İstatistik ve Olasılık Ders 8: Prof. Dr.
Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen bilgilere bağlı olarak, belirli bir hata payı ile doğrulanmasına HİPOTEZ TESTİ denir. Örneğin: İki üretim yönteminin aynı olup olmadığı, İki farklı tezgahın üretim hassasiyetlerinin aynı olup olmadığı, İki farklı antibiyotiğin tedavi etkinliklerinin aynı olup olmadığı gibi hususlar ayrı birer hipotezin konusudur.
Tanım Hipotez testi; Örneklerden elde edilen bilgiler ile teoriyi kıyaslayıp KARAR VERMEYİ içerir. Dolayısıyla aşağıdaki sorulara cevap verilmesi gerekir: Örneklerden yapılan çıkarımın Kurulan hipotez ile uyumsuz olduğuna nasıl karar verebiliriz? Kurulan hipotezi ne zaman ret/kabul edebiliriz? Hatalı karar verme ihtimalimiz nedir? hipotez testi
Hipotez Testi Nedir? Örnek: Formula 1 araçlarının süspansiyon sisteminde kullanılan bir parçanın ömrünün normal dağıldığı ve ortalamasının 10.000 ve standart sapmasının ise 2.000 olduğu belirlenmiştir. Bu parçayı üreten firmanın mühendislik departmanı, parçaların ömürlerinin artırmak için yeni bir üretim yöntemi geliştirmişlerdir. Yeni üretim yöntemiyle üretilen parçaların ömürleri daha uzun olabilir mi? Bu soruya hipotez testi kullanarak cevap verebiliriz.
Hipotez Testi Nedir? Örnek Çözüm: Bu karar verme problemini basitleştirmek birkaç kabul yapalım: Yeni üretim yönteminden elde edilecek parçaların ortalama ömürleri en azından eski üretim yönteminden elde edilecekler kadar olacaktır. Standart sapma ve dağılım tipi (normal dağılım) olarak kalacaktır. Yukarıdaki ifadelerden: X->yeni üretim yöntemi ile üretilen parçaların ömrünü göstersin İki durum ortaya çıkar: 1.Yeni üretim yöntemi ile elde edilen parçaların ömrü daha uzun değil ise m=10.000 2.Yeni üretim yöntemi ile elde edilen parçaların ömrü daha uzun ise m>10.000
Hipotez Testi Nedir? Örnek Çözüm (devam): Bu iki ifade, yeni üretim yöntemi ile üretilen parçaların ömrü ile ilgili iki hipotezi ortaya koyar: BİRİNCİ HİPOTEZ: Yeni üretim yöntemi ile üretilen parçaların ömrü eski üretim yöntemi ile üretilen parçaların ömrü kadardır: m=10.000. Aralarında fark yoktur (ömürler arasındaki fark sıfırdır) dolayısıyla bu hipotez SIFIR Hipotezi (H 0 ) olarak adlandırılır. İKİNCİ HİPOTEZ: Yeni üretim yöntemi ile üretilen parçaların ömrü eski üretim yöntemi ile üretilen parçaların ömründen fazladır; m>10.000. Alternatif hipotez olarak adlandırılır ve H 1 ile gösterilir.
Hipotez Testi Nedir? Testin kurulumu: Bu hipotezleri test etmek için: Yeni üretim metoduyla üretilmiş 25 örnek parça alalım. Ve şu varsayımı dikkate alalım: Bu örneklerin ortalama ömürleri 11.000 çevrimden daha fazla ise: H 0 -> RET Bu örneklerin ortalama ömürleri 11.000 çevrimden daha az ise: H 0 -> KABUL
Hipotez Testi Nedir? Kurulan test ne kadar iyi? Kurulan testi değerlendirmek için iki tip hata tanımlanır: I. Tip hata ( ): H 0 hipotezi doğru iken H 0 hipotezinin reddedilmesi II. Tip hata (b ): H 0 hipotezi yanlış iken H 0 hipotezinin kabul edilmesi = P{I. Tip hata yapma} = P{Ho reddedilir Ho doğru} b = P{II. Tip hata yapma} = P{Ho reddedilemez Ho yanlış} Bu örnek için:
Hipotez Testi Nedir? Elde edilen sonuç ne anlama geliyor? Dikkate aldığımız 25 örneğin ortalaması: 11.500 çevrim olarak hesaplanmış olsun Bu durumda Ho hipotezi reddedilir. Yani: Yeni üretim yöntemi ile imal edilen parçaların ömrü 10.000 çevrime eşit değildir. H1 hipotezi kabul edilir. Yani: Yeni üretim yöntemi ile imal edilen parçaların ömrü 10.000 çevrimden daha fazladır.
Hipotez Testinin Temel Kavramları Bir hipotezin kurulmasında aşağıdaki şartların yerine getirilmesi önerilmektedir: Bilimsel ilişkiler bakımından anlamlı ve mantıklı olmalıdır. Önceki bilgilere dayanmalı ve bilimin temellerine uygun düşmelidir. Bilimsel yöntemlerle doğruluğu denetlenebilmelidir. Hipotez testleri: parametrik : Hipotez testinde verilere ait ortalama, varyans ve oran gibi değerler kullanılır parametrik olmayan (non parametrik) : verilere ait sıralama ve işaret gibi göstergeler kullanılır
Hata Tipleri ve Testin Gücü Hipotez testlerinde doğru bir hipotezin reddedilmesi veya yanlış bir hipotezin kabul edilmesi olasılıkları da vardır. Bu olasılıklar hata tipleri ile açıklanmaktadır. Doğru bir hipotezin reddedilmesi halinde işlenen hataya I. tip hata ( ), Yanlış bir hipotezin kabul edilmesi halinde işlenen hataya da II. tip hata (b) Hipotez testinin çalışma prensibi: Örnek veriler Kriter Ho reddedilir veya reddedilemez Çıkarsama Bir hipotez testi sonucunda 4 durumla karşılaşılabilir: 1. H 0 doğru iken H 0 reddedilemez (doğru karar) Teste Anakütleye göre 2. H 0 gerçekte yanlış iken H 0 reddedilir (doğru karar) göre H 0 Doğru H 0 Yanlış 3. H 0 doğru iken H 0 reddedilir (I. Tip hata ) H 0 ret I. tip hata Doğru karar 4. H 0 yanlış iken H 0 reddedilemez (II. Tip hata b) H 0 kabul Doğru karar II. tip hata
Hata Tipleri ve Testin Gücü Bir testin ne kadar iyi olduğu bu olasılıklarla belirlenir. Anakütle yerine örnek üzerinde çalışıldığı sürece iki hata tipini birlikte ortadan kaldırmak mümkün değildir. Birisinin çok küçültülmesi diğerinin aşırı derecede büyümesine neden olur. Sadece örnek büyüklüğü artırılarak iki hata tipi birlikte kontrol altında tutulabilir. Öte yandan, yapılan testin gücü testin gücü=1-b formülü ile ölçülmektedir. Araştırmalarda genellikle doğru bir hipotezin reddedilme riski olan I. tip hata ile ilgilenilmektedir. I. tip hata ( ), aynı zamanda testin önem seviyesini de göstermektedir. I. tip hata için çoğunlukla =0.05 veya =0.01 değerleri, nadiren de =0.10 değeri kullanılmaktadır.
Tek ve Çift Yönlü Testler Alternatif hipotezin (H 1 ) kuruluş biçimine göre testler tek veya çift yönlü olarak adlandırılır. H 1 :m>m 0 H 1 :m<m 0 H 1 :m m 0 biçiminde ise test tek yönlü biçiminde ise test çift yönlü
Tek Ve Çift Yönlü Testler Örneğin: Yeni geliştirilen bir üretim yönteminin eski yöntemden daha iyi olup olmadığı karşılaştırılacaksa Hipotez testi: İki tezgahın üretimi karşılaştırıldığında Hipotez testi:
Hipotez Testinin Aşamaları Hipotez testlerinde işlemler 5 adımda yürütülür: 1.Hipotezler (H o ve H 1 ) kurulur. Hipotezler anakütle parametreleri üzerine kurulur. Örneğin: bir anakütlenin ortalamasının belirli bir değere eşit olup olmadığı test edilecekse H o :m=m 0 ve H 1 :m>m 0 veya m<m 0 veya m m 0 şeklinde hipotezler kurulabilir. 2.İncelenen olayın dağılımına bağlı olarak karşılaştırmada esas alınacak tablo değeri (teorik değer) belirlenir. Örneğin: Alternatif hipotezin kuruluş biçimine bağlı olarak t dağılımı kullanılacaksa t, n-1 veya t /2, n-1, Z dağılımı kullanılacaksa Z, veya Z /2 ilgili tablo değerini gösterir.
Hipotez Testinin Aşamaları 3. Olayla ilgili veriler toplanır ve olayın dağılımına uygun test istatistiği hesaplanır. Örneğin: t dağılımı kullanılacaksa olayla ilgili toplanan veriler kullanılarak t h =( -m)/s x veya Z dağılımı kullanılacaksa Z h =(X-m)/ test istatistikleri hesaplanır 4. Tablo değeri ile test istatistiği karşılaştırılarak H 0 hipotezi hakkında karar (kabul veya red) verilir. Genel kural: Test istatistiği > Tablo değeri H 0 reddedilir örneğin t dağılımı kullanılacaksa t h > t, n-1 veya t h > t /2, n-1 H 0 reddedilir örneğin Z dağılımı kullanılacaksa Z h > Z veya Z h > Z /2 H 0 reddedilir 5. Yorum yapılır: Adım 4 de elde edilen sonucun ne anlama geldiği sözel olarak ifade edilir. Örneğin alınan verilere (örneklere) göre anakütle ortalamasının belirli bir değere eşit olup olmadığı test ediliyorsa hata {veya (1- ) güven} seviyesinde anakütle ortalamasının... değerine eşit (veya değerinden farklı) olduğu söylenebilir şeklinde bir yorum yapılabilir.
Standart Normal Dağılımı ile yapılan testler Dağılımın normal olduğu veya normale yakınsadığı durumlarda ortalama ve oranlarla ilgili testlerde Z dağılımı kullanılabilir. Ancak, bunun için aşağıdaki şartlardan birinin gerçekleşmesi gerekmektedir: Anakütle varyansı bilinmelidir. Anakütle varyansı bilinmiyorsa örnek hacmi 30 veya daha fazla olmalıdır. Z dağılımı yardımıyla yapılan testler şunlardır: Bir ortalamanın testi İki ortalama farkının testi Bir oranın testi İki oran farkının testi
Bir Ortalamanın Testi Herhangi bir anakütlenin ortalamasının belirli bir değere (m 0 ) eşit olup olmadığı değerleri kullanılarak hipotez testi ile incelenebilir
Bir Ortalamanın Testi Örnek: Spor malzemeleri üreten bir firma, ürettiği olta iplerinin dayanma mukavemeti ortalamasının 15 kg/mm 2, standart sapmasının 0.5 kg/mm 2 olduğunu açıklamıştır. Firmanın bu iddiasını test etmek isteyen bir tüketici örgütü firmanın üretiminden rastgele 50 olta ipi almış ve ortalamasını 14.8 kg/mm 2 olarak belirlemiştir. %1 hata seviyesinde olta ipleri mukavemetinin 15 kg/mm 2 ye eşit olup olmadığını test ediniz.
Bir Ortalamanın Testi Örnek Çözüm:
İki Ortalama Farkının Testi Örnek: Varyansları 56 ve 65 olan iki anakütleden sırasıyla 25 ve 30 birimlik örnekler alınmış ve birinci örneğin ortalaması 92, ikinci örneğin ortalaması da 88 olarak hesaplanmıştır. Anakütle ortalamalarının farklı olup olmadığını %5 hata seviyesinde test ediniz.
İki Ortalama Farkının Testi Örnek Çözüm:
Bir Oranın Testi Örnek hacminin yeterince büyük olması durumunda binom dağılımı normal dağılıma yakınsadığı için herhangi bir anakütle oranının belirli bir değere (p 0 ) eşit olup olmadığı normal dağılım yardımıyla aşağıdaki hipotez kurulur: Örnek: Bir tedavi yöntemi 40 hasta üzerinde uygulanmış ve bunlardan 30 u iyileşmiştir. Bu uygulama sonucuna göre %5 hata seviyesinde tedavi yönteminin etkinliğinin 0.80 den önemli derecede düşük olduğu söylenebilir mi?
Bir Oranın Testi Örnek Çözüm:
İki Oran Farkının Testi Örnek hacminin yeterince büyük olması durumunda binom dağılımı normal dağılıma yakınsadığı için herhangi iki anakütle oranının eşit olup olmadığı veya anakütle oranları arasındaki farkın belirli bir değere (c) eşit olup olmadığı normal dağılım yardımıyla test edilir. değerleri kullanılarak hipotez testi ile incelenebilir. H 0 hipotezinin kuruluş şekline bağlı olarak ifadesi farklı formüller yardımıyla hesaplanır.
Gelecek Dersin Konusu ne devam edilecek.