BTZ Kaa Deliği ve Gafen Ankaa YEF Günlei 015 1-14 Şubat 015, ODTÜ Ümit Etem ve B. S. Kandemi
BTZ Kaa Deliği Gafen ve Eği Uzay-zamanla Beltami Tompeti ve Diac Hamiltonyeni Eneji Değelei ve Gafen Paametelei Sonuç
BTZ Kaa Deliği Kaa Delik : Mekezindeki büyük kütleden kaynaklanan kütleçekim alanından kaçış hızının ışık hızından büyük olduğu uzay-zaman bölgesi. Kaçış hızının ışık hızına eşit olduğu yüzey kaa deliğin olay ufku olaak adlandıılı. Olay ufkunun içinden ışık dışaı kaçamaz. 3
Bi kaa deliği betimlemek için üç fiziksel paamete yetelidi; Kütle (M) Açısal momentum (J) Yük (Q) (3+1) boyutlu kütleçekim teoisindeki kaa delik çözümlei; Statik kaa delik, M, Schwazschild Dönen kaa delik, M+J, Ke Yüklü ve dönen kaa delik, M+J+Q, Ke-Newman Kaa deliklein valığına ilişkin (dolaylı) gözlemsel kanıtla mevcuttu. 4
(+1) boyutta kütleçekimteoisi topolojikbi teoidi. Dolayısıyla lokalsebestlik deecelei yoktu. (Çözümle, nokta tekillikle içeen düz metikledi) Fakat, kozmolojik sabitin valığında duum faklıdı. Kozmolojik sabit, boşluğun eneji yoğunluğuna kaşılık geli. Pozitif ya da negatif değe alabili. Negatifkozmolojik sabitli, (+1) boyutlu kütleçekimteoisi bi kaa delik çözümüne sahipti. Bu çözüm BTZ kaa deliğidi. (Banados, Teitelboim, Zanelli PRL 69, 1849 (199)) 5
BTZ kaa delik metiği aşağıdaki biçimdedi t,,φ ds = dt + + dφ dt (+1) boyutlu uzay-zaman koodinatlaı, M kaa deliğin kütlesi ve J açısal momentumu, 1 Λ= l kozmolojik sabit d J = l J + 4 M Bu metik ikikoodinat tekilliğine sahipti, bunla kaa deliğin iç ve dış ufuklaına kaşılık geli 1/ M J m = l 1m 1 Ml kaa deliğin olay ufkudu ve vaolması için şu koşulla sağlanmalıdı; + M > 0, J Ml 1/ 6
Gafenve Eği Uzay-zamanla Gafen: Kabonatomlaının boyutlu altıgen ögüsü Eneji spektumu: Billouin bölgesindeki bazı izole noktaladadeğelik ve iletim bantlaı bibiine dokunu. Dolayısıyla gafenbi yaı-metaldi. 7
Gafendekidüşük enejili elektonik uyaılmala efektif olaak kütlesiz Diacdenklemini sağlayan psödo-paçacıkla aacılığıyla betimleni; ( k τ k ) H ( k) =hv + σ F xσ 1 3 y ( altögü için Pauli matislei ve τ K, K noktalaı için Pauli matisi) σi 3 Bu Hamiltonyenekaşılık gelen dispesiyon bağıntısı momentuma göe lineedi; E( k) =hv F k 8
İki boyutlu gafenyüzeyi, değişik deneysel yöntemle kullanılaak faklı eği biçimlee sokulabili. Dolayısıyla, eği gafenyüzeylei eği bi akaplandahaeket eden Diac paçacıklaını betimlemek için kullanılabili. İki boyutlu eği yüzeyle, eğiliği sadece uzay kısmında olan (+1) boyutlu uzay-zaman nesnelei olaak göülebilile. Bu yolla, Diacpaçacıklaının bi eği uzay-zaman kuantum alan teoisi ealizasyonu, üç boyut içeisine gömülebiliiki boyutlu gafen yüzeylei kullanılaak elde edilebili. 9
BeltamiTompeti ve DiacHamiltonyeni BTZ metiği aşağıdaki biçimde yazılabili ds = dt + d + dφ J dt Paantez içeisindeki kısım (optik BTZ metiği) Beltami tompeti yüzeyini ifade eden metikle aynı fomdadı; dt + dρ + C dφ Wdt ( ) C ve W, ρ koodinatının fonksiyonlaıdı. Dolayısıyla, BTZ kaa deliği Beltamitompeti yüzeyi ile konfomal olaak ilişkilidi. (Cvetic, Gibbons, Ann. Phys. 37 617 (01)) 10
BTZ metiği negatif sabit eğiliğe sahip olduğundan, yalnızca olay ufkunun dış > + kısmı ( ) 3 boyutlu uzaya boyutlu yüzey olaak gömülebili(hilbet teoemi) Dolayısıyla, olay ufkunun dışı 3 boyutlu uzaydaki Beltami tompeti yüzeyi ile modellenebili. Kütlesiz Diac denklemi konfomal simetiye sahipti; ~ ~ (1 D )/ =Ω g Ψ=Ω Ψ g µν µν g metik, Ψ Diac çözümü, Ω is konfomal çapan, D boyut Yani, Beltamitompeti akaplanındadiacdenklemi yazıldığında, BTZ kaa delik uzay-zamanında haeket eden Diac paçacıklaının özellikleine ulaşılabili. 11
Optik BTZ metiği akaplanındakidiacdenklemi aşağıdaki gibi yazılı; Paulimatislei ve dalga fonksiyonu biçiminde alındı. 0 ) ( 4 4 3 3 1 = + + + J J m E im J M ψ σ σ σ i σ φ ψ im iet e + = Ψ ) ( Psödo-Hemitselkuantum mekaniği yöntemlei kullanılaak, bu akaplaniçin HemitselDiacHamiltonyenişu şekilde elde edili; 1 3 1 4 J m J m i H + + + = σ σ σ =
Eneji Değelei ve GafenPaametelei Diac Hamiltonyenleinin spektumu alttan sınılı değildi (sonsuz negatif eneji özdeğelei vadı). Dolayısıyla, olağan vayasyonel yöntemle özdeğelei belilemek için kullanışlı değildi. Ancak, DiacHamiltonyenleininözdeğeleinintam kümesi kesikli baz kümesi yöntemi (discetebasisset method) kullanılaak bulunabili. (Dake and Goldman PRA 3, 093 (1981)) 13
Boyutsuz paametele kullanılaak c ( olay ufku) J J ' =, ~c Ml = optik BTZ akaplanındakidiachamiltonyeninineneji özdeğelei aşağıdaki gibi bulunu c Ml E = hv l F mj ' e ± ( ~ MJ ' Q) + ( 4 m R) ~ ~ c ~ J Q = ~ ' ~ ~ 1+ e d ~ c ~ ~ R = ~ c ~ J ' ~ ~ ~ 1+ ~ e d 14
Bu özdeğele, elektik(ef) ve manyetik(mf) alanlaın etkisi altındaki ve kütle teimine(k) sahip gafen psödopaçacıklaının enejilei ile aynı fomdadı; ( ) EF± K ( MF 3 a E = J + l 0 ) hvf buada J 0 = ve a gafenin ögü aalığıdı. 3a BTZ metiğindeki uzunluk paametesi gafendekidoğal uzunluk paametesi olan ögü aalığı a ya kaşılık geli. l Dolayısıyla, gafendeki elektik alan, manyetik alan ve kütle teimleini BTZ akaplanındaki özdeğelele kaşılaştıabiliiz. 15
B manyetik alanı uygulanmış bi gafenöneğinin eneji özdeğelei aşağıdaki gibidi; E B = sgn( m) hv Bm Bu ifade BTZ akaplanıenejisinin MF kısmı ile kaşılaştıılısa, BTZ metiğinin MF kısmının aşağıdaki uygulanmış manyetik alan ile betimlenebileceği bulunu ( Tesla biiminde ) 8hcm ~ 4 ~ B = R = 8 3,6 10 mr el Benze şekilde, EF ve K teimlei de elde edili (ev biiminde) EF 3 mj e 3 ~ c =,7 ' ~, K =,7 MJ ' Q Dolayısıyla, J ' paametesi gafenöneğine uygulanmış bi elektik alanile betimlenebiliken, M aalık (gap) açan kütle teimi ile ilişkilidi. F e c 16
Özel Duumla Benze analiz BTZ metiğindeki paametelein bazı özel hallei için de yapılabili. i) kozmolojik sabitli vakum duumu M = 0, J = 0 E m l ~ ( 3, ) 1= ± hvf Γ c ii) M 0, J = 0 statik BTZ kaa deliği 4m l E =± v h F ~ 1e ~ iii) anti de Sitte(AdS) uzay-zamanı M = 1, J = 0 4m l c E =± v 3 h F ~ c ~ ~ + 1e ~ ~ d~ ~ d~ 17
iv) ekstem BTZ kaa deliği M 0, J = Ml E 4 = hv l F me ± ~ ~ ( ) MQ + ( mr) ~ c [ ] ~ (1+ ) e (1+ ) e Γ(, ) Ei( ~ ) ~ 1 ~ c Q= c 4 c ~ ) ~ (1+ ~ ) ~ c e c c e R= 1 4 (+ 1 Γ(3, ) (i), (ii) and(iii) duumlaı gafenyüzeyine uygulanan bi manyetik alanla temsil edilebili. (iv) duumu gafeneuygulanan manyetik ve elektik alanla ve aalık (gap) açan kütle teimi ile temsil edilebili. 18
Sonuç BTZ kaa delik metiğine konfomalolaak eşdeğe olan Beltami tompeti akaplanındaki Diac psödopaçacıklaının enejilei gafendekimanyetik alan, elektik alan ve kütle teimlei ile temsil edilebili. Dolayısıyla, bi gafenyüzeyine uygun manyetik ve elektik alanla ile aalık (gap) açma posedüü uygulanısa, (+1) boyutlu bi BTZ kaa deliğinin laboatuva modeli elde edilebili. Bu analogmodel, BTZ kaa deliğinin fiziksel özellikleinin anlaşılmasında kullanılabili. 19