Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Benzer belgeler
Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

Uzaktan Algılama Uygulamaları

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

Uydu Görüntülerinin. Rektifikasyon ve Registrasyonu. Hafta - 5

Görüntü İyileştirme Teknikleri. Hafta-8

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

UZAKTAN ALGILAMA Görüntü Verisinin Düzeltilmesi ve Geliştirilmesi

BÖLÜM-II ERDAS IMAGINE TEMEL KISIM1: IMAGINE VIEWER 1

COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA

Uzaktan Algılama (3) Yrd. Doç. Dr. Özgür ZEYDAN Renk Teorileri

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= Genel: Vektörler bölümünde vektörel iç çarpım;

UZAKTAN ALGILAMA- UYGULAMA ALANLARI

ULUSAL COĞRAFİ BILGİ SISTEMLERİ KONGRESİ 30 Ekim 02 Kasım 2007, KTÜ, Trabzon

Dr. Öğt. Üyesi Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Dijital (Sayısal) Fotogrametri

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN Renk Teorileri

Uzaktan Alg ılamaya Giriş Ünite 6 - Görüntü O t r orektifikasyonu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

MOD419 Görüntü İşleme

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDE GEOMETRİK DÜZELTMENİN SINIFLANDIRMA SONUÇLARINA ETKİSİ

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon

Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI JDF435 UZAKTAN ALGILAMA DERSİ NOTLARI

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

ÖZDEĞERLER- ÖZVEKTÖRLER

Digital Görüntü Temelleri Görüntü Oluşumu

Dijital (Sayısal) Fotogrametri

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ*

Jeodezide Yaklaşım Yöntemleri: Enterpolasyon ve Kollokasyon

İçerik. Giriş 1/23/13. Giriş Problem Tanımı Tez Çalışmasının Amacı Metodoloji Zaman Çizelgesi. Doktora Tez Önerisi

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu

Uzaktan Algılama Teknolojileri

Bilgisayarla Fotogrametrik Görme

İstatistik ve Olasılık

Elektromanyetik Radyasyon (Enerji) Nedir?

İleri Diferansiyel Denklemler

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

VEKTÖR UZAYLARI 1.GİRİŞ

Bilgisayarla Görüye Giriş

Korelasyon, Korelasyon Türleri ve Regresyon

KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu

ArcGIS ile Tarımsal Uygulamalar Eğitimi

TEMEL GÖRÜNTÜ BİLGİSİ

Bilgisayarla Görüye Giriş

Özdeğer ve Özvektörler

KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ

Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma

Dijital (Sayısal) Fotogrametri

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003

Bölüm 7 Renkli Görüntü İşleme

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Bilgisayarla Görüye Giriş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Yrd. Doç. Dr. A. Burak İNNER

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

MAK 210 SAYISAL ANALİZ

YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ

HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ

JDF821 UZAKTAN ALGILAMA GÖRÜNTÜLERİNDEN DETAY ÇIKARIMI Sunu2

Bölüm 2: Kuvvet Vektörleri. Mühendislik Mekaniği: Statik

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

Koordinat Referans Sistemleri

1. Değişik yeryüzü kabuk tiplerinin spektral yansıtma eğrilerinin durumu oranlama ile ortaya çıkarılabilmektedir.

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Digital Görüntü Temelleri Görüntü Oluşumu

FARKLI ÇÖZÜNÜRLÜKTEKİ UYDU GÖRÜNTÜLERİNİN GEOMETRİK DÖNÜŞÜMÜ

TOPOĞRAFYA Temel Ödevler / Poligonasyon

Dünya nın şekli. Küre?

FOTOYORUMLAMA UZAKTAN ALGILAMA

Cebir 1. MIT Açık Ders Malzemeleri

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING

FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

JDF 242 JEODEZİK ÖLÇMELER 2. HAFTA DERS SUNUSU. Yrd. Doç. Dr. Hüseyin KEMALDERE

Hafta 2 Görüntünün Alınması ve Sayısallaştırılması

Uzaktan algılamada uydu görüntülerine uygulanan işlemler

BLG325.1 SINYAL ISLEME DERSİ BİLGİ PAKETİ. Haftalık Ders Planı

ii) S 2LW 2WH 2LW 2WH S 2WH 2LW S 3( x 1) 5( x 2) 5 3x 3 5x x Maliye Bölümü EKON 103 Matematik I / Mart 2018 Proje 2 CEVAPLAR C.1) C.

UA Teknikleri Kullanılarak Taşkın Alanlarının Belirlenmesi ve Bölgesel Taşkın Frekans Analizinin Batı Karadeniz Bölgesinde Uygulanması

Ekonometri I VARSAYIMLARI

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

Transkript:

Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1

Görüntü Zenginleştirme Spektral Dönüşümler Spektral dönüşümler Kontrast zenginleştirme Doğrusal/Lineer kontrast artırımı Doğrusal olmayan (Histogram eşitleme, Gauss) Aritmetik bant işlemleri Ana bileşen dönüşümü

Spektral Dönüşümler Kontrast Artırımı Histogram Eşitleme: Bu yöntemde amaç, çıktı görüntü histogramının uniform bir dağılımda olmasını yani her bir parlaklık seviyesi için yaklaşık aynı sayıda piksel bulunmasını amaçlar. Görüntü parlaklık değerleri ayrık değerler olduğu için eşitleme işlemi sırasında herhangi bir parlaklık seviyesine çok fazla sayıda piksel girebilir. Ancak histogram, yansıtım değerlerinin mekânsal konumuyla ilgili bilgi içermediğinden, bu seviyedeki pikselleri birbirinden ayırt etmek imkânsızdır. Diğer bir deyişle birçok piksel birkaç parlaklık seviyesinde toplanabilir. Genelde çok nadiren tamamen uniform bir sonuç histogramı elde edilir.

4

Spektral Dönüşümler Aritmetik Bant İşlemleri Tek veya farklı kaynaklardan gelen görüntü bantlarının, uygun matematiksel yöntemlerle yeni bir özellik uzayına dönüştürülmesi işlemidir. En temel dönüşüm yöntemleri basit aritmetik işlemleri ve bant oranlamasıdır

NOAA AVHRR NDVI Nisan1985 - Aralik 1988 http://www.cossa.csiro.au/gallery/jlat.htm 6

Spektral Dönüşümler Ana Bileşen Dönüşümü Çok spektrumlu görüntülemede ölçülen toplam spektral bilgi, bantlar arasında paylaştırılmıştır. Genellikle toplam spektral bilginin bir kısmı değişik oranlarda bantlar arasında tekrarlanır. Matematiksel ifadeyle, bantlar birbirleriyle korelasyonludur ve bundan dolayı benzer bilgiler içerirler. Şekil de, bir görüntünün mavi ve kırmızı bantları arasındaki saçılım diyagramı ve aralarındaki lineer ilişki verilmiştir. Bantlar arasındaki korelasyon katsayısı 0.96 olarak hesaplanmıştır. Bu değer, saçılım grafiğiyle tutarlı bir şekilde pozitif oldukça güçlü bir doğrusal ilişkiyi göstermektedir

Bu dönüşüm, farklı disiplinlerce çok değişkenli (çokboyutlu) verilerin analizinde (multivariate analysis) kullanılmaktadır. Çok değişkenli analiz konusu, iki veya daha çok boyutlu rasgele değişkenleri bir bütün olarak ele alan ve değişkenler arasındaki ilişkileri göz önünde tutarak,bütünsel bir sonuç üreten istatistiksel tekniklerden meydana gelmektedir. Ç. Göksel-N. Musaoğlu, Veri entegrasyonu ders notu 2005 8

Çok değişkenli verilerin analizinde, bütüncül istatistiksel sonuçlar üretmenin ötesinde, çok değişkenli veri kümesinin yapısını tanımlamaya yönelik veri-çözümleme Ana bileşenler dönüşümü (Principal Components Transformation ); aralarında yüksek korelasyon bulunan çok değişkenli verileri, aralarında korelasyon olmayan yeni bir koordinat sistemine dönüştüren doğrusal bir dönüşümdür. Dönüşümden sonra, veriler arasında korelasyon ortadan kalkar. 9

Ana bileşenler dönüşümü, fotogrametri ve uzaktan algılamada; Görüntü sıkıştırmada (image compression), Görüntü iyileştirmede (image enhancement), Üçten fazla bandla algılanmış görüntülerin ekranda gösterilmesinde, Değişim belirlemede(change detection), Görüntü çakıştırılmasında (image merging), Sınıflandırma öncesinde sınıflandırmaya sokulacak band sayısının azaltılmasında, Özellik çıkarımında vs.kullanılmaktadır. 10

Ana bileşenler yöntemi uzaktan algılama verisini işlemede kullanılan veriye bağımlı, istatistiksel bir yöntemdir. Bu yöntemde verinin istatistiksel değerlendirmelerinden yararlanarak görüntü yeniden oluşturulmaya çalışılır. İstatistiksel yöntemler kullanılarak veri içerisindeki benzerlikler ve farklılıklar vurgulanmaktadır. 11

Ana bileşenler dönüşümü, çok spektrumlu verilerdeki veri fazlalılığını kaldırmak veya azaltmak, Başka bir deyişle benzer olan kanalları bastırmak veya göze daha yorumlanabilir olan yeni kanal verilerini oluşturmak amacıyla geliştirilmiş bir görüntü zenginleştirme işlemidir. Veri Sıkıştırma tekniğidir. Bilgi kaybı olmaksızın daha az sayıda veri bitinin iletimini ve depolanmasını mümkün kılar. Veri özetleme yöntemidir. Gereksiz verilerin boyutları küçültülerek bantlarda daha az yer kaplamaları sağlanır 12

Spektral kanallar arasındaki spektral duyarlılığın çakışması neticesinde korelasyon oluşabilir Örneğin, bitki örtüsünün yoğun olduğu bir bölgenin çok bandlı görüntüsünde, görünür kırmızı band ile yakın-kızılötesi band arasında negatif korelasyon olmasına karşın, Görünür mavi band ile görünür yeşil band arasında pozitif korelasyon olacaktır. 13

Ana bileşenler dönüşümü ile verinin boyutu azaltılır ve orijinal görüntüdeki bantlar daha az sayıda banda sıkıştırılır. Bu istatistiksel işlemler sonucunda oluşan yeni bantlara ana bileşenler denir. Bu işlemde az sayıda bileşenle daha fazla bilgi elde edilir. Ana bileşenler dönüşümü ile 7 bantlık görüntü, 3 bantlı bileşene dönüştürülüp boyutsallık indirgenir ve bilgi oranı arttırılır. Mevcut bilgi korunarak, bant sayısı azaltılmaktadır 14

15

Yöntem, minimum korelasyonlu bilgileri sıkıştırarak veri grubu hakkında maksimum bilginin çıkarılmasını sağladığı için, çok kanallı verilere görsel yorumlama veya sınıflandırma öncesi uygulandığında, verilerden bilgi çıkarılmasını kolaylaştırmaktadır. Dönüşümde, uydu görüntülerindeki parlaklık değerleri, yeni bir koordinat sisteminde yeniden hesaplanır. n kanallı orijinal veri dizisinde mevcut olan tüm bilgiler n den daha az sayıda ki yeni kanallara veya bileşenlere sıkıştırılır. Elde edilen ana bileşen verileri,orijinal veri değerlerinin basit bir lineer kombinasyonudur. 16

Spektral Dönüşümler Ana Bileşen Dönüşümü Ana bileşen dönüşümünde amaç, bilgi tekrarı olmayan korelasyonsuz (birbirine ortogonal) bileşenler elde etmektir. Elde edilen bileşenlerin bağımsız olmaları, orijinal verinin çok boyutlu Normal (Gauss) dağılımına uygun olmasına bağlıdır. Dönüşüm sonucu, orijinal bantların lineer bir kombinasyonudur:

Spektral Dönüşümler Ana Bileşen Dönüşümü N bantlı bir görüntüde; Ki ler orijinal bantları ve i ler ana bileşenleri göstermektedir. aij ler ise dönüşüm katsayılarıdır. Bu katsayılar, birbirine ortogonal ve normalize edilmiş x özvektörlerinden oluşur. Bu nedenle dönüşüm ortogonaldir. Temel matematiksel prensip, sıfırdan farklı bir x vektörünün herhangi bir C kare matrisiyle (özel olarak simetrik matris) çarpımının bu x vektörüyle orantısal olmasıdır. Yani Cx çarpım vektörüyle x vektörü aynı doğrultuda ancak farklı büyüklüğe (norma) sahiptirler. Bu iki vektör arasındaki oran değeri α skaleriyle gösterilir. Bu durum şu eşitlik ile ifade edilir:

Spektral Dönüşümler Ana Bileşen Dönüşümü Çok spektrumlu uydu görüntüleri için C matrisi, merkeze ötelenmiş çok bantlı görüntü verisinin simetrik varyanskovaryans matrisidir. skalerine özdeğer ve x vektörüne bu özdeğerlere karşılık gelen özvektör denir. Görüntü bant sayısı kadar ve x vektörü elde edilir. değerleri her bir ana bileşenin taşıdığı bilgi içeriğinin yani varyansının bir ölçüsüdür.

Spektral Dönüşümler Ana Bileşen Dönüşümü Ana bileşenler, büyük varyans değerine sahip bileşenden küçük varyanslı bileşene doğru sıralanır. Böylece en büyük varyans (veri değişkenliği) 1. ana bileşende ve daha sonra 2. ana bileşende olacak şekilde devam eder. Genellikle bu işlem sonucunda tüm ana bileşenler yerine toplamda veri değişkenliğinin yaklaşık %90-95 lik kısmını içeren ana bileşenler dikkate alınarak veri boyutunda etkin indirgeme sağlanır. 20

Spektral Dönüşümler Ana Bileşen Dönüşümü Orijinal 3 bantlı görüntünün kırmızı ve mavi bantlarına uygulanan ana bileşen dönüşümü sonuçları verilmektedir. Birinci ana bileşen tüm verinin yaklaşık %98 ini içermektedir.

PCA örnek 22

23

24

25

26

27

Geometrik düzeltme Geometrinin önemi Görüntü eşleme Yeniden örnekleme (resampling) 28

Karşılaştırma amaçlı; Çok bantlı görüntüler Çoklu algılayıcı kullanımı Çoklu sistemler Çok zamanlı analiz 29

GEOMETRİK DÖNÜŞÜM Geometrinin önemi Uzaktan algılama verilerinin harita amaçlı kullanımında Raster-vektör verilerinin entegrasyonunda Faklı uydu verilerinin birleştirilmesinde Coğrafi konumun önem taşıdığı çalışmalarda Coğrafi Bilgi Sistemleri için veri tabanı hazırlanacak ise Doğru uzunluk ve alan ölçmelerinin belirlenmesinde Sınıflandırmada harita koordinatlarına göre test alanlarının belirlenmesinde vs. (Kaya, vd. 2002).

GIS http://www.seos-project.eu/modules/agriculture/agriculture-c03-s01.html 31

Geometrik Dönüşüm-Rektifikasyon Haritalar, belirli matematiksel kartografik ve jeodezik projeksiyon kurallarına göre düzlem bir altlık üzerine izdüşürülen ve her noktasında uniform ölçeğe sahip olan yeryüzünün gösterimidirler. Dijital görüntüler, değişik sebeplerden kaynaklanan geometrik distorsiyonlardan dolayı doğrudan harita gibi kullanılamazlar.

Diğer bir ifade ile görüntüyü oluşturan piksellerin temsil ettikleri coğrafi alanların arasındaki uzaklıklar, görüntüde uniform olmayan bir şekilde hatalı olarak gösterilir. Bunun sonucu cisimlerin şekil, büyüklük ve konum gibi özellikleri görüntü düzleminde bozulur. Uydu görüntü verilerinin bu distorsiyonlar için düzeltilerek bir harita projeksiyon sistemiyle tutarlı hale getirilmesi işlemine rektifikasyon adı verilir. 33

Geometrik Dönüşüm-Rektifikasyon Rektifikasyon işlemi sonrasında piksellerin geometrik konumlarının yanı sıra radyometrik (parlaklık) değerleri de değişmektedir. Geometrik distorsiyonlar genel olarak aşağıda belirtilen faktörlerden kaynaklanmaktadır: Bazı algılayıcıların geniş bakış alanı Görüntü elde edilirken Dünya nın dönüşü Yeryüzü eğriselliği (geniş alanlar) Uydu platformunun konum, durum ve hızındaki değişimler Görüntüleme geometrisiyle ilişkili panoramik etkiler Topoğrafik rölyef etkisi

Geometrik Dönüşüm-Rektifikasyon Geometrik distorsiyonların görüntünün bütününde aynı anda giderilmesinde kullanılan genel olarak iki yaklaşım söz konusudur: 1. yaklaşım: Görüntünün piksel piksel topoğrafik distorsiyonları düzeltilerek, harita gibi ortografik izdüşüm özelliğine sahip bir duruma getirilmesi işlemin olan ortorektifikasyon dur sistematik bir yaklaşım distorsiyon düzeltmeleri distorsiyonun türü ve büyüklüğünün modellenmesiyle hesaplanır. Bu yaklaşım distorsiyonun tipi (örn. uydu konumu, durumu, tarama açısı, Dünya nın dönüşü,bakış oranı, panoramik etki, vb.) iyi karakterize edilebildiğinde çok etkili olmaktadır. Topoğrafik rölyefe bağlı geometrik distorsiyonların düzeltilmesi için yeryüzünün Dijital Yükseklik Modeli gereklidir.

http://www.geoimage.com.au/services/imageprocessing 36

http://legacy.satimagingcorp.com/media/images/ikonos_distortion.gif 37

http://www.geoimage.com.au/services/imageprocessing 38

Geometrik Dönüşüm-Rektifikasyon 2. yaklaşım: İkinci yaklaşımda distorsiyonlu görüntüdeki piksellerin koordinatları ile bunların karşılık geldiği arazideki koordinatları arasında (harita yardımıyla) matematiksel bağlantı kurulur. distorsiyonun tipi ve kaynağı hakkında herhangi bir bilgiye gerek olmaksızın görüntü geometrisi düzeltilir. platformdan bağımsız ve ilk etapta en çok tercih edilen bir yaklaşımdır. Bu matematiksel ilişkilendirme yaklaşımı distorsiyonların fiziksel modellendiği birinci yaklaşımla birlikte hibrit (melez) olarak da kullanılabilir. Birinci yaklaşımla algılayıcı, uydu platformu ve yeryüzü kaynaklı distorsiyonlar düzeltildikten sonra geriye kalan artık distorsiyonlar ikinci yaklaşımla düzeltilebilir.

Geometrik Dönüşüm-Rektifikasyon Hangi yaklaşım kullanılırsa kullanılsın görüntülerin geometrik düzeltilmesinde genel olarak 3 aşamalı bir süreç uygulanır: 1. Uygun matematiksel hata düzeltme modelinin seçimi 2. Koordinat dönüşümü veya belirlenen modelin kullanımı 3. Parlaklık değerlerinin yeniden örneklenmesi Distorsiyon tipinin modellenmediği ikinci yaklaşımda, koordinat dönüşüm modelleri iki eksen için ayrı ayrı elde edilir: u = f (x,y) v = g (x,y)

Geometrik Dönüşüm-Rektifikasyon En çok kullanılan dönüşüm modelleri polinom fonksiyonlardır. 1. dereceden tek değişkenli polinom: f(x) = a 0 + a 1 x 2. dereceden tek değişkenli polinom: f(x) = a 0 + a 1 x + a 2 x 2 Görüntü iki boyutlu olduğu için dönüşüm modelleri de iki boyutlu olmak zorundadır. Dönüşüm modeli olarak kullanılacak iki değişkenli polinomun genel matematiksel eşitliği; dir, burada; N; polinomun derecesi, a ve b katsayıları; model parametreleri

42

Geometrik Dönüşüm-Rektifikasyon

Geometrik Dönüşüm-Rektifikasyon Hangi polinom derecesinin kullanılacağına dair fiziksel bir gerekçe yoktur. Uçak platformlarına kıyasla daha stabil bir platformdan alınan uydu görüntüleri için bakış alanının büyük ve topoğrafik rölyef etkisinin küçük olması durumunda genellikle 1. veya 2. dereceden polinomların kullanımı yeterlidir. Özellikle sistem parametrelerine göre sistematik modellerle düzeltilmiş görüntülerin rektifikasyonunda 1. dereceden polinomlar uygundur.

Geometrik Dönüşüm-Rektifikasyon Polinomun derecesi ölçülmesi gereken en az YKN sayısını belirler. 1. dereceden polinom dönüşümü için 6 bilinmeyen (a0, a1, a2, b0, b1, b2) 2. dereceden dönüşüm için toplam 12 bilinmeyen model parametresi vardır. Bunlara göre her bir YKN nin u ve v görüntü koordinatları için iki ayrı eşitlik yazılabildiğinden 1. derece dönüşüm için en az 3 tane ve 2. derece dönüşüm için en az 6 tane YKN ölçülmelidir.

Eğer bilinmeyen (model parametresi) sayısından daha fazla sayıda ölçü (YKN) varsa En Küçük Kareler yöntemi kullanılarak bilinmeyenlerin en olasılıklı değerleri hesaplanmalıdır. Dönüşümün doğruluğu; YKN sayısına, YKN dağılımına, Dönüştürülecek noktaların ağırlık merkezine olan uzaklıklarına bağlıdır. 46

GEOMETRİK DÖNÜŞÜM KOH Dönüştürülen görüntü koordinatları ve buna karşılık gelen referans koordinatları arasındaki dönüşümün doğruluğunu test etmek için aynı noktanın konumları arasındaki uzaklık hesaplanır [Erdas Field Guide,1991]. Bu uzaklık Karesel Ortalama Hata (KOH) olarak adlandırılır.

GEOMETRİK DÖNÜŞÜM KOH R X = R Y = n 1 n i=1 n 1 n i=1 X 2 R i Y 2 R i RMSE = R 2 x + R 2 y RX, RY : x ve y yönlerindeki KOH. RMSE: Karesel ortalama hata. XRi, YRi : i. yer kontrol noktasının düzeltme değeri. n: yer kontrol noktası sayısı.

GEOMETRİK DÖNÜŞÜM Uzaktan algılama verilerinin geometrik dönüşümünde maksimum hata piksel boyutunun yarısı olarak alınır [Welch ve Usery,1984]. Landsat 5 TM için bu değer ± 15 m.(0.5 piksel) Spot P için ± 5 m.(0.5 piksel) IRS 1C P ± 2.5 m.(0.5 piksel)

Geometrik Dönüşüm-Rektifikasyon YKN ler iyi tanımlanmışı, mekânsal olarak küçük, olabildiğince aynı yükseklikte, zamanla değişmeyen yapay veya doğal yeryüzü noktalarıdır. Yol kesişimleri, tarımsal alanların köşeleri, dalga kıran ve limanlar örnek olarak verilebilir. Polinomun derecesi ölçülmesi gereken en az YKN sayısını belirler.

51

http://www.geo-airbusds.com/sg/3263-terrasar-x-based-groundcontrol-points 52

http://www.nrcan.gc.ca/earth-sciences/geomatics/satelliteimagery-air-photos/sensors-methods/visible-infrared/tooltechnique-development/9717 53

54

55

56

3. derece 57

58

Geometrik Dönüşüm-Rektifikasyon Yeniden Örnekleme Dönüşümün YKN ler aracılığıyla belirlenmesinden sonra, geometrik hataları düzeltilmiş distorsiyonsuz gridi oluşturan piksellere ait parlaklık değerlerinin belirlenmesi gerekir. Bu durumda orijinal distorsiyonlu görüntüden hangi parlaklık değerlerinin alı-nacağına karar verilmesi işlemi, diğer bir ifade ile parlaklık enterpolasyonu adımı uygulanır.

Geometrik Dönüşüm-Rektifikasyon Yeniden Örnekleme Genel olarak 3 farklı yaklaşım kullanılmaktadır: tam piksel konum değerleriyle çakışmazlar. 1. En Yakın Komşuluk Örneklemesi Basit bir yöntem olup dönüşüm koordinatlarının en yakın olduğu pikselin parlaklık değeri distorsiyonsuz grid pikseline atanır.

Avantajı Basit bir metottur Orijinal değerler değişmez Dezavantajı Bazı pikseller kaybolurken bazı piksellerin çifti oluşabilir Küçük gride örneklerken köşegen doğru boyunca ve kıvrımlı hat boyunca piksellerde basamak etkisi 61

2. Bilineer Enterpolasyon Bu yöntem, pikseli çevreleyen 4 komşu pikselin kullanıldığı iki boyutlu lineer bir enterpolasyondur. Şekil de görüldüğü gibi siyah dolgulu hedef gride atanacak parlaklık değeri, orijinal distorsiyonlu görüntüdeki (mavi çizgili) en yakın 4 pikselin iki boyutlu lineer enterpolasyonuyla belirlenir. 62

Avantajı Mekansal olarak daha doğru Dezavantajı Sonuçlar daha pürüzsüz Kenarlar kaybolabilir Orjinal pikseldeğerleri değişir ve görüntü harici yeni piksel değerleri oluşur. 63

Geometrik Dönüşüm-Rektifikasyon Yeniden Örnekleme 3. Kübik Enterpolasyon:İki boyutlu 3. dereceden polinom enterpolasyonu olup pikseli çevreleyen 16 piksel (4x4 piksel komşuluk) kullanılır. Şekilde görüldüğü gibi siyah dolgulu hedef gride atanacak parlaklık değeri, orijinal distorsiyonlu görüntüdeki (mavi çizgili) en yakın 16 pikselin iki boyutlu kübik enterpolasyonuyla belirlenir.

Avantajı Geometrik olarak en doğru sonucu verir Bilineer görüntüye göre daha keskin görüntü üretir Dezavantajı Girdi görüntüde yer almayan yeni değerler üretilir Hesaplama uzun sürer 65

Nearest Neighbour Bi-linear Interpolation Cubic Convolution http://seadas.gsfc.nasa.gov/help/general/resamplingmethods.ht ml 66