2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics"

Transkript

1 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının sınırlarının belirlenmesi ve çıkarım yapılmasını sağlayacak çıkarım kural tabanının doğru şekilde tanımlanmasıdır. Genelde, bu tanımlama işlemleri gayet can sıkıcı bir süreç olan deneme yanılma yöntemi ile gerçekleştirilir. Dahası, belirlenen bu değerler genel olarak sadece spesifik yani özel bir uygulamaya ait olmakta ve genelleme şansı pek mümkün olmamaktadır. Bu problemin aşılmasında, çeşitli optimizasyon tekniklerinin kullanımına literatürde bolca rastlanmaktadır. Bu çalışma bulanık mantık kullanılarak tasarlanmış yukarıda bahsi geçen sıkıntıların önlenmesi amacıyla, sistemin optimizasyonu için Genetik Algoritma tekniğini kullanmaktadır. Optimizasyon yapısı elektriksel sinyal sürücü devrelerinde sinyal düzeltme (signal acquisition) deneylerinde karşılaşılan probleminin çözümünde uygulanmaktadır. Bulanık mantık denetleyicisi parametreleri optimal değerlere ulaşıncaya kadar Genetik Algoritma kullanılarak optimize edilmiştir. Optimizasyon yaklaşımı daha kesin ve hızlı işlem yapabilen bir bulanık denetleyici tasarımını önermektedir. Sonuçlar da bu önermeyi doğrulayacak şekilde yükselme ve oturma zamanı kısa ve hızlı bir bulanık denetleyicinin tasarlanabileceğini göstermektedir.

2 1. Giriş Mühendislik alanında, bulanık mantık denetleyicilerin, modellenmesi güç problemlerin çözümünde kullanıldığı birçok kez görülmüştür. Bir bulanık denetleyicinin en önemli özelliği insan davranış biçimine benzer bir yetenekle çalışma yapmasıdır. Bu davranışlarından dolayı, diğer tekniklere nazaran daha etkin ve kesin bir çözüm yaklaşımı geliştirmektedirler. Bulanık yaklaşım uygulamada da kendine geniş yer bulmuştur. Ji Shin Lee ve arkadaşlarının yaptığı çalışmada, serbestlik derecesi 5 olan robot bir kol bulanık yaklaşımla kontrol edilmiş ve elde edilen sonuçlar göstermiştir ki; bu akıllı kontrol yöntemi sabit bir öğrenme eğilimi gerçekleştirmiş, iyi bir hareket kontrol işlemini yerine getirmiştir. Bulanık uygulamalarda en sık karşılaşılan sorun üyelik fonksiyonları ve kural tabanının iyi şekilde oluşturulamamasıdır. Bu işlem insani bir yapıya sahip olduğundan, deneme yanılma gibi bunaltıcı bir dizi işleme gereksinmektedir. Bazı çalışmalarda bu engeli aşmak için adaptif (uyumsal) bazı algoritmalar denenmiş ve denemeye devam edilmektedir. Genetik Algoritma kullanarak optimizasyon yapma tekniğinin de çok yararlı olduğu gözlenmiştir. Genetik Algoritma doğal seçilim ve doğal genetik mekanizmasına dayanan bir arama algoritmasıdır (Search Algorithm). En iyi kalıtıma sahip birey ya da nesne rastgele üretilen bireyleri arasından Reprodüksiyon (Yeniden Üretim), Mutasyon ve Gen Değişimi (Crossover) gibi operatör ya da teknikler kullanılarak elde edilir. Genetik algoritma kullanarak bulanık denetleyici tasarımı çeşitli mühendislik uygulamalarında yer almıştır. Örneğin, Yun Li ve Ark. Hidrolik bir sisteme bu yapıyı uygulamıştır ve iyi sonuçlar elde ettiklerini gözlemişlerdir. Yine Khan da benzer bir uygulamayı ısı kontrolü yapan bir bulanık denetleyiciye uygulamış ve olumlu sonuçlar elde etmiştir. Bu çalışmada, elektriksel sinyal parametrelerini optimize edecek bir bulanık denetleyici tasarımı hedeflenmiştir. Sistem Alçak Geçiren akıllı bir elektriksel sinyal filtre sistemidir. Temel ayar parametresi sistemde sinyal geçişini belirleyecek olan Kesim Frekansı (cut-off freq.) değeridir. Sistem üyelik fonksiyonlarının niteliğini G.A. kullanarak belirlemektedir. Model MATLAB Fuzzy Logic Toolbox ve G.A. kütüphanesi kullanılarak canlandırılmıştır.

3 2. ALÇAK GEÇĐREN FĐLTRE TASARIMI Mevcut modelin amacı, spesifik giriş referans değerlerine karşı, uygun kazançta sinyal frekansını elde etmektir. Frekans değerini tanımlamak için bir A.G.F. (Alçak Geçiren Filtre) tasarlanmış ve aşağıdaki transfer fonksiyonu elde edilmiştir. Buradan kesim frekansı değeri olarak belirlenir ve =... hesaplanır. Eğer = = = ve = = olarak kabul edilirse aşağıdaki denklem elde edilir. Dolayısıyla;. olarak elde edilir. Aşağıda Şekil 1 de yukarıdaki ifadelere uygun şekilde tasarlanan filtrenin blok diyagramı görülmektedir. Şekil 1 A.G.F. Blok diyagram

4 Şekil 1 deki C değerleri sabit olarak kabul edildiğinde kesim frekansının değerinin R değişken değere göre hesaplanacağı görülmektedir. Burada bilinmesi gereken nokta R elemanı için değişken değer elde etmede potansiyometre 1 kullanılamayacağıdır. Sözü geçen bu değişken direnç değer, programlanabilir bir elektronik eleman DS1867 kullanılarak elde edilmektedir. Mevcut model kesim frekans değerinin bu yolla ayarlamaktadır. 1 Değişken direnç değeri veren elektro-mekanik ayarlı (elle ayarlanan) devre elemanı.

5 3. BULANIK MANTIK DENETLEYĐCĐ Bulanık mantık denetleyicisi Gaussian üyelik fonksiyonu kullanılarak karakterize edilmiştir. Kontrol sisteminin yüksek performans gösterebilmesi için bu tip bir belirlemeye ihtiyaç duyulmuştur. Seçilen Gaussian üyelik fonksiyonu aşağıdaki gibi tanımlanmaktadır. μx=exp (3) Burada α ve σ ifadeleri bulanık kümeleri tanımlayan özelliktedir. Bu değişkenler GA kullanılarak kullanıcı tarafından oluşturulmuş Matlab fonksiyonu (GA.m) fonksiyonu kullanılarak optimize edilmektedir. Çıkarım sistemi iki adet giriş ve bir adet çıkış kümesinden oluşmaktadır. Girişlerden biri (ee) hata değeridir. Bu değer istenen (arzu edilen) frekans değeri ile sistemin çıkışından elde edilen gerçek frekans değeri arasındaki matematiksel farkın ifadesidir. Diğer giriş değişkeni ise (de) hatanın türevi yani hatanın zaman domaini üzerindeki değişim oranıdır. Sistemin çıkışı ise üyelik kümelerinin pozisyon değerleri olarak belirlenmiştir. Sistemde çıkarım yöntemi olarak Mamdani çıkarım metodunu benimsenmiştir. Bu metod uzman tarafından tecrübe edilerek belirlenmiş sözsel (linguistic) kuralları kullanarak çıkarım yapılması metoduna dayanmaktadır. Uzman tarafından belirlenmiş bulanık çıkarım sistemi kural tabanı aşağıda Tablo 1 de görülmektedir. Tablo 1. Uzman tarafından belirleniş Kural Tabanı

6 4. DENETLEYĐCĐNĐN OPTĐMĐZASYONU Ayarlama (tunning) işlemi Matlab M.File program parçacığı kullanılarak bulanık çıkarım sisteminin maniple edilmesi şeklinde çalışmaktadır. Sistem optimal çözüm değerlerini yakalayana dek maniple etme işlemini tekrarlamaktadır. Şekil 2 de verilen blok diyagram içerisinde görmekte olduğumuz GA.m bloğu optimal parametre değerinin elde edilmesini sağlayacak olan G.A. arama algoritmasını içermektedir. Model en iyi parametre değerlerin elde dilmesi için α ve σ değişkenlerini sırası ile [-1, 1] ve [0.02, 0.12 ] değerleri arasında araştırmaktadır. Burada not edilmesi gereken önemli husus ise; σ değerinin örtüşme (overlapping) oranının belirlenmesinde kullanıldığıdır. Bu değer bulanık karar oluşturma aşaması için hayati öneme sahiptir ve çok önemlidir. Sistemin çalışması özetlenecek olursa; Model rastsal olarak α ve σ değerleri üretir. Bu değerler sayesinde her bir gaussian üyelik fonksiyonunun doğru üzerindeki merkez noktasının belirlenmesini sağlanır. Kazanç bloğu sayesinde çıkış değer aralığı arasında oluşturulur. Bu bloğun çıkışı R direnç değerini değiştirir. R direnç değeri değiştirildiğinde, bu değere göre bir kesim frekans değeri oluşur. Bu kesim frekans değeri ile arzu edilen kesim frekans değeri arasındaki fark (ee) ve bu farkın değişimi (de) sisteme geri beslenir. Hatanın (ee) arasında, hatanın türevinin ise (de) 0-15 arasında normalize edilmesi işlemi kazanç blokları tarafından sağlanır. Aşağıda Şekil 2 de sistemin genel blok diyagramı görülmektedir. Şekil 2 Genel Blok Diyagram

7 Denetleyicinin performansının değerlendirilmesi için uygunluk fonksiyonunun tanımlanması gerekmektedir. Modelin temel amacı en kısa süre içerisinde arzu edilen kesim frekans değerine en yakın yani optimum kesim frekans değerini üretmektir. Bir başka değişle bu bu yakalama işlemini en hızlı yani en dik olacak şekilde ve en az taşmayı oluşturarak başarmaktır. Sistemin performans değerlendirmesinde kullanılacak olacak uygunluk fonksiyonu aşağıdaki gibi tanımlanmaktadır. = 1+ x performans indeksi ise aşağıdaki gibidir; Burada, = + A değeri, negatif olmayan sabit bir değerdir. Bu yüzden f hiçbir zaman çok küçük olamaz. n değeri, bitiş zamanını belirtmektedir. i değeri, zaman indeks değeridir.

8 5. SONUÇLAR Model sabit C değerine (470 pf) göre ve Şekil 1 de yapıya uygun şekilde simule edilmiştir. R değeri 400Ω - 10K Ω arasında değişmiştir. Bu değerlere göre kesim frekans değerleri elde edilmiştir. Model α ve σ değerlerini başarılı şekilde optimize ederek bulanık denetleyici için en uygun üyelik fonksiyon değerlerine ulaşmıştır. Giriş ve Çıkış kümeleri için üretilen α ve σ değerleri aşağıda tablolar halinde görülmektedir. Tablo 2 Hata (ee) kümesi değerleri Tablo 3 Hatanın değişimi (de) kümesi değerleri Tablo 4 Çıkış (pozisyon) kümesi değerleri a. b. Şekil 3.a. Optimize Edilmemiş Kural Tabanı Şekil 3.b. Optimize Edilmiş Kural Tabanı

9 Şekil 4 Hata (ee) Üyelik Fonksiyon Grafiği Şekil 5 Hatada Değişim (de) Üyelik Fonksiyon Grafiği Şekil 6 Çıkış (posizyon) Üyelik Fonksiyon Grafiği

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR Çalışmanın amacı. SUNUM PLANI Çalışmanın önemi. Deney numunelerinin üretimi ve özellikleri.

Detaylı

Yaklaşık Düşünme Teorisi

Yaklaşık Düşünme Teorisi Yaklaşık Düşünme Teorisi Zadeh tarafından 1979 yılında öne sürülmüştür. Kesin bilinmeyen veya belirsiz bilgiye dayalı işlemlerde etkili sonuçlar vermektedir. Genellikle bir f fonksiyonu ile x ve y değişkeni

Detaylı

KST Lab. Shake Table Deney Föyü

KST Lab. Shake Table Deney Föyü KST Lab. Shake Table Deney Föyü 1. Shake Table Deney Düzeneği Quanser Shake Table, yapısal dinamikler, titreşim yalıtımı, geri-beslemeli kontrol gibi çeşitli konularda eğitici bir deney düzeneğidir. Üzerine

Detaylı

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK İlhan AYDIN SIMULINK ORTAMI Simulink bize karmaşık sistemleri tasarlama ve simülasyon yapma olanağı vermektedir. Mühendislik sistemlerinde simülasyonun önemi

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Genetik Algoritma (Genetic Algorithm) Doç.Dr. M. Ali Akcayol Genetik Algoritma 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik

Detaylı

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER SUNU PLANI Analog sayısal çevirici FIR Filtreler IIR Filtreler Adaptif Filtreler Pan-Tompkins Algoritması Araş. Gör. Berat Doğan 08/04/2015

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR KONTROL SİSTEMLERİ GİRİŞ Son yıllarda kontrol sistemleri, insanlığın ve uygarlığın gelişme ve ilerlemesinde çok önemli rol oynayan bir bilim dalı

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

OTOMATİK KONTROL 18.10.2015

OTOMATİK KONTROL 18.10.2015 18.10.2015 OTOMATİK KONTROL Giriş, Motivasyon, Tarihi gelişim - Tanım ve kavramlar, Lineer Sistemler, Geri Besleme Kavramı, Sistem Modellenmesi, Transfer Fonksiyonları - Durum Değişkenleri Modelleri Elektriksel

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI İlaç Tasarımında Yeni Yazılımların Geliştirilmesi: Elektron Konformasyonel-Genetik Algoritma Metodu ile Triaminotriazin Bileşiklerinde Farmakofor Belirlenmesi ve Nicel Biyoaktivite Hesabı; ERCİYES ÜNİVERSİTESİ

Detaylı

ELEKTRİK TESİSLERİNDE HARMONİKLERİN PASİF FİLTRE KULLANILARAK AZALTILMASI VE SİMÜLASYONU. Sabir RÜSTEMLİ

ELEKTRİK TESİSLERİNDE HARMONİKLERİN PASİF FİLTRE KULLANILARAK AZALTILMASI VE SİMÜLASYONU. Sabir RÜSTEMLİ ELEKTRİK TESİSLERİNDE HARMONİKLERİN PASİF FİLTRE KULLANILARAK AZALTILMASI VE SİMÜLASYONU Sabir RÜSTEMLİ Elektrik tesislerinin güvenli ve arzu edilir bir biçimde çalışması için, tesisin tasarım ve işletim

Detaylı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN30 OTOMATİK KONTROL 00 Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı Sınav Süresi 90 dakikadır. Sınava Giren Öğrencinin AdıSoyadı :. Prof.Dr.

Detaylı

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM M.Ali Akcayol Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü (Yüksek Lisans Tezinden Bir Bölüm) Şekil 1'

Detaylı

Bulanık Mantık Tabanlı Uçak Modeli Tespiti

Bulanık Mantık Tabanlı Uçak Modeli Tespiti Bulanık Mantık Tabanlı Uçak Modeli Tespiti Hüseyin Fidan, Vildan Çınarlı, Muhammed Uysal, Kadriye Filiz Balbal, Ali Özdemir 1, Ayşegül Alaybeyoğlu 2 1 Celal Bayar Üniversitesi, Matematik Bölümü, Manisa

Detaylı

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ Ezgi Özkara a, Hatice Yanıkoğlu a, Mehmet Yüceer a, * a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü, Malatya, 44280 myuceer@inonu.edu.tr

Detaylı

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi DENEY 8: PASİF FİLTRELER Deneyin Amaçları Pasif filtre devrelerinin çalışma mantığını anlamak. Deney Malzemeleri Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop.

Detaylı

BOĞAZ KÖPRÜSÜ YOLUNA KATILIM NOKTALARINDA TRAFİK AKIMLARININ BULANIK MANTIK YAKLAŞIMI İLE KONTROLÜ VE BİR UYGULAMA ÖRNEĞİ

BOĞAZ KÖPRÜSÜ YOLUNA KATILIM NOKTALARINDA TRAFİK AKIMLARININ BULANIK MANTIK YAKLAŞIMI İLE KONTROLÜ VE BİR UYGULAMA ÖRNEĞİ BOĞAZ KÖPRÜSÜ YOLUNA KATILIM NOKTALARINDA TRAFİK AKIMLARININ BULANIK MANTIK YAKLAŞIMI İLE KONTROLÜ VE BİR UYGULAMA ÖRNEĞİ Vedat TOPUZ 1 Ahmet AKBAŞ 2 Mehmet TEKTAŞ 3 1,2,3 Marmara Üniversitesi, Teknik

Detaylı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SİVİL HAVACILIK ANABİLİM DALI YENİ DERS ÖNERİSİ/ DERS GÜNCELLEME

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SİVİL HAVACILIK ANABİLİM DALI YENİ DERS ÖNERİSİ/ DERS GÜNCELLEME / DERS GÜNCELLEME Dersin Kodu SHA 615 Dersin Adı İSTATİSTİKSEL SİNYAL İŞLEME Yarıyılı GÜZ Dersin İçeriği: Olasılık ve olasılıksal süreçlerin gözden geçirilmesi. Bayes kestirim kuramı. Büyük olabilirlik

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SANAL ARTIRILMIŞ VE AKILLI TEKNOLOJİLER (SAAT) LABORATUVARI SAAT Laboratuvarı Koordinatör: Yrd. Doç. Dr. Gazi Erkan BOSTANCI SAAT

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

SAYISAL KONTROL 2 PROJESİ

SAYISAL KONTROL 2 PROJESİ SAYISAL KONTROL 2 PROJESİ AUTOMATIC CONTROL TELELAB (ACT) ile UZAKTAN KONTROL DENEYLERİ Automatic Control Telelab (ACT), kontrol deneylerinin uzaktan yapılmasını sağlayan web tabanlı bir sistemdir. Web

Detaylı

KST Lab. Manyetik Top Askı Sistemi Deney Föyü

KST Lab. Manyetik Top Askı Sistemi Deney Föyü KST Lab. Manyetik Top Askı Sistemi Deney Föyü. Deney Düzeneği Manyetik Top Askı sistemi kontrol alanındaki popüler uygulamalardan biridir. Buradaki amaç metal bir kürenin manyetik alan etkisi ile havada

Detaylı

BÖLÜM-6 BLOK DİYAGRAMLARI

BÖLÜM-6 BLOK DİYAGRAMLARI 39 BÖLÜM-6 BLOK DİYAGRAMLARI Kontrol sistemlerinin görünür hale getirilmesi Bileşenlerin transfer fonksiyonlarını gösterir. Sistemin fiziksel yapısını yansıtır. Kontrol giriş ve çıkışlarını karakterize

Detaylı

Gevşek Hesaplama (COMPE 474) Ders Detayları

Gevşek Hesaplama (COMPE 474) Ders Detayları Gevşek Hesaplama (COMPE 474) Ders Detayları Ders Adı Gevşek Hesaplama Ders Kodu COMPE 474 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör.

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör. T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 (Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK

Detaylı

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları (Artificial Neural Networks) J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları Tarihçe Biyolojik

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için)

BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için) BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için) HAZIRLIK PROGRAMI COME 27 İleri Nesneye Yönelik Programlama 5 COME 21 Veri Yapıları ve Algoritmalar COME 22 COME 1 COME 1 COME 411

Detaylı

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA i GENETİK ALGORİTMA YAKLAŞIMIYLA ATÖLYE ÇİZELGELEME Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2005 ANKARA ii Serdar BİROĞUL tarafından hazırlanan

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

BİRİNCİ BASIMA ÖN SÖZ

BİRİNCİ BASIMA ÖN SÖZ BİRİNCİ BASIMA ÖN SÖZ Varlıkların kendilerinde cereyan eden olayları ve varlıklar arasındaki ilişkileri inceleyerek anlamak ve bunları bilgi formuna dökmek kimya, biyoloji, fizik ve astronomi gibi temel

Detaylı

Dersin Yarıyılı. Kredisi. Prof. Dr. İbrahim YÜKSEL/ Öğr. Gör. Dr. Mesut ŞENGİRGİN/ Öğr. Gör. Dr. Gürsel ŞEFKAT/Öğr.Gör.Dr. Zeliha K.

Dersin Yarıyılı. Kredisi. Prof. Dr. İbrahim YÜKSEL/ Öğr. Gör. Dr. Mesut ŞENGİRGİN/ Öğr. Gör. Dr. Gürsel ŞEFKAT/Öğr.Gör.Dr. Zeliha K. MAK3002 OTOMATİK KONTROL 2007-2008 YAZ OKULU Adı Otomatik Kontrol Dili Türü Ön Koşulu Koordinatörleri İçeriği Amacı Kodu MAK 3002 Türkçe Zorunlu Yok Yarıyılı 6 Kredisi Laboratuar (Saat/Hafta) Prof. Dr.

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

DGridSim Gerçek Zamanlı Veri Grid Simülatörü. Yazılım Tasarımı Dokümanı v 1.0.1 01.08.2011. Mustafa Atanak Sefai Tandoğan Doç. Dr.

DGridSim Gerçek Zamanlı Veri Grid Simülatörü. Yazılım Tasarımı Dokümanı v 1.0.1 01.08.2011. Mustafa Atanak Sefai Tandoğan Doç. Dr. DGridSim Gerçek Zamanlı Veri Grid Simülatörü Yazılım Tasarımı Dokümanı v 1.0.1 01.08.2011 Mustafa Atanak Sefai Tandoğan Doç. Dr. Atakan Doğan 1. Sistem Mimarisi DGridSim katmanlı bir yapı göz önünde bulundurularak

Detaylı

BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI. Kafkas Üniversitesi Mühendislik Fakültesi

BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI. Kafkas Üniversitesi Mühendislik Fakültesi BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI Kafkas Üniversitesi Mühendislik Fakültesi Bu hafta? İki değişken değerinin yer değiştirilmesi (swapping) selection sort sıralama algoritması bubble sort

Detaylı

Örnek 4: Örnek Özyinelemeli fonksiyon örneği Bölüm 9. C++ programlama dilinde Nesne ve sınıf

Örnek 4: Örnek Özyinelemeli fonksiyon örneği Bölüm 9. C++ programlama dilinde Nesne ve sınıf İçindekiler 1. Giriş... 1 1.2. c++ Programı Yapısı... 2 1.3.Using Direktifi... 5 Bölüm 2. Veri türleri, değişken kavramı, sabit ve değişken bildirimleri ve c++ da kullanımı 7 2.1. Temel veri türleri...

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi 1) Giriş Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Pendulum Deneyi.../../2015 Bu deneyde amaç Linear Quadratic Regulator (LQR) ile döner ters sarkaç (rotary inverted

Detaylı

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. Dinamik sistemlerin Kontrolü ve Modellemesi MK-413 4/Güz (3+0+0) 3 5

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. Dinamik sistemlerin Kontrolü ve Modellemesi MK-413 4/Güz (3+0+0) 3 5 MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS Dinamik sistemlerin Kontrolü ve Modellemesi MK-413 4/Güz (3+0+0) 3 5 Dersin Dili :

Detaylı

BULANIK MANTIK YÖNTEMİNİN PID DENETLEYİCİ PERFORMANSINA ETKİSİ

BULANIK MANTIK YÖNTEMİNİN PID DENETLEYİCİ PERFORMANSINA ETKİSİ 16. ULUSAL MAKİNA TEORİSİ SEMPOZYUMU Atatürk Üniversitesi, Mühendislik Fakültesi, 12-13 Eylül, 2013 BULANIK MANTIK YÖNTEMİNİN PID DENETLEYİCİ PERFORMANSINA ETKİSİ 1 Mustafa ARDA, 2 Aydın GÜLLÜ, 3 Hilmi

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

OSPF PROTOKOLÜNÜ KULLANAN ROUTER LARIN MALİYET BİLGİSİNİN BULANIK MANTIKLA BELİRLENMESİ

OSPF PROTOKOLÜNÜ KULLANAN ROUTER LARIN MALİYET BİLGİSİNİN BULANIK MANTIKLA BELİRLENMESİ OSPF PROTOKOLÜNÜ KULLANAN ROUTER LARIN MALİYET BİLGİSİNİN BULANIK MANTIKLA BELİRLENMESİ Resul KARA Elektronik ve Bilgisayar Eğitimi Bölümü Teknik Eğitim Fakültesi Abant İzzet Baysal Üniversitesi, 81100,

Detaylı

Bulanık Mantık Denetleyicileri

Bulanık Mantık Denetleyicileri Bulanık Mantık Denetleyicileri Bulanık Çıkarım BULANIK ÇIKARIM İki-değerli mantık Çok-değerli mantık Bulanık mantık Bulanık kurallar Bulanık çıkarım Bulanık anlamlandırma Bulanık Çıkarım İki-değerli mantık

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Deniz ERSOY Elektrik Yük. Müh.

Deniz ERSOY Elektrik Yük. Müh. Deniz ERSOY Elektrik Yük. Müh. AMACIMIZ Yenilenebilir enerji kaynaklarının tesis edilmesi ve enerji üretimi pek çok araştırmaya konu olmuştur. Fosil yakıtların giderek artan maliyeti ve giderek tükeniyor

Detaylı

MANTIK. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ BULANIK MANTIK

MANTIK. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ BULANIK MANTIK MANTIK Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ BULANIK MANTIK İÇERİK Temel Kavramlar Bulanık Mantık Bulanık Mantık & Klasik Mantık Bulanık Küme & Klasik Küme Bulanık Sistem Yapısı Öğeleri Uygulama

Detaylı

DERS 5 : BULANIK MODELLER

DERS 5 : BULANIK MODELLER DERS 5 : BULANIK MODELLER Bulanık girişimli sistem, bulanık küme teorisi, bulanık if-then kuralları ve bulanık mantığına dayalı popüler bir hesaplama yapısıdır. Otomatik kontrol, veri sınıflandırılması,

Detaylı

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN Giriş Bilgi teknolojisindeki gelişmeler ve verilerin dijital ortamda saklanmaya başlanması ile yeryüzündeki bilgi miktarı her 20 ayda iki katına

Detaylı

DENEY 3 HAVALI KONUM KONTROL SİSTEMİ DENEY FÖYÜ

DENEY 3 HAVALI KONUM KONTROL SİSTEMİ DENEY FÖYÜ DENEY 3 HAVALI KONUM KONTROL SİSTEMİ DENEY FÖYÜ 1. Deneyin Amacı Bu deneyde, bir fiziksel sistem verildiğinde, bu sistemi kontrol etmek için temelde hangi adımların izlenmesi gerektiğinin kavranması amaçlanmaktadır.

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS VERİ TABANI BG-313 3/1 3+1+0 3+0,5 5 Dersin Dili : TÜRKÇE Dersin Seviyesi : LİSANS

Detaylı

ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX

ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX XI İÇİNDEKİLER ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX 1. GİRİŞ... 1 2. PLANLAMANIN TARİHÇESİ... 7 2.1 Literatürdeki Planlayıcılar ve Kullandıkları Problem... Gösterimi

Detaylı

YENİLENEBİLİR ENERJİ KAYNAKLARI RÜZGAR ENERJİSİ SİSTEMLERİ Eğitim Merkezi Projesi

YENİLENEBİLİR ENERJİ KAYNAKLARI RÜZGAR ENERJİSİ SİSTEMLERİ Eğitim Merkezi Projesi YENİLENEBİLİR ENERJİ KAYNAKLARI RÜZGAR ENERJİSİ SİSTEMLERİ Eğitim Merkezi Projesi Konu Başlıkları Enerjide değişim Enerji sistemleri mühendisliği Rüzgar enerjisi Rüzgar enerjisi eğitim müfredatı Eğitim

Detaylı

DİSK DEPOLAMA ALANLARI

DİSK DEPOLAMA ALANLARI DİSK DEPOLAMA ALANLARI 1. Giriş İşlemci hızı ve hafıza kapasitesinin disk hızından çok daha hızlı bir gelişim içinde bulunduğu göz önüne alınırsa, disk kullanımında teorik ilgi ve uygulamanın önemliliği

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

MAK3002 OTOMATİK KONTROL 2008-2009 BAHAR. Ders Kitabı (Ders Notu)

MAK3002 OTOMATİK KONTROL 2008-2009 BAHAR. Ders Kitabı (Ders Notu) MAK3002 OTOMATİK KONTROL 2008-2009 BAHAR Dersin Adı Otomatik Kontrol Dersin Dili Dersin Türü Dersin Ön Koşulu Dersin Koordinatörleri Dersin İçeriği Dersin Amacı Dersin Kodu MAK 3002 Türkçe Zorunlu Yok

Detaylı

Genetik Algoritmalar (GA) Genetik Algoritmalar Đçerik Nesin Matematik Köyü E rim Ç lı l ş ı ta t yı Nisan, 2012 Mustafa Suphi Erden

Genetik Algoritmalar (GA) Genetik Algoritmalar Đçerik Nesin Matematik Köyü E rim Ç lı l ş ı ta t yı Nisan, 2012 Mustafa Suphi Erden Genetik Algoritmalar Nesin Matematik Köyü Evrim Çalıştayı 20-23 Nisan, 202 Genetik Algoritmalar (GA Đçerik Biyolojiden esinlenme GA nın özellikleri GA nın unsurları uygulama Algoritma Şema teoremi Mustafa

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

BİLGİSAYAR VE ENFORMASYON BİLİMLERİ YÜKSEK LİSANS DERS PROGRAMI (Tezli Program)

BİLGİSAYAR VE ENFORMASYON BİLİMLERİ YÜKSEK LİSANS DERS PROGRAMI (Tezli Program) BİLGİSAYAR VE ENFORMASYON BİLİMLERİ YÜKSEK LİSANS DERS PROGRAMI (Tezli Program) HAZIRLIK PROGRAMI COME 27 İleri Nesneye Yönelik Programlama 2+2 3 5 COME 218 Veri Yapıları ve Algoritmalar 2+2 3 6 COME 226

Detaylı

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7 Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required

Detaylı

YOLCULUK YARATIMININ YAPAY SİNİR AĞLARI İLE MODELLENMESİ MODELLING OF THE TRIP GENERATION WITH ARTIFICIAL NEURAL NETWORK

YOLCULUK YARATIMININ YAPAY SİNİR AĞLARI İLE MODELLENMESİ MODELLING OF THE TRIP GENERATION WITH ARTIFICIAL NEURAL NETWORK YOLCULUK YARATIMININ YAPAY SİNİR AĞLARI İLE MODELLENMESİ * Nuran BAĞIRGAN 1, Muhammet Mahir YENİCE 2 1 Dumlupınar Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Kütahya, nbagirgan@dumlupinar.edu.tr

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI

TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI Merve ARABACI a, Miray BAYRAM a, Mehmet YÜCEER b, Erdal KARADURMUŞ a a Hitit Üniversitesi, Mühendislik

Detaylı

Lastiklerin Çeki Performansı İçin Bulanık Uzman Sistem Tasarımı

Lastiklerin Çeki Performansı İçin Bulanık Uzman Sistem Tasarımı Tarım Makinaları Bilimi Dergisi 2005, 1 (1), 63-68 Lastiklerin Çeki Performansı İçin Bulanık Uzman Sistem Tasarımı Kazım ÇARMAN, Ali Yavuz ŞEFLEK S.Ü. Ziraat Fakültesi Tarım Makinaları Bölümü, Konya kcarman@selcuk.edu.tr

Detaylı

Deney 21 PID Denetleyici (I)

Deney 21 PID Denetleyici (I) Deney 21 PID Denetleyici (I) DENEYİN AMACI 1. Ziegler ve Nichols ayarlama kuralı I i kullanarak PID enetleyici parametrelerini belirlemek. 2. PID enetleyici parametrelerinin ince ayarını yapmak. GENEL

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS PROGRAMLAMA BG-213 2/1 2+0+2 2+1 5 Dersin Dili : TÜRKÇE Dersin Seviyesi : LİSANS

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU. Deney No: 3 PID KONTROLÜ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU. Deney No: 3 PID KONTROLÜ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU Deney No: 3 PID KONTROLÜ Öğr. Gör. Cenk GEZEGİN Arş. Gör. Ayşe AYDIN YURDUSEV Öğrenci: Adı Soyadı Numarası

Detaylı

GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı

GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı Erol Şahin Bilgisayar Mühendisliği Bölümü, Orta Doğu Teknik Üniversitesi Ankara, Türkiye 2. ULUSAL GRİD ÇALIŞTAYI, 1-2 Mart 2007, TÜBİTAK,

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuvarı Deney Föyü Deney#10 Analog Aktif Filtre Tasarımı Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY 10 Analog

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

JEODEZİK AĞLARIN OPTİMİZASYONU

JEODEZİK AĞLARIN OPTİMİZASYONU JEODEZİK AĞLARIN OPTİMİZASYONU Jeodezik Ağların Tasarımı 10.HAFTA Dr.Emine Tanır Kayıkçı,2017 OPTİMİZASYON Herhangi bir yatırımın gerçekleştirilmesi sırasında elde bulunan, araç, hammadde, para, işgücü

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS YAPAY ZEKA BG-421 4/2 2+1+0 2+.5 4 Dersin Dili : TÜRKÇE Dersin Seviyesi : LİSANS

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

MEB YÖK MESLEK YÜKSEKOKULLARI PROGRAM GELĐŞTĐRME PROJESĐ. 1. Endüstride kullanılan Otomatik Kontrolun temel kavramlarını açıklayabilme.

MEB YÖK MESLEK YÜKSEKOKULLARI PROGRAM GELĐŞTĐRME PROJESĐ. 1. Endüstride kullanılan Otomatik Kontrolun temel kavramlarını açıklayabilme. PROGRAMIN ADI DERSĐN ADI DERSĐN ĐŞLENECEĞĐ YARIYIL HAFTALIK DERS SAATĐ DERSĐN SÜRESĐ ENDÜSTRĐYEL OTOMASYON SÜREÇ KONTROL 2. Yıl III. Yarıyıl 4 (Teori: 3, Uygulama: 1, Kredi:4) 56 Saat AMAÇLAR 1. Endüstride

Detaylı

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü MATLAB a GİRİŞ Doç. Dr. Mehmet İTİK Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü İçerik: MATLAB nedir? MATLAB arayüzü ve Bileşenleri (Toolbox) Değişkenler, Matris ve Vektörler Aritmetik işlemler

Detaylı

ELN3052 OTOMATİK KONTROL 2008-2009 BAHAR

ELN3052 OTOMATİK KONTROL 2008-2009 BAHAR ELN3052 OTOMATİK KONTROL 2008-2009 BAHAR Dersin Adı Dersin Kodu Dersin Yarıyılı Dersin Kredisi Ders Uygulama 3 0 Otomatik Kontrol ELN3052 6 3 Laboratuar (Saat/Hafta) 0 Dersin Dili Türkçe Dersin Türü Seçmeli

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

BİL-142 Bilgisayar Programlama II

BİL-142 Bilgisayar Programlama II BİL-142 Bilgisayar Programlama II (C/C++) Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Giriş math Kütüphane Fonksiyonları Çok Parametreyle Fonksiyon Tanımı Fonksiyon

Detaylı

Saha İş Gücü Yönetim Sistemi ve Güzergah Optimizasyonu

Saha İş Gücü Yönetim Sistemi ve Güzergah Optimizasyonu Saha İş Gücü Yönetim Sistemi ve Güzergah Optimizasyonu Sahayı Bilerek Yönetin Başarsoft, hayatınıza harita tabanlı çözümler sunar. Saha İş Gücü Yönetim Sistemi Nedir? Kurum ve firmaların, saha işlerini

Detaylı

MATE211 BİYOİSTATİSTİK

MATE211 BİYOİSTATİSTİK MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: 180 230 190 186 220 191

Detaylı

OTOMOBİLLER İÇİN BULANIK MANTIK TABANLI HIZ SABİTLEYİCİ BİR SİSTEM

OTOMOBİLLER İÇİN BULANIK MANTIK TABANLI HIZ SABİTLEYİCİ BİR SİSTEM ASYU 2008 Akıllı Sistemlerde Yenilikler ve Uygulamaları Sempozyumu OTOMOBİLLER İÇİN BULANIK MANTIK TABANLI HIZ SABİTLEYİCİ BİR SİSTEM Kenan YANMAZ 1 İsmail H. ALTAŞ 2 Onur Ö. MENGİ 3 1,3 Meslek Yüksekokulu

Detaylı

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu th International Adanced Technologies Symposium (IATS ), -8 May 20, Elazığ, Turkey Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu Ö. Soykasap e K. B. Sugözü Afyon

Detaylı

BİLGİSAYAR PROGRAMLAMA MATLAB

BİLGİSAYAR PROGRAMLAMA MATLAB BİLGİSAYAR PROGRAMLAMA MATLAB Arş. Gör. Ahmet ARDAHANLI Kafkas Üniversitesi Mühendislik Fakültesi Ders Bilgileri Dersin Hocası: Araş. Gör. Ahmet Ardahanlı E-posta: ahmet.ardahanli@hotmail.com Oda: DZ-33

Detaylı

BÖLÜM 2 İKİNCİ DERECEDEN FİLTRELER

BÖLÜM 2 İKİNCİ DERECEDEN FİLTRELER BÖLÜM İKİNİ DEEEDEN FİLTELE. AMAÇ. Filtrelerin karakteristiklerinin anlaşılması.. Aktif filtrelerin avantajlarının anlaşılması.. İntegratör devresi ile ikinci dereceden filtrelerin gerçeklenmesi. TEMEL

Detaylı

Bulanık Mantık Hız Kontrolü Destekli Distance Transform Yol Planlama

Bulanık Mantık Hız Kontrolü Destekli Distance Transform Yol Planlama Bulanık Mantık Hız Kontrolü Destekli Distance Transform Yol Planlama Suat Karakaya 1, Gürkan Küçükyıldız 2, Hasan Ocak 3 Mekatronik Mühendisliği Bölümü Kocaeli Üniversitesi, Kocaeli 1 suat.karakaya@kocaeli.edu.tr

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

Bölüm 14 FSK Demodülatörleri

Bölüm 14 FSK Demodülatörleri Bölüm 14 FSK Demodülatörleri 14.1 AMAÇ 1. Faz kilitlemeli çevrim(pll) kullanarak frekans kaydırmalı anahtarlama detektörünün gerçekleştirilmesi.. OP AMP kullanarak bir gerilim karşılaştırıcının nasıl tasarlanacağının

Detaylı

DAMITMA KOLONLARININ BULANIK DENETLEYİCİLERLE DENETİMİ

DAMITMA KOLONLARININ BULANIK DENETLEYİCİLERLE DENETİMİ DAMITMA KOLONLARININ BULANIK DENETLEYİCİLERLE DENETİMİ Halil Murat Öztürk, H. Levent Akın 2 Sistem ve Kontrol Mühendisliği Bölümü, Boğaziçi Üniversitesi, 885 Bebek, İstanbul 2 Bilgisayar Mühendisliği Bölümü,

Detaylı

Bölüm 2 Varlık-İlişki Veri Modeli: Araçlar ve Teknikler. Fundamentals, Design, and Implementation, 9/e

Bölüm 2 Varlık-İlişki Veri Modeli: Araçlar ve Teknikler. Fundamentals, Design, and Implementation, 9/e Bölüm 2 Varlık-İlişki Veri Modeli: Araçlar ve Teknikler Fundamentals, Design, and Implementation, 9/e Üç Şema Modeli Üç şema modeli 1975 de ANSI/SPARC tarafından geliştirildi Veri modellemeninç ve rolünü

Detaylı

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME GİRİŞ Bu bölümde benzetim için excel örnekleri önerilmektedir. Örnekler excel ile yapılabileceği gibi el ile de yapılabilir. Benzetim örnekleri

Detaylı