BİRİNCİ AŞAMA DENEME SINAVI. 1. Bir kenarortayı 2, diğeri 3 olan bir üçgenin alanı en fazla kaç olabilir? A) 2 3 B) 3 C) 3 2 D) 4 E) 6

Save this PDF as:

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BİRİNCİ AŞAMA DENEME SINAVI. 1. Bir kenarortayı 2, diğeri 3 olan bir üçgenin alanı en fazla kaç olabilir? A) 2 3 B) 3 C) 3 2 D) 4 E) 6"

Transkript

1 BİRİNCİ AŞAMA DENEME SINAVI. Bir kenarortayı, diğeri olan bir üçgenin alanı en fazla kaç olabilir? A) B) C) D) 4 E) a bölünen ve tam 0 tane pozitif tam böleni bulunan kaç tane pozitif tam sayı vardır? A) B) 6 C) D) E) 0. {,,,...,004} kümesinin, hiçbir iki elemanının toplamı e bölünmeyen bir alt kümesinin eleman sayısı en fazla kaç olabilir? A) 668 B) 669 C) 00 D) 00 E) a,b,c pozitif gerçel sayılar olmak üzere abc + a + b + c ifadesini alabileceği en küçük değer nedir? A) B) C) D) E) 5. ABCD karesinin [CD] kenarının orta noktası E olsun. Karenin içinde, m( LAB) = m( LBC) = m( BLE) = x olacak şekilde bir L noktası alınmıştır. x acısı kaç derecedir? A) 60 B) 65 C) 70 D) 75 E) Her beş ardışık pozitif tam çift sayının çarpımı n ye bölünüyorsa, n pozitif tam sayısı en fazla kaç olabilir? A) 0 B) 40 C) 480 D) 90 E) 840

2 7. 40 bilye yaşları en az olan 0 çocuk arasında, her çocuk yaşı kadar bilye alacak şekilde dağıtıldı. Çocuklar yaşlarına göre gruplara ayrılırsa, en fazla kaç farklı yaş grubu olacak? A) 6 B) 7 C) 8 D) 9 E) 0 8. Her n pozitif tam sayısı için, a n = 4n + n olmak üzere, a n a n < m ise, m nin alabileceği en büyük pozitif tam değer kaçtır? A) B) C) 4 D) 5 E) 6 9. Yarıçapı 4 olan daire, her birinin yarıçapı r olan üç daire ile örtülmüştür. r en az kaç olabilir? A) B) 4 C) 4 D) 5 E) 6 0. (m + n)(m + n ) = (m + n) denklemini sağlayan m 0,n 0 olmak üzere kaç tane (m,n) tam sayı ikilisi bulunur? A) 0 B) C) D) 4 E) 8. Satranç tahtasının siyah hanelerine 8 dama, tüm damalar farklı satır ve farklı sütun üzerinde bulunacak şekilde kaç yolla yerleştirilebilir?. A) 88 B) 576 C) 0080 D) 060 E) 400 x ( y ) = 5 y ( z ) = 5 z ( u ) = 5 u ( x ) = 5 denklem sisteminin kaç tane çözümü bulunur? A) 0 B) C) 6 D) E) 56

3 . KPMH yamuğunda (KH PM) MH = 7 dir. K,P,M noktalarından geçen çember KH doğrusunu E noktasında kesiyor. PE = 4,m( PEK) = 45 ise, KH nedir? A) 7 B) 7 6 C) 7 D) 4 E) Hiçbiri 4. xy = z(x + y ) denklemini sağlayan (x,y,z) pozitif tam sayı üçlülerinden kaç tanesi x < 0 eşitsizliğini sağlar? A) B) C) 6 D) 8 E) 9 5. Bir sayı kümesinden alınmış üç elemandan ikisinin toplamı üçüncüye eşitse, bu üçlüye "iyi üçlü" diyelim. Birbirinden farklı 0 pozitif tam sayıdan oluşan bir kümede en fazla kaç tane "iyi üçlü" olabilir? A) 70 B) 90 C) 05 D) 0 E) toplamını bulunuz. A) 0,5 B) 004 C),5 D),5 E) 7. ABC ikizkenar üçgeninde ( AB = BC ) CD açıortayı çizilmiştir. CD ye dik olan ve D noktasında geçen doğru AC yi E noktasında kesiyor. AD = ise, EC yi bulunuz. A) B) C) D) E) 8. (n + ) k = n! eşitliğini sağlayan kaç tane (n,k) pozitif tam sayı ikilisi bulunur? A) B) C) D) 4 E) 5

4 9. Her adımda (a,b,c) üçlüsünün yerine (c + 5b, c 5a, b a) veya (a+b,b+c, 4c+a) üçlüsü alınabilir. Başlangıçta (a,b,c) = (,, 4) ise, bu işlemlerle aşağıdaki üçlülerden hangisi elde edilebilir? A) (00, 00, 00) B) (00, 00, 004) C) (00, 004, 005) D) (004, 005, 006) E) Hiçbiri 0. x = ve her n için x n+ = x n + x n olarak tanımlanan x n dizisi için x + + x + + x x x toplamı hangi iki ardışık tam sayı arasındadır? A) ve B) ve C) ve 4 D) 4 ve 5 E) 5 ve 6. ABCD dikdörtgeninin [BC] kenarının orta noktası M, [CD] kenarının orta noktası N dir. m(anm) = 90 ise, AB yi bulunuz. BC A) B) C) D) E). Ters yazıldığında değişmeyen (örneğin 040) ve 0 e bölünen en büyük beş basamaklı pozitif tam sayının basamakları toplamı kaçtır? A) 4 B) 6 C) 8 D) 4 E) 45. Birbirinden farklı 5 pozitif sayıdan oluşan A kümesinin iki elemanı toplandığında elde edilen sayılar kümesi B olsun. B kümesinin eleman sayısı kaç farklı sayı olabilir? A) B) 4 C) 7 D) 0 E) 0 4. a,b,c pozitif gerçel sayılarının çarpımı ise, a b + b c + c a a b c ifadesinin alabileceği en küçük değer nedir? A) 0 B) C) D) E) 4

5 5. [AB] ve [CD] tabanlarının uzunlukları sırasıyla 5 ve olan bir yamuk verilmiştir. MN, AB ye paralel ve ABNM dörtgeninin alanı CDMN dörtgeninin alanının iki katı olacak şekilde, [AD] ve [BC] üzerinde sırasıyla M ve N noktaları alınmıştır. M N nedir? A) B) C) D) E) 4 6. Kaç tane p asal sayısı için 5 p + 4p 4 sayısı bir tamkare olacak? A) 0 B) C) D) E) Sonsuz sayıda 7. Yanyana n tane yıldız çizilmiştir. Ayşe ile Betül sırayla birer yıldız silip yerine bir rakam yazıyorlar. Yıldızlar bittikten sonra elde edilen sayı (başta sıfırlar varsa, sıfırlar bunlar silindikten sonra) e bölünüyorsa, Ayşe, bölünmüyorsa, Betül kazanmış olacak. Ayşe ve Betül en iyi şekilde oynarsa aşağıdakilerden hangisi daima doğrudur? A) n = 60 ise ve Ayşe başlıyorsa, Betül kazanır B) n = 6 ise ve Betül başlıyorsa, Ayşe kazanır C) n = 0 ise ve Ayşe başlıyorsa Ayşe kazanır D) n = ise ve Ayşe başlıyorsa, Betül kazanır E) Hiçbiri 8. n pozitif tam sayısı n e bölünüyor. Bu özelliğe sahip ve 004 ten büyük olan en küçük n sayısının rakamları toplamını bulunuz. A) 8 B) 9 C) 0 D) 8 E) Hiçbiri 9. Dar açılı ABC üçgeninin [AC] kenarı üzerinde bir D noktası alınmıştır. [AL] kenarortayı [CH] yüksekliğini ve [BD] doğru parçasını, sırasıyla N ve K noktalarında kesiyor. N [AK] ve AK = BK ise, AN KL nedir? A) B) C) D) E) 0. 9 rakamı içermeyen dörtbasamaklı bir sayı tam karedir. Bu sayının tüm basamakları birer artırıldığında yine bir tam kare elde ediliyor. Bu koşulları sağlayan kaç tane dörtbasamaklı sayı bulunur? A) 0 B) C) D) E) 4 5

6 . 8 kişinin katıldığı bir satranç turnuvasının sonunda tüm katılımcıların puanları farklı olduğu bilinirse, turnuvanın şampiyonunun puan sayısı en az kaç olabilir? Not: Satrançta her maçta kazanan, kaybeden 0 puan alıyor; beraberlik durumunda her biri 0,5 puan alıyor. A) 4,5 B) 5 C) 5,5 D) 6 E) 6,5. f : R + R fonksiyonu her x R + için ( ) f(x) f = x x eşitliğini sağlar. f() nedir? A) B) C) + D) E) ABCD karesinin C köşesinden, [BD] köşegenini bir K noktasında, [AB] kenarının orta dikmesini de L noktasında kesen bir doğru çizilmiştir. L noktası [CK] üzerinde ve m(âkb) = m(âlb) ise, DCK açısı kaç derecedir? A) 5 B) 0 C) 5 D) 0 E) 5 n n n 4. n + = + eşitliğini sağlamayan n pozitif tam sayıları 6 kümesi aşağıdakilerden hangisidir? A) {n n (mod )} B) {n n (mod )} C) {n n (mod 6)} D) {n n 0 (mod 6)} E) Hiçbiri 5. Aynı aralıkla n tane yatay ve n tane dikey doğru çizilmiştir. Tam n tane kırmızı yatay ve n tane kırmızı dikey bulunacak şekilde doğruların herbiri kırmızı veya siyah renge boyanıyor. Boyanma şekli ne olursa olsun, kenarları aynı renge boyanmış bir kare bulunduğu biliniyorsa, n en az kaç olabilir? A) B) C) 4 D) 5 E) 6 6. y 4 + x 4 + = 4x y denkleminin kaç tane çözümü bulunur? A) 8 B) 6 C)4 D) E) 6

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı A 1. Köşeleri, yarıçapı 1 olan çemberin üstünde yer alan düzgün bir n-genin çevre uzunluğunun alanına oranı 4 3 ise, n kaçtır? 3 a) 3 b) 4 c) 5 d)

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

Olimpiyat Eğitimi TUĞBA DENEME SINAVI

Olimpiyat Eğitimi TUĞBA DENEME SINAVI TUSİ Ortaöğretim Öğretmenleri için Olimpiyat Eğitimi TUĞBA DENEME SINAVI 10.01.2014-17.01.2014 2 1. Tuğba üç test yapar. İlkinde, 25 sorudan %60 ını, ikinci de 30 sorudan ve %70 ini ve son olarak 45 sorudan

Detaylı

MATDER HARRAN ÜNİVERSİTESİ 2017 MATEMATİK YARIŞMASI I. AŞAMA SORULARI

MATDER HARRAN ÜNİVERSİTESİ 2017 MATEMATİK YARIŞMASI I. AŞAMA SORULARI Soru 1: Bir üçgenin iç açılarının ölçüleri aritmetik dizi oluşturmaktadır. Bu üçgenin en kısa kenar uzunluğu 6 cm ve en uzun kenarı 14 cm ise, ortanca kenar uzunluğu kaç cm dir? A) 2 37 B) 39 C) 13 D)

Detaylı

X. Ulusal İlköğretim Matematik Olimpiyatı

X. Ulusal İlköğretim Matematik Olimpiyatı X. Ulusal İlköğretim Matematik Olimpiyatı B 1. Bir kentten diğerine giden bir otobüs, yolun ilk yarısını 40 km/saat, ikinci yarısını ise 60 km/saat hızla gittiyse, otobüsün ortalama hızı kaç km/saat olmuştur?

Detaylı

X. Ulusal İlköğretim Matematik Olimpiyatı

X. Ulusal İlköğretim Matematik Olimpiyatı X. Ulusal İlköğretim Matematik Olimpiyatı A 1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? a) 15 33 b) 20 33 c) 100 33 d) 20 3 e) 100 3 2. Bir okulun kantininde, 1., 2., 3., 4.

Detaylı

7 Mayıs 2006 Pazar,

7 Mayıs 2006 Pazar, TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 14. ULUSAL MATEMATİK OLİMPİYATI - 2006 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 7 Mayıs 2006 Pazar, 13.00-15.30

Detaylı

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 2018 SINAVI

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 2018 SINAVI ÖGRENCİNİN ADI SOYADI : T.C. KİMLİK NO : OKULU / SINIFI : SINAVA GİRDİĞİ İLÇE: SINAVLAİLGİLİUYARILAR: İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 018 SINAVI Kategori: Matematik 7-8 Soru Kitapçık

Detaylı

29 Nisan 2007 Pazar,

29 Nisan 2007 Pazar, TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI SINAVLA İLGİLİ UYARILAR: 15. ULUSAL MATEMATİK OLİMPİYATI - 2007 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü

Detaylı

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4 NİSAN 21 DENEMESİ 1) ABCD dikdörtgeninin AB kenarı üzerindeki M noktasından geçen ve CM doğrusuna dik olan doğru AD kenarını E noktasında kesiyor. M noktasından CE doğrusuna indirilen dikmenin ayağı P

Detaylı

a) BP = P H olmalıdır. b) BP = 2 P H olmalıdır. c) P H = 2 BP olmalıdır. d) Böyle bir P noktası yoktur. e) Hiçbiri

a) BP = P H olmalıdır. b) BP = 2 P H olmalıdır. c) P H = 2 BP olmalıdır. d) Böyle bir P noktası yoktur. e) Hiçbiri TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 7. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 00 Birinci Bölüm Soru kitapçığı türü A 1. Bir ikizkenar

Detaylı

2. 11 modunda aşağıdakilerden hangisine denktir? a) 1 b) 3 c) 4 d) 5 e) Hiçbiri

2. 11 modunda aşağıdakilerden hangisine denktir? a) 1 b) 3 c) 4 d) 5 e) Hiçbiri 1. Bir ABC üçgeninde [AB], [BC] ve [CA] nın orta noktaları sırasıyla C, A ve B ; A dan BC ye inilen dikmenin ayağı H dir. A C = 6 olduğuna göre, B H nedir? a) 5 b) 6 c) 5 2 d) 6 2 e) 7 2. 11 modunda 3

Detaylı

14 Nisan 2012 Cumartesi,

14 Nisan 2012 Cumartesi, TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 17. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI - 2012 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 14 Nisan 2012 Cumartesi,

Detaylı

14 Nisan 2012 Cumartesi,

14 Nisan 2012 Cumartesi, TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 17. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI - 2012 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü B 14 Nisan 2012 Cumartesi,

Detaylı

AB AB. A noktasından çıkıp B noktasından geçen ışın [AB] nin uzunluǧu AB, CD ye paralel

AB AB. A noktasından çıkıp B noktasından geçen ışın [AB] nin uzunluǧu AB, CD ye paralel AB [AB] [AB AB AB CD m( ABC) A ve B noktalarından geçen doǧru A ve B noktalarını birleştiren doǧru parçası A noktasından çıkıp B noktasından geçen ışın [AB] nin uzunluǧu AB, CD ye paralel ABC açısının

Detaylı

26 Nisan 2009 Pazar,

26 Nisan 2009 Pazar, TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 17. ULUSAL MATEMATİK OLİMPİYATI - 2009 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 26 Nisan 2009 Pazar, 13.00-15.30

Detaylı

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme Türkiye Ulusal Matematik Olimpiyatları Birinci Aşama Zor Deneme Sınavı 11 Haziran 2016 DENEME SINAVI 4. Deneme Soru Sayısı: 32 Sınav Süresi: 210 dakika Başarılar Dileriz... Page 1 of 9 DENEME SINAVI (4.

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? c)

1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? c) TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 10. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2005 Soru kitapçığı türü A 1. Hem % 15 i, hem de % 33

Detaylı

17 Mayıs 2014 Cumartesi, 9:30-12:30

17 Mayıs 2014 Cumartesi, 9:30-12:30 TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 19. ULUSAL ORTAOKUL MATEMATİK OLİMPİYATI - 2014 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 17 Mayıs 2014 Cumartesi,

Detaylı

17 Mayıs 2014 Cumartesi, 9:30-12:30

17 Mayıs 2014 Cumartesi, 9:30-12:30 TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 19. ULUSAL ORTAOKUL MATEMATİK OLİMPİYATI - 2014 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü B 17 Mayıs 2014 Cumartesi,

Detaylı

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ ( ŞUBAT 2010 )

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ ( ŞUBAT 2010 ) ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ ( ŞUBAT 010 ) 1) Dar açılı ABC üçgeninde BB 1 ve CC 1 yükseklikleri H noktasında kesişiyor. CH = C H, BH = B H ise BAC açısını bulunuz. 1 1 A)0 0 B)45 0 C) arccos

Detaylı

Olimpiyat Eğitimi CANSU DENEME SINAVI

Olimpiyat Eğitimi CANSU DENEME SINAVI TUSİ Ortaöğretim Öğretmenleri için Olimpiyat Eğitimi CANSU DENEME SINAVI 15.11.2013-29.11.2013 2 1. Bir x sayısı x = 1 1 + x eşitliğini sağlamaktadır. x 1 x hangisidir? in en basit hali aşağıdakilerden

Detaylı

deneme onlineolimpiyat.wordpress.com

deneme onlineolimpiyat.wordpress.com 1.) toplamı kaça eşittir? A)hiçbiri B) C)3/217 D)9/217 E) 1/217 2.) 250 kişinin katıldığı bir tenis turnuvasında eleme usulü ile maçlar yapııyor. Yani ikişerli eşleşmelerde maçı kaybeden eleniyor.üst tura

Detaylı

= 1 ELAZIĞ 2016 MATEMATİK YARIŞMASI I. AŞAMA SORULARI. Soru 1: işleminin sonucu kaçtır? A) 2014 B) 2015 C) 2016 D) 2017 E) 2018.

= 1 ELAZIĞ 2016 MATEMATİK YARIŞMASI I. AŞAMA SORULARI. Soru 1: işleminin sonucu kaçtır? A) 2014 B) 2015 C) 2016 D) 2017 E) 2018. Soru 1: 1 = 1 1 2015.x 4030 2015 2016 işleminin sonucu kaçtır? A) 2014 B) 2015 C) 2016 D) 2017 E) 2018 Soru 2: Bir yolu V km hızla t saatte giden bir aracın saatteki hızını 4 km arttırırsak araç yolun

Detaylı

Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35

Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35 Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A 1. ABC üçgeninde BF BD, EC CD olacak şekilde AC kenarı üzerinde E noktası, o BC m(ba C) 70 ise m(fd E) kaç derecedir? AB kenarı üzerinde F noktası,

Detaylı

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 2017 LİSE MATEMATİK SINAVI. 10 Mayıs 2017 Çarşamba,

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 2017 LİSE MATEMATİK SINAVI. 10 Mayıs 2017 Çarşamba, İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 07 LİSE MATEMATİK SINAVI 0 Mayıs 07 Çarşamba, 09.30 -.30 Öğrencinin, Adı Soyadı : T.C. Kimlik No : Okulu / Sınıfı : Sınav Merkezi : . Bir

Detaylı

1. Beş tam sayının toplamı 3 e bölünüyorsa, bu sayılardan en çok kaç tanesi 3 e bölünmeyebilir? a) 1 b) 2 c) 3 d) 4 e) 5. x x x

1. Beş tam sayının toplamı 3 e bölünüyorsa, bu sayılardan en çok kaç tanesi 3 e bölünmeyebilir? a) 1 b) 2 c) 3 d) 4 e) 5. x x x TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 9. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2004 Soru kitapçığı türü A 1. Beş tam sayının toplamı

Detaylı

A) 1 B) 10 C) 100 D) 1000 E) Sonsuz. öğrencinin sinemaya tam bir kez birlikte gidecek şekilde ayarlanabilmesi aşağıdaki n

A) 1 B) 10 C) 100 D) 1000 E) Sonsuz. öğrencinin sinemaya tam bir kez birlikte gidecek şekilde ayarlanabilmesi aşağıdaki n İLMO 008. Aşama Sınavı Soru Kitapçığı - A. 009 009 009 + +... + n toplamı hiçbir n doğal sayısı için aşağıdakilerden hangisiyle bölünemez? A) B) n C) n+ D) n+ E). ( x!)( y!) = z! eşitliğini sağlayan (x,

Detaylı

İSTANBUL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 2019 SINAVI

İSTANBUL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 2019 SINAVI ÖGRENCİNİN ADI SOYADI : T.C. KİMLİK NO : OKULU / SINIFI : SINAVA GİRDİĞİ İLÇE: SINAVLA İLGİLİ UYARILAR: İSTANBUL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 2019 SINAVI Kategori: Matematik Lise Soru Kitapçık

Detaylı

ise, yazılı olarak çözmeniz gereken 3 problemden oluşmakta olup, süresi 75 dakikadır. Elinizdeki

ise, yazılı olarak çözmeniz gereken 3 problemden oluşmakta olup, süresi 75 dakikadır. Elinizdeki TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 11. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2006 Birinci Bölüm Soru kitapçığı türü A SINAV TARİHİ

Detaylı

ise, yazılı olarak çözmeniz gereken 3 problemden oluşmakta olup, süresi 75 dakikadır. Elinizdeki

ise, yazılı olarak çözmeniz gereken 3 problemden oluşmakta olup, süresi 75 dakikadır. Elinizdeki TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 11. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2006 Birinci Bölüm Soru kitapçığı türü B SINAV TARİHİ

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

IX. Ulusal İlköğretim Matematik Olimpiyatı

IX. Ulusal İlköğretim Matematik Olimpiyatı IX. Ulusal İlköğretim Matematik Olimpiyatı B 1. Bir su tankerinin tam doluyken toplam ağırlığı x ton; yarı yarıya doluyken toplam ağırlığı y ton ise, boş tankerin ağırlığı kaç tondur? a) 2x 2y b) 2y x

Detaylı

IX. Ulusal İlköğretim Matematik Olimpiyatı

IX. Ulusal İlköğretim Matematik Olimpiyatı IX. Ulusal İlköğretim Matematik Olimpiyatı A 1. Beş tam sayının toplamı 3 e bölünüyorsa, bu sayılardan en çok kaç tanesi 3 e bölünmeyebilir? a) 1 b) 2 c) 3 d) 4 e) 5 2. Her x 0 gerçel sayısı için, eşittir?

Detaylı

16. ULUSAL MATEMATİK OLİMPİYATI

16. ULUSAL MATEMATİK OLİMPİYATI TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 16. ULUSAL MATEMATİK OLİMPİYATI - 2008 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü B 27 Nisan 2008 Pazar, 13.00-15.30

Detaylı

1. Bir ayrıtının uzunluğu 1 olan küpler üst üste konularak tüm alanı A olan bir kare dik prizma yapılırsa, A sayısı aşağıdakilerden hangisi olabilir?

1. Bir ayrıtının uzunluğu 1 olan küpler üst üste konularak tüm alanı A olan bir kare dik prizma yapılırsa, A sayısı aşağıdakilerden hangisi olabilir? 1. Bir ayrıtının uzunluğu 1 olan küpler üst üste konularak tüm alanı A olan bir kare dik prizma yapılırsa, A sayısı aşağıdakilerden hangisi olabilir? a) 12 b) 16 c) 26 d) 36 e) 44 2. Aşağıdakilerden hangisi

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar,

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar, 1. 9 2 x 2 ifadesinin açılımında sabit x terim kaç olur? A) 672 B) 84 C) 1 D) -84.E) -672 6. Ali her gün cebinde kalan parasının %20 sini harcamaktadır. Pazartesi sabahı haftalığını alan Ali ni Salı günü

Detaylı

2016 UOMO 1. Aşama. A) 15 B) 17 C) 19 D) 21 E) 23 Çözüm. Denklemi düzenleyelim:

2016 UOMO 1. Aşama. A) 15 B) 17 C) 19 D) 21 E) 23 Çözüm. Denklemi düzenleyelim: 016 UOMO 1. Aşama 1. Bir ABC üçgeninde BE ve CD kenarortayları birbirine dik ve BE = 18, CD = 7 ise AF kenarortayının uzunluğu kaçtır? A) 43 B) C) 45 D) 3 E) 4 Çözüm. Üçgenin ağırlık merkezi G olmak üzere,

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 İLKÖĞRETİM - PROBLEMLERİ c Copyright Titu Andreescu and Jonathan Kane Çeviri Sibel Kılıçarslan CANSU ve Fatih Kürşat CANSU Problem 1 Eğer 125 + n + 135 + 2n

Detaylı

SINAV TARİHİ VE SAATİ : 25 Nisan 2009 Cumartesi, OKULU / SINIFI :

SINAV TARİHİ VE SAATİ : 25 Nisan 2009 Cumartesi, OKULU / SINIFI : TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 14. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2009 Birinci Bölüm Soru kitapçığı türü SINAV TARİHİ

Detaylı

SINAV TARİHİ VE SAATİ : 25 Nisan 2009 Cumartesi, OKULU / SINIFI :

SINAV TARİHİ VE SAATİ : 25 Nisan 2009 Cumartesi, OKULU / SINIFI : TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 14. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2009 Birinci Bölüm Soru kitapçığı türü SINAV TARİHİ

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINAV SORULARI 1. 1999 ÖSS a, b, c pozitif gerçel (reel) sayılar olmak üzere a+ b ifadesindeki her sayı 3 ile çarpılırsa aşağıdakilerden hangisi elde c edilir? 3 a+ b A) B) c a+ 3b C)

Detaylı

VI. OLİMPİYAT SINAVI SORULAR

VI. OLİMPİYAT SINAVI SORULAR SORULAR 1. N sayısı 1998 basamaklı ve tüm basamakları 1 olan bir doğal sayıdır. Buna göre N sayısının virgülden sonraki 1000. basamağı kaçtır? A)0 B)1 C)3 D)6 E) Hiçbiri. n Z olmak üzere, n sayısı n sayısına

Detaylı

1994 ÖYS. 6. x, y, z sıfırdan büyük birer tam sayı ve 2x+3y-z=94 olduğuna göre, x in en küçük değeri kaçtır?

1994 ÖYS. 6. x, y, z sıfırdan büyük birer tam sayı ve 2x+3y-z=94 olduğuna göre, x in en küçük değeri kaçtır? 99 ÖYS. Üç basamaklı abc sayısının birler basamağı tür. Birler basamağı ile yüzler basamağı değiştirildiğinde oluşan yeni sayı, abc sayısından 97 küçüktür. Buna göre, abc sayısının yüzler basamağı kaçtır?.,

Detaylı

Cahit Arf Kitapçığı SINIF. Ad soyad:... sınıf:... okul:... MATEMATİK

Cahit Arf Kitapçığı SINIF. Ad soyad:... sınıf:... okul:... MATEMATİK Cahit Arf Kitapçığı 2019 İZMİR BİLİM OLİMPİYATLARI 9.10. SINIF Ad soyad:... sınıf:... okul:... MATEMATİK İZMİR BİLİM OLİMPİYATLARI MATEMATİK - 2019 1. Bölüm 3 puan değerinde 10 sorudan oluşmaktadır. 1.

Detaylı

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ( OCAK 2010)

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ( OCAK 2010) ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ( OCAK 2010) 1) Bir ABC dik üçgeninde B açısı diktir. AB kenarı üzerinde alınan bir D noktası için m( BCD) m( DCA) dır. BC kenarı üzerinde alınan bir E noktası için

Detaylı

24 Nisan 2010 Cumartesi,

24 Nisan 2010 Cumartesi, TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 15. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI - 2010 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü B 24 Nisan 2010 Cumartesi,

Detaylı

2000 Birinci Aşama Sınav Soruları

2000 Birinci Aşama Sınav Soruları 2000 irinci şama Sınav Soruları Lise 1 Soruları 1 369 sayısı bir kaç ardışık doğal sayının toplamı olarak kaç farklı biçimde yazılabilir? )2 )3 )4 )5 )7 2 ve sayıları 2000 sayısının pozitif bölenleri olmak

Detaylı

2 Nisan 2011 Cumartesi,

2 Nisan 2011 Cumartesi, TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 16. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI - 2011 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü B 2 Nisan 2011 Cumartesi,

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI.

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI. Sayfa1 9. Ulusal serimya İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI 2011 Sayfa2 1. Bir ABCD konveks dörtgeninde AD 10 cm ise AB CB? m( Dˆ ) 90, ( ˆ) 150 0 0 m C ve m Aˆ m Bˆ ( ) ( ) olarak

Detaylı

1998 ÖSS A) 30 B) 27 C) 18 D) 9 E) 5 A) 8000 B) 7800 C) 7500 D) 7200 E) 7000

1998 ÖSS A) 30 B) 27 C) 18 D) 9 E) 5 A) 8000 B) 7800 C) 7500 D) 7200 E) 7000 998 ÖSS. Rakamları sıfırdan farklı, beş basamaklı bir sayının yüzler ve binler basamağındaki rakamlar yer değiştirildiğinde elde edilen yeni sayı ile eski sayı arasındaki fark en çok kaç olabilir? 6. ve

Detaylı

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA 00 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. + + 5 0 + + + 0 40 toplamının sonucu kaçtır? A) 5 B) C) D) E) + 4. a,b,c Z olmak üzere, a + b + c 7 = 6 ise, a.b.c kaçtır? A) 6 B) 8 C) D) 6 E) 8 y.

Detaylı

ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI KTS 1

ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI KTS 1 ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI KTS 1 Süre: 150 dakika ÖĞRENCĐNĐN ADI SOYADI: SINAVLA ĐLGĐLĐ UYARILAR: Bu sınav çoktan seçmeli 36 sorudan oluşmaktadır. Her sorunun sadece bir

Detaylı

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA - 4 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. 4? 4 4. A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? A) 6 B) 8 C) D)

Detaylı

İZMİR MATEMATİK OLİMPİYATI - II 1. AŞAMA SINAVI

İZMİR MATEMATİK OLİMPİYATI - II 1. AŞAMA SINAVI İZMİR MATEMATİK OLİMPİYATI - II 1. AŞAMA SINAVI 11.05.2019 Sınava giren öğrencinin ADI SOYADI :............................................................................ T.C. KİMLİK NO :.....................................................................

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 10. SINIF TEST SORULARI A) 80 B) 84 C) 88 D) 102 E) 106

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 10. SINIF TEST SORULARI A) 80 B) 84 C) 88 D) 102 E) 106 1. n bir doğal sayı olmak üzere, n! sayısının sondan k basamağı 0 dır. Buna göre, k tamsayısı aşağıdakilerden hangisi olamaz? 3. (x+y+z+t ) 6 ifadesinin açılımında kaç terim vardır? A) 80 B) 84 C) 88 D)

Detaylı

16. ULUSAL MATEMATİK OLİMPİYATI

16. ULUSAL MATEMATİK OLİMPİYATI TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 16. ULUSAL MATEMATİK OLİMPİYATI - 2008 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 27 Nisan 2008 Pazar, 13.00-15.30

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

a. İçbükey (konkav) çokgenler: Bir çokgenin bazı kenar doğruları çokgeni kesiyorsa bu tür çokgenlere İçbükey çokgen denir.

a. İçbükey (konkav) çokgenler: Bir çokgenin bazı kenar doğruları çokgeni kesiyorsa bu tür çokgenlere İçbükey çokgen denir. ÇOKGENLER 1. Çokgen Bir düzlemde birbirinden farklı ve herhangi üçü doğrusal olmayan A 1, A 2, A 3, gibi n tane (n 3) noktayı ikişer ikişer birleştiren doğru parçalarının oluşturduğu kapalı şekillere çokgen

Detaylı

A) 18 B) 19 C) 20 D) 21 A) 1226 B) 1225 C) 1224 D) 1223

A) 18 B) 19 C) 20 D) 21 A) 1226 B) 1225 C) 1224 D) 1223 . İlk 2 pozitif doğal sayıdan oluşan {, 2, 3,,...,, 2} kümesi veriliyor. u kümeden 3 eleman çıkartıldığında geriye kalan elemanların sayı değerleri çarpımı tam kare oluyor. una göre, çıkartılan sayıların

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

ONLiNE OLiMPiYAT

ONLiNE OLiMPiYAT ONLiNE OLiMPiYAT 010-011 4.DENEME SINAVI 16. ULUSAL ĐLKÖĞRETĐM MATEMATĐK OLĐMPĐYATI TÜRKĐYE GENELĐ ONLĐNE DENEME SINAVI - 4 1. Aşama Soru Kitapçığı SINAV TARĐHĐ : 4-7 Mart 011 ÖĞRENCĐNĐN ADI SOYADI : OKULU/SINIFI

Detaylı

SİVAS FEN LİSESİ. Soru Kitapçığı Türü. 25 Nisan 2015 Cumartesi, 9:30 12:30

SİVAS FEN LİSESİ. Soru Kitapçığı Türü. 25 Nisan 2015 Cumartesi, 9:30 12:30 SİVAS FEN LİSESİ SİVAS İL MERKEZİ ORTAOKUL 1. MATEMATİK OLİMPİYATI SINAVI 015 ÖĞRENCİNİN ADI SOYADI : T.C. KİMLİK NO : OKUL / SINIFI : SINAVLA İLGİLİ UYARILAR: Soru Kitapçığı Türü A 5 Nisan 015 Cumartesi,

Detaylı

A SINAV TARİHİ VE SAATİ : 26 Nisan 2008 Cumartesi,

A SINAV TARİHİ VE SAATİ : 26 Nisan 2008 Cumartesi, TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 13. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2008 Birinci Bölüm Soru kitapçığı türü A SINAV TARİHİ VE SAATİ

Detaylı

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI 14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI - 008 SORU -1 1 0.7 0.1 0.48 = 0.018 0.8 0. eşitliğini sağlayan sayısı kaçtır? [ 0.15] SORU - c d d c a b 4 c d b b a ifadesinin i i sayısal ldeğeri

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

ÖZEL EGE LİSESİ 10. OKULLARARASI MATEMATİK YARIŞMASI 10. SINIFLAR SORULARI

ÖZEL EGE LİSESİ 10. OKULLARARASI MATEMATİK YARIŞMASI 10. SINIFLAR SORULARI 0 KULLARARASI MATEMATİK YARIŞMASI 0 SINIFLAR SRULARI (5xy) dört basamaklı sayıdır 5 x y 6 - a 3 Yukarıdaki bölme işlemine göre y nin alabileceği değerler toplamı kaçtır? 4 m pozitif bir tamsayı olmak üzere;

Detaylı

1. Herhangi biri diğerinin 3 katı olmayan 48 den küçük en çok kaç tane pozitif tam sayı vardır? A) 30 B) 32 C) 36 D) 38 A) 24 B) 27 C) 30 D) 32

1. Herhangi biri diğerinin 3 katı olmayan 48 den küçük en çok kaç tane pozitif tam sayı vardır? A) 30 B) 32 C) 36 D) 38 A) 24 B) 27 C) 30 D) 32 1. Herhangi biri diğerinin 3 katı olmayan 48 den küçük en çok kaç tane pozitif tam sayı vardır? ) 30 B) 32 C) 36 D) 38 4. Bir manifaturacı (kumaş satıcısı), kolay bir şekilde ölçü almak için çırağından

Detaylı

23. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI B B B B B B B

23. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI B B B B B B B AKDENİZ ÜNİVERSİTESİ 23. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI ADI SOYADI :... OKUL... ŞEHİR :...SINIF :... İMZA :... SINAV TARİHİ VESAATİ:29 Nisan 2018 - Pazar 10.00-12.30 u sınav 25 sorudan oluşmaktadır

Detaylı

a.c = 48 3a + 2b c = 37 ise, a nın alacağı en küçük değer kaçtır?

a.c = 48 3a + 2b c = 37 ise, a nın alacağı en küçük değer kaçtır? . a,b,c birbirinden farklı tamsayılar ve a sıfırdan. a, b, c R olmak üzere farklı olmak üzere, a.b = 0 c

Detaylı

23. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI A A A A A A A

23. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI A A A A A A A KDENİZ ÜNİVERSİTESİ 23. ULUSL NTLY MTEMTİK OLİMPİYTI SORULRI DI SOYDI :... OKUL... ŞEHİR :...SINIF :... İMZ :... SINV TRİHİ VESTİ:29 Nisan 2018 - Pazar 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav

Detaylı

AB AB. A ve B noktalarından geçen doǧru. [AB] nin uzunluǧu AB, CD ye paralel

AB AB. A ve B noktalarından geçen doǧru. [AB] nin uzunluǧu AB, CD ye paralel TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 6. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2001 Birinci Bölüm Soru kitapçığı türü A AB [AB] AB AB

Detaylı

YGS ÖNCESİ. 1) 1! + 3! + 5! ! Toplamının birler basamağındaki rakam kaçtır?

YGS ÖNCESİ.   1) 1! + 3! + 5! ! Toplamının birler basamağındaki rakam kaçtır? 1) 1! + 3! + 5! +. + 1453! Toplamının birler basamağındaki rakam kaçtır? 6) Rakamları sıfırdan farklı iki basamaklı bir AB doğal sayının rakamları yer değiştiğinde sayının değeri 63 artıyor. Buna göre,

Detaylı

Sabancı Üniversitesi Matematik Kulübü 5. Liseler Arası Matematik Yarışması 1. AŞAMA

Sabancı Üniversitesi Matematik Kulübü 5. Liseler Arası Matematik Yarışması 1. AŞAMA Sabancı Üniversitesi Matematik Kulübü 5. Liseler Arası Matematik Yarışması 1. AŞAMA SABANCI ÜNİVERSİTESİ MATEMATİK KULÜBÜ 5. LİSELER ARASI MATEMATİK YARIŞMASI 1. AŞAMA 15 MART 2013 CUMA BAŞLANGIÇ: 14:00

Detaylı

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1 1. BÖLÜM Sayılarda Temel Kavramlar Bölme - Bölünebilme - Faktöriyel EBOB - EKOK Kontrol Noktası 1 Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. {0, 1, 2,..., 9} II. {1, 2, 3,...} III. {0, 1, 2,

Detaylı

SAYILAR VE TEMEL KAVRAMLAR

SAYILAR VE TEMEL KAVRAMLAR Sayıları göstermeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,,5,6,7,8 ve 9 dur. N = {0,1,2,3,, n, n + 1, } kümesinin elemanlarına doğal sayı denir. En küçük doğal sayı 0 dır. N + = {1,2,3,, n,

Detaylı

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi TEST: 6 5. 1. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12 2. 6. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi aşağıdakilerden hangisidir? A) 7x+5y=35 B) 7x-5y=35

Detaylı

19. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI A A A A A A A

19. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI A A A A A A A KDENİZ ÜNİVERSİTESİ 19. ULUSL NTLY MTEMTİK OLİMPİYTI SORULRI DI SOYDI :...CEP TEL :... OKUL...ŞEHİR :... SINIF :...ÖĞRETMEN :... eposta :... İMZ :... SINV TRİHİ VESTİ:4Mayıs 2014 - Pazar 10.00-12.30 Bu

Detaylı

25 Nisan 2010 Pazar,

25 Nisan 2010 Pazar, TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 18. ULUSAL MATEMATİK OLİMPİYATI - 2010 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 25 Nisan 2010 Pazar, 13.00-15.30

Detaylı

2017 MÜKEMMEL YGS MATEMATİK

2017 MÜKEMMEL YGS MATEMATİK 2017 MÜKEMMEL YGS MATEMATİK 1. 2,31 0,33 0,65 0,13 + 3,6 0,6 işleminin sonucu kaçtır? A)0,5 B) 0,8 C)0,9 D)5 E)8 4. Üç basamaklı ABB doğal sayısı 4 e ve 9 a kalansız bölünmektedir. Buna göre, A+B toplamının

Detaylı

Singapur Matematik Olimpiyatı Soruları

Singapur Matematik Olimpiyatı Soruları Singapur Matematik Olimpiyatı Soruları 1.) 1, 1, 1,., 1 sayıları tahtaya yazılıyor. Burak x ve y gibi iki sayı seçip bunları siliyor ve 1 2 3 2010 x+y+xy sayısını yazıyor. Burak bu işleme tahtada tek sayı

Detaylı

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL ORTAOKUL MATEMATİK OLİMPİYATI ve 8. SINIF SINAVI. 10 Mayıs 2017 Çarşamba,

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL ORTAOKUL MATEMATİK OLİMPİYATI ve 8. SINIF SINAVI. 10 Mayıs 2017 Çarşamba, İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL ORTAOKUL MATEMATİK OLİMPİYATI 07 7 ve 8. SINIF SINAVI 0 Mayıs 07 Çarşamba, 09.30 -.30 Öğrencinin, Adı Soyadı : T.C. Kimlik No : Okulu / Sınıfı : Sınav Merkezi

Detaylı

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10.

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10. MAT-1 EK SORULAR-2 1. 6. A)7 B)8 C)15.D)56 E)64 Olduğuna göre x.a)1 B)2 C)3 D)4 E)6 7. 2. Birbirinden farklı x ve y gerçek A)5.B)6 C)7 D)8 E)9 sayıları için; x 2 +2009y=y 2 +2009x eşitliği sağlandığına

Detaylı

16. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

16. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A AKDENİZ ÜNİVERSİTESİ 16. ULUSAL ANTALYA MATEMATİK OLİMPİYATLARI BİRİNCİ AŞAMA SORULARI A A A A A A A SINAV TARİHİ VESAATİ:16 NİSAN 2011 - Cumartesi 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav

Detaylı

6. loga log3a log5a log4a. 7. x,y R olmak üzere;

6. loga log3a log5a log4a. 7. x,y R olmak üzere; log. 5 5 0 olduğuna göre, değeri kaçtır? A) 5 B) 0 C) 6 8 E) 6. loga loga log5a loga eşitliğini sağlaan a değeri kaçtır? 5 A) 5 5 B) 5 5 C) 5 E) 5. loga logb logc ifadesinin eşiti aşağıdakilerden a c A)

Detaylı

İSTANBUL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 2019 SINAVI

İSTANBUL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 2019 SINAVI ÖGRENCİNİN ADI SOYADI : T.C. KİMLİK NO : OKULU / SINIFI : SINAVA GİRDİĞİ İLÇE: SINAVLA İLGİLİ UYARILAR: İSTANBUL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 2019 SINAVI Kategori: Matematik 7-8 Soru Kitapçık

Detaylı

2003 ÖSS Soruları. işleminin sonucu kaçtır? ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A) 1 B) 7 C) 9 D) 11 E) 21

2003 ÖSS Soruları. işleminin sonucu kaçtır? ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A) 1 B) 7 C) 9 D) 11 E) 21 00 ÖSS Soruları,, 0,0. + + 0, 0, 0,00 işleminin sonucu kaçtır? ) ) 7 ) 9 ) ). ( y )( + y+ y ) ( y) c + m y ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? ) y ) + y ) y y + y ) ) + y y. (0,

Detaylı

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI 4 II MATEMATİK YARIŞMASI I AŞAMA SORULARI 4? 4 4 A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? 5 A) B) C) - D) E) - 8 4 x x

Detaylı

OLİMPİYAT DENEMESİ 4

OLİMPİYAT DENEMESİ 4 OLİMPİYAT DENEMESİ 4 1.) Alper kendi yaşını ve sonrada kendi yaşının sağ tarafına babasının yaşını yazarak dört basamaklı bir sayı elde ediyor.bu sayıya babasıyla olan yaş farkının 16 katını ekleyince

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 18 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 8 Nisan 99 Matematik Soruları ve Çözümleri. Bir sayının inin fazlası, aynı sayıya eşittir. Bu sayı kaçtır? A) B) 0 C) D) 0 E) Çözüm Sayı olsun.. + +. Bir sınıftaki toplam öğrenci

Detaylı

ÇÖZÜMLEME - TABAN ARİTMETİĞİ Test -1

ÇÖZÜMLEME - TABAN ARİTMETİĞİ Test -1 ÇÖZÜMLEME - TABAN ARİTMETİĞİ Test -1 1. xy iki basamaklı sayısının rakamlarının yerleri değiştirildiğinde elde edilen sayı ilk sayıdan 4 küçüktür. Buna göre, x y farkı kaçtır?. x = 4y eşitliğini sağlayan

Detaylı

6. ABCD dikdörtgeninde

6. ABCD dikdörtgeninde Çokgenler ve örtgenler Test uharrem Şahin. enar sayısı ile köşegen sayısı toplamı olan düzgün çokgenin bir dış açısı kaç derecedir? ) ) 0 ) ) 0 ). Şekilde dikdörtgeninin içindeki P noktasının üç köşeye

Detaylı

YGS MATEMATİK DENEMESİ-1

YGS MATEMATİK DENEMESİ-1 YGS MATEMATİK DENEMESİ- Mustafa SEVİMLİ Fatih KAYGISIZ İbrahim KUŞÇUOĞLU Aydın DANIŞMAN ÇAKABEY ANADOLU LİSESİ Serkan TÜRKER Nejdet KİRPİ Şenay TAĞ GÜRLER Taner KAHYA Çakabey Anadolu Lisesi 0-0 . x olduğuna

Detaylı

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde 1. Aşağıdaki kümelerden hangisi sonsuz küme belirtir? A) A = { x 4 < x < 36,x N} B) B = { x 19 < x,x asal sayı} C) C = { x x = 5k,0 < x < 100,k Z} D) D = { x x = 5, x Z} E) E = { x x < 19,x N}. A, B ve

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı