalım, kredibilite faktörü, 47

SAÜ Fen Edebiyat Dergisi (213-II) Z = 7 7 + 9 =,386 81 olarak hesaplanır. Aynı zamanda yukarıdaki varsayımları kullanarak simülasyon yoluyla üretilen veri Tablo 1 de verilmiştir. Tablo 1. θ i ~N(5,81) ve X ij θ i ~N(θ i, 9) parametre değerleri için simülasyon verileri Sigorta Dönemleri Sigortalılar 1 2 3 4 5 6 7 1 13.7-5.3 82.8 27.7 61.9 74.5 92. 2 94.8 33.1 57.4 67.5 5.1 74 57.2 3-11.2 98.7 24.8 46 59.8 46.4 15.8 4 42 9.1 2 69.3 55 38.7 14.1 5 44.8 3.4 53.2 22.7 44.6 57.5 2.3 6 57.9-7.7 78.5 12.1 76.2 37.9 6.2 7 97 68.9 64.3 14.4 5.3 23.9 31.3 Tablo 1 deki verileri kullanarak, (2) ve (3) den, μ =5, υ =944.2 ve a =-13.5 olarak hesaplanır. Genelde, aktüerler a değeri negatif olduğunda, a değerini olarak kabul ederler. Bu nedenle, kredibilite faktörü de Z = 7 (7 + (944.2 )) = olarak hesaplanır. Kredibilite faktörü sıfır olarak hesaplandığında, daha önce de belirtildiği gibi, (1) de verilen kredibilite prim tahmini sadece bütün sigortalıların genel ortalamasına göre belirlenir. Bu klasik kredibilite modellerinin iyi çalışmadığı durumdur [19]. Buradan yola çıkarak, bu çalışmada klasik kredibilite modellerinin iyi çalışmadığı durumları ortaya çıkarabilmek amacıyla, simülasyon çalışması yardımıyla farklı yığın parametreleri için, 7 sigortalının bulunduğu 7 yıllık dönemi içeren farklı sigorta portföyleri oluşturulmuş ve her bir sigorta portföyü için 1 tekrar yapılmıştır. Elde edilen sonuçlar Şekil 1-18 arasındaki histogramlarda özetlenmiştir. a nın negatif olduğu değerlerin ve buna bağlı olarak Z= olduğu durumların sayısının daha rahat gösterilmesi için simülasyon sonuçları Tablo 2-7 de tekrar sunulmuştur. 48

SAÜ Fen Edebiyat Dergisi (213-II) 1 9 8 7 6 5 4 3 2 1.1.2.3.4.5.6.7.8.9 1 Şekil 1. θ i ~N(5,81) ve X ij θ i ~N(θ i, 1) için 1 deneme sonucu Z değerlerinin 25 2 15 1 5.1.2.3.4.5.6.7.8.9 Şekil 2. θ i ~N(5,81) ve X ij θ i ~N(θ i, 9) için 1 deneme sonucu Z değerlerinin 49

SAÜ Fen Edebiyat Dergisi (213-II) 35 3 25 2 15 1 5.1.2.3.4.5.6.7.8.9 Şekil 3. θ i ~N(5,81) ve X ij θ i ~N(θ i, 25) için 1 deneme sonucu Z değerlerinin 35 3 25 2 15 1 5.1.2.3.4.5.6.7.8.9 1 Şekil 4. θ i ~N(5,4) ve X ij θ i ~N(θ i, 1) için 1 deneme sonucu Z değerlerinin 5

SAÜ Fen Edebiyat Dergisi (213-II) 7 6 5 4 3 2 1.1.2.3.4.5.6.7.8.9 1 Şekil 5. θ i ~N(5,4) ve X ij θ i ~N(θ i, 9) için 1 deneme sonucu Z değerlerinin 18 16 14 12 1 8 6 4 2.1.2.3.4.5.6.7.8.9 Şekil 6. θ i ~N(5,4) ve X ij θ i ~N(θ i, 25) için 1 deneme sonucu Z değerlerinin 51

SAÜ Fen Edebiyat Dergisi (213-II) 35 3 25 2 15 1 5.82.84.86.88.9.92.94.96.98 1 Şekil 7. θ i ~N(5,16) ve X ij θ i ~N(θ i, 1) için 1 deneme sonucu Z değerlerinin 18 16 14 12 1 8 6 4 2.1.2.3.4.5.6.7.8.9 1 Şekil 8. θ i ~N(5,16) ve X ij θ i ~N(θ i, 9) için 1 deneme sonucu Z değerlerinin 52

SAÜ Fen Edebiyat Dergisi (213-II) 9 8 7 6 5 4 3 2 1.1.2.3.4.5.6.7.8.9 1 Şekil 9. θ θ θ i ~N(5,16) ve X ij θ i ~N(θ i, 25) için 1 deneme sonucu Z değerlerinin 12 1 8 6 4 2.1.2.3.4.5.6.7.8.9 1 Şekil 1. θ i ~N(2,81) ve X ij θ i ~N(θ i, 1) için 1 deneme sonucu Z değerlerinin 53

SAÜ Fen Edebiyat Dergisi (213-II) 3 25 2 15 1 5.1.2.3.4.5.6.7.8.9 Şekil 11. θ i ~N(2,81) ve X ij θ i ~N(θ i, 9) için 1 deneme sonucu Z değerlerinin 45 4 35 3 25 2 15 1 5.1.2.3.4.5.6.7.8.9 Şekil 12. θ i ~N(2,81) ve X ij θ i ~N(θ i, 25) için 1 deneme sonucu Z değerlerinin 54

SAÜ Fen Edebiyat Dergisi (213-II) 35 3 25 2 15 1 5.1.2.3.4.5.6.7.8.9 1 Şekil 13. θ i ~N(2,4) ve X ij θ i ~N(θ i, 1) için 1 deneme sonucu Z değerlerinin 7 6 5 4 3 2 1.1.2.3.4.5.6.7.8.9 1 Şekil 14. θ i ~N(2,4) ve X ij θ i ~N(θ i, 9) için 1 deneme sonucu Z değerlerinin 55

SAÜ Fen Edebiyat Dergisi (213-II) 2 18 16 14 12 1 8 6 4 2.1.2.3.4.5.6.7.8.9 1 Şekil 15. θ i ~N(2,4) ve X ij θ i ~N(θ i, 25) için 1 deneme sonucu Z değerlerinin 9 8 7 6 5 4 3 2 1.1.2.3.4.5.6.7.8.9 1 Şekil 16. θ i ~N(2,16) ve X ij θ i ~N(θ i, 1) için 1 deneme sonucu Z değerlerinin 56

SAÜ Fen Edebiyat Dergisi (213-II) 25 2 15 1 5.1.2.3.4.5.6.7.8.9 1 Şekil 17. θ i ~N(2,16) ve X ij θ i ~N(θ i, 9) için 1 deneme sonucu Z değerlerinin 8 7 6 5 4 3 2 1.1.2.3.4.5.6.7.8.9 1 Şekil 18. θ i ~N(2,16) ve X ij θ i ~N(θ i, 25) için 1 deneme sonucu Z değerlerinin 57

SAÜ Fen Edebiyat Dergisi (213-II) Tablo 2. θ i ~N(5,81) iken süreç varyansının farklı değerleri için 1 denemede Z= olan sonuç sayısı Şekil No Parametre Değerleri Z= olan durumların Sayısı 1 X ij θ i ~N(θ i, 1) 8 2 X ij θ i ~N(θ i, 9) 225 3 X ij θ i ~N(θ i, 25) 345 Tablo 3. θ i ~N(2,81) iken süreç varyansının farklı değerleri için 1 denemede Z= olan sonuç sayısı Şekil No Parametre Değerleri Z= olan durumların Sayısı 1 X ij θ i ~N(θ i, 1) 14 11 X ij θ i ~N(θ i, 9) 28 12 X ij θ i ~N(θ i, 25) 45 Tablo 4. θ i ~N(5,4) iken süreç varyansının farklı değerleri için 1 denemede Z= olan sonuç sayısı Şekil No Parametre Değerleri Z= olan durumların Sayısı 4 X ij θ i ~N(θ i, 1) 5 X ij θ i ~N(θ i, 9) 44 6 X ij θ i ~N(θ i, 25) 177 Tablo 5. θ i ~N(2,4) iken süreç varyansının farklı değerleri için 1 denemede Z= olan sonuç sayısı Şekil No Parametre Değerleri Z= olan durumların Sayısı 13 X ij θ i ~N(θ i, 1) 14 X ij θ i ~N(θ i, 9) 54 15 X ij θ i ~N(θ i, 25) 183 58

SAÜ Fen Edebiyat Dergisi (213-II) Tablo 6. θ i ~N(5,16) iken süreç varyansının farklı değerleri için 1 denemede Z= olan sonuç sayısı Şekil No Parametre Değerleri Z= olan durumların Sayısı 7 X ij θ i ~N(θ i, 1) 8 X ij θ i ~N(θ i, 9) 4 9 X ij θ i ~N(θ i, 25) 24 Tablo 7. θ i ~N(2,16) iken süreç varyansının farklı değerleri için 1 denemede Z= olan sonuç sayısı Şekil No Parametre Değerleri Z= olan durumların Sayısı 16 X ij θ i ~N(θ i, 1) 1 17 X ij θ i ~N(θ i, 9) 2 18 X ij θ i ~N(θ i, 25) 24 Risk parametresi θ i nin varyansı büyük, süreç varyansı (Var (X ij θ i )) küçük olduğunda, genellikle a değerlerinin hepsi pozitif çıkmaktadır. Bunun sonucunda, Z kredibilite faktörünü sıfır olarak kullanmaya gerek kalmadığından, prim değerlerinin klasik kredibilite modelleri ile belirlenmesi sigortalı açısından adil sonuçlar verecektir. Fakat risk parametresinin varyansı küçük, süreç varyansı ise büyük iken Z= olduğu durumların sayısı oldukça artmaktadır. Bu durumda klasik kredibilite modelleri (Bühmann ve Bühlmann-Straub Modelleri) ile prim tahmini yapmak sigortalılar açısından uygun olmayacaktır. Tablo 6 ve Tablo 7 ye bakıldığında risk parametresinin varyansı ve süreç varyansı büyük iken Z= olduğu durum sayısı diğer durumlara göre oldukça azalmaktadır. Bu durumlarda da klasik kredibilite modelleri kullanılabilir hale gelmektedir. Diğer taraftan risk parametresinin beklenen değerinin büyük ya da küçük olması sonuçları fazla etkilememektedir. 59

SAÜ Fen Edebiyat Dergisi (213-II) KAYNAKLAR [1] Longley-Cook, L. H., An Introduction to Credibility Theory, Proceedings of the Casualty Actuarial Society,Vol. XLIX: 194 (1962). [2] Mowbray, A.H., How Extensive a Payroll is Necessary to Give a Dependable Pure Premium?, Proceedings of the Casualty Actuarial Society, 1: 24 3 (1914). [3] Goovaerts, M. J., Kass, R., Van Heerwaarden, A. E. and Bauwelinckx, T., Effective Actuarial Methods, Amsterdam, Holland: North Holland (199). [4] Whitney, A., The Theory of Experience Rating Proceedings of the Casualty Actuarial Society, 4: 274-292 (1918) [5] Bailey, A. L., A Generalized Theory of Credibility, Proceedings of the Casualty Actuarial Society, 32: 13-2 (1945). [6] Bailey, A. L., Credibility Procedures, Laplace s Generalization of Bayes Rule and the Combination of Collateral Knowledge with Observed Data, Proceedings of the Casualty Actuarial Society, 37: 7-23 (195). [7] Mayerson, A. L., A Bayesian View of Credibility, Proceedings of the Casualty Actuarial Society, 51: 85-14 (1964). [8] Bühmann, H., Experience Rating and Credibility, ASTIN Bulletin, 4: 199-27 (1967). [9] Bühlmann, H. and Straub, E., Glaubwürdigkeit für Schadensätze, Mitt. Ver. Schweiz. Ver., 7(1): 111-133 (197). [1] Ebegil, M., Kredibilite Teorisinde Parametre Tahmini ve İstatistiksel Bir Yaklaşım, Gazi Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, (27). [11] Norberg, R., Unbayesed Credibility Revisited, ASTIN Bulletin, 15: 37-43 (1985). [12] Klugman, S. A., Bayesian Statistics in Actuarial Science with Emphasis on Credibility, Kluwer, Boston (1992). [13] Dannenburg, D., Crossed classification credibility models In: Trans. 25th Int. Congress of Actuaries, 4: 1 36 (1995). 6

SAÜ Fen Edebiyat Dergisi (213-II) [14] Dannenburg, D., Kaas, R., Goovaerts, M., Pratical Actuarial Credibility Models, İnstitus of Actuarial Science and Econmetrics, University of Amsterdam, The Netherlands, (1996). [15] Nelder J.A., Verrall R.J., Credibility Theory and Generalized Linear Models, ASTIN Bulletin, 27(1): 71 82 (1997). [16] Ebegil M., A Study to Examine Bülhmann-Straub Credibility Model in Generalized Linear Models, Ankara University Communications SeriesA1: Mathematics and Statistics, 55(2):9-16 (26). [17] Frees E.W., Young V.R. and Luo Y. 21. Case Studies using Panel Data Models, North American Actuarial Journal, 5(4): 24 42. [18] Klugman, S.A., Panjer, H., Wilmot, G., Loss Models from Data to Decisions, Willey, New York, (24). [19] Gau, W., Gangopadhyay, A., Han, Z., Interval Estimation of the Credibility Factor Proceedings of the Casualty Actuarial Society, 2(1): 71-84 (28). [2] Atanasiu, V., Some extensions of the Bühlmann-Straub credibility formulae, Buletinul Academiei de Ştiinte a Republicii Moldova, Matematica, 3(61):3-12, ( 29). [21] Wen, L., Deng, W., The Credibiliyt Models With Equal Correlation Risks, Journal of Systems Science and Complexity, 24(3): 532-539 (211). [22] Erdal, A., Klasik Kredibilite Modellerinde Kredibilite Faktörünün İncelenmesi, Gazi Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, (213). [23] Ebegil, M., Gökpınar, F., Pareto Dağılımı Altında Bühlmann-Straub Kredibilite ve Karma Etki Modelinde Prim Tahmini Modellemesi, Süleyman Demirel Üniversitesi, Journal of Natural and Applied Sciences, 16(2): 191-23 ( 212). 61