Parçacık Hızlandırıcılarının Tipleri ve Fiziği

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Parçacık Hızlandırıcılarının Tipleri ve Fiziği"

Transkript

1 Türk Fizik Derneği (TFD) II. Ulusal Parçaık Hızlandırııları ve Dedektörleri Yaz Okulu 18-4 ylül 006, Bodrum Parçaık Hızlandırıılarının Tipleri ve Fiziği Prof. Dr. Ömer YAVAŞ Ankara Üniv. Müh. Fak. Fizik Müh. Bölümü Tel: (31) / 119

2 Konu Başlıkları - 1 Tarihçe Temel kavramlar Hızlandırıı teknolojileri Hızlandırıı tipleri Temel birim ve bağıntılar Temel rölativistik formülasyon Ana parametreler Hızlandırıı Tipleri Demet dinamiğinin temel ilkeleri , Bodrum

3 Konu Başlıkları - Demet kararlılığı Işınlık (luminosity) (L) Kütle Merkezi enerjisi (.m. ) LĐNR HIZLANDIRICILAR lektrostatik hızlandırıılar Tesla transformatörü Cokroft ve Walton hızlandırıısı Van de Graff hızlandırıısı Lineer indüksiyon hızlandırıısı , Bodrum 3

4 Konu Başlıkları - 3 RF Alanlarla hızlandırma Dalga Klavuzları Silindirik RF kaviteler ve Uyarılma modları nerji kazanımı tkin hızlandırma ilkesi DAĐRSL HIZLANDIRICILAR Betatron Zayıf odaklama Adyabatik sönüm , Bodrum 4

5 Konu Başlıkları - 4 Mikrotron Siklotron Sinkro-siklotron Đsokron-sinklotron Sinkrotron Depolama halkaları Dünyadaki hızlandırıılar Hızlandırııların Kullanım Alanları , Bodrum 5

6 Parça aık Hızland zlandırıılar ları Açısından Önemli Tarih, Kişi i ve Olaylar Faraday Maxwell Hertz 1815 Proust: Atomların hepsinin hidrojenden yapıldığını savunan ilk atom modeli Faraday: Yük boşalımı (glow disharge) üzerine ilk yayın Plüker: Katod ışınları ve bunların, magnetik alanı ile saptırılması Lorentz: Maxwell ile eşzamanlı olarak elektromagnetik teorinin açıklanması Helmholtz: lektriğin atomik yapısının açıklanması Maxwell : Treatise on letriity and Magnetism 1883 dison: Isıl ışınım (thermioni emission) Hertz: lektromagnetik dalgalar ve fotoelektrik etkinin gözlenmesi Stoney: Đlk kez elektron ismi kullanılmıştır Lorentz: lektron teorisi, Lorentz kuvveti, Lorentz dönüşümleri , Bodrum 6

7 Röntgen instein 1895 Röntgen: X- ışınlarının keşfi Thompson: e/m oranı ve katod ışınlarının bulunması Lienard: lektrik ve megnetik alanlar içinde parçaığın hareketini, dairesel hareket yapan yüklü parçaığın sinkrotron ışınımı yapaağını gösterdi instein: Özel görelilik, Fotoelektrik Olay Shottky: Atomik spektrum ve sinkrotron teorisi Milikan: Deneysel olarak e- değerinin ölçülmesi Frank-Hertz: ivmeli elektronlarl atomların uyarılması Marsden: ilk olarak alfa parçaıklarının protondan saçılması. 190 Greinaker: ilk kafes jenertörünün kurulması. 19 Wideroe: Sürüklenme tüpleri ile modern lina teorisi. 194 Ising: Sürüklenme tüpleri ile e- lina ve spark gap uyarılmaları. 198 Wideroe: K ve Na iyonlarının lina ta hızlandırılması ve betatron ilkesinin ortaya koyulması. 198 Van de Graff: ilk yüksek gerilim jeneratörünün yapılması. 198 Dira: Pozitronların varlığının ortaya atılması. Thompson , Bodrum 7

8 Livingstone Alvarez 193 Lawrene ve Livingston: 1. MeV lik elektron siklotronunun yapılması. 193 Cokroft ve Walton: Kafes jeneratöründe hızlandırılan protonlar Li atomları ile çarpıştırıldı. Li + p He 193 Anderson, Chadwik, Urey: Sırasıyla, pozitron,nötron ve döteronların keşfedilmesi Hanson, Varian Kardeşler: Stanford da klaystron, mikrodalga tüpü yapıldı Kerst, Serber: ilk betatronu çalıştırdılar Toushek, Serber: Depolama halkası formülasyonu yapıldı Ivonenko, Pomeranuk: Sinkrotron ışınımından dolayı dairesel elektron hızlandrıılarında enerjiye bir üst limit gelmekte olduğu farkedildi Blewett: Deneysel amaçlar için sinkrotron ışınımı elde edilmesi Alvarez: Berkeley de ilk proton lina ının yapılması MMillan: 30 MeV lik bir elektron sinkrotoronu yapıldı Motz: Sinkrotron ışınımı için ilk wiggler (zigzaglayıı magnet) uygulaması. 195 Livingston: Brookhaven da. GeV lik osmotron yapıldı R.R. Wilson: Cornell de 1.1 GeV lik elektron sinkrotronu (AG) yapıldı Lofgren: Betatronda 5.7 GeV lik protonlar hızlndırıldı Courent-Snyder: Değişken gradyenli sinkrotron teorisi ve yüksek güçlü RF kaynaklar üzerinde çalışmalar , Bodrum 8

9 195 CRN: Avrupa Nükleer Araştırma Merkezi (Cenevre) (PS, SPS, LP, LHC) CRN SPS Fransa LHC Đsviçre Airport CNVR , Bodrum 9

10 1959 DSY: Alman lektron Sinkrotronu (Hamburg) (DSY, DORIS, PTRA, HRA, TSLA?) Hamburg ALMANYA Airport Stadion C 6.3 km VOLKSPARK TTF HASYLAB DSY , Bodrum 10

11 1961 KK: Japonya Yüksek nerji Fiziği Merkezi (Tsukuba) (PS, JLC, JHF, J-PARC) , Bodrum 11

12 001 : I. Ulusal Parça aık Hızland zlandırıılar ları ve Uygulamaları Kongresi (UPHUK-1) kim 001, Ankara 004 : II. Ulusal Parça aık Hızland zlandırıılar ları ve Uygulmaları Kongresi (UPHUK-) Haziran 004, Ankara 005 : DÜNYA FĐZĐK YILI Dünyada ivarında parçaık hızlandırıısı bulunmaktadır. Bunlardan 150 kadarı orta ve büyük ölçekli ( > 100 MeV) 005 : I. Ulusal Parçaık Hızlandırııları Yaz Okulu (Ankara) 006 : Türk Hızlandırıı Merkezi Konulu YUUP Projesi 006 : II. Ulusal Parçaık Hızlandırııları ve Dedektörleri Yaz Okulu (Bodrum) 007 : III. Ulusal Hızlandırıı Kongresi (UPHUK-3) 007 : III. Ulusal Parçaık Hızlandırııları ve Dedektörleri Yaz Okulu 007 : Large Hadron Collider (CRN) (LHC, pp, 14 TeV) (ATLAS, CMS, HRA-b, ALIC) Higgs? Prof. Dr. Ömer Yavaş , Bodrum 1

13 010 : Türk Hızlandırıı Merkezi Test Laboratuvarları (Ankara) 013 : International Linear Collider (??) (ILC, e+e-,.m. 0.5 TeV) 017 : Türk Hızlandırıı Merkezi (THM (TAC)), Ankara (Partile Fatory, SR, FL, PS) 00 : Compat Linear Collider (CLIC) (CRN, e+e-,.m.3 TeV) 05 : Very Large Hadron Collider (VLHC) (CRN?, pp,.m.100 TeV) 050 :? 100 :!? 3000 :!!!? , Bodrum 13

14 , Bodrum 14

15 Remarkable omment h/λ kt Uses light λ Uses heat T Uses probe Photons Photons Photons All three the same fundamental physis! , Bodrum 15

16 Temel Kavramlar Fiziğin mekanik, elektromagnetizma, istatistik, kuantum ve optik gibi temel konuları aynı zamanda parçaık hızlandırııları ve çarpıştırıılarınında temelini oluşturmaktadırlar. Parçaık hızlandırııları: Temel yüklü parçaık demetlerinin toplam enerjilerinin artırılarak hedeflenen değere ulaşmalarını sağlayan donanımlardır. Hızlandırma parçaıkların elektrik alan etkisinde kalarak boyuna ivmelenmeleri ile mümkün olmaktadır. Bu demetler sabit hedef deneylerinde, çarpıştrıılarda veya ışınım kaynağı olarak kullanılmaktatır. Hızlandırıı fiziği, parçaık demetlerinin elektromagnetik alanlar altındaki hareketini; yörünge, momentum, enerji kazanımı, dağılma, odaklama v.b. süreçleri ineleyen bir bilim dalıdır. Doğal olarak bu ineleme ilgili mühendislik ve teknolojik uygulamalarıda içermektedir. Hızlandırma lineer veya dairesel yörüngelerde yapılabilir. Çarpıştırıı fiziği: bir parçaık demetini farklı bir demet veya bir anti-parçaık demeti ile, amaa uygun bir kütle merkezi enerjisi (.m. ) ve Işınlık (L, luminosity) değeri ile çarpıştırılmasını ve burada çalışlaak fiziği ineleyen bilim dalıdır. Günümüzde e,p v.b. Parçaık demetleri değişik tekniklerle GeV ve TeV mertebesinde enerjilere ulaştırılabilmektedir. (1eV J, 1 GeV10 9 ev, 1 TeV 10 1 ev) , Bodrum 16

17 Hızlandırıılarda ulaşılan maksimum enerji değeri her 7 yılda bir kat artarak son 50 yılda 10 1 mertebesine yükselmiştir. 007 te çalışaak olan pp çarpıştırıısı LHC de proton demetlerinin enerjisi 7 TeV ev tur. 50 yıl öne ise kuvvetli fokuslamalı bir sinkrotronda birkaç MeV e ulaşılmıştı. lektron, proton, pion, kaon, müon, nötrino ve antiparçaık demetlerinin yanısıra atom ve molekül demetleri oluşturularak deneylerde kullanılmaktadır. Demetler paketçikli (bunhed), sıkıştırılmış (squeezed), modüle edilmiş (modulated) ve dalgalı (hopped) formda olabilirler. Parçaık ve foton demetlerini, bunların doğasını, davranışlarını, demetmadde ve demet-ışıma etkileşmelerini demet fiziği ineler. Demetler üzerinde kullanılan alanlar statik, pulslu, RF salınımlı olabilir , Bodrum 17

18 Hızlandırıı Teknolojileri Parçaık kaynakları RF mühendisliği Magnet teknolojisi Süperiletken malzemeler Soğutma teknolojileri Yüksek gradyenli alanlar Düşük yayınımlı (emittanslı) ve yüksek yoğunluklu demetler Çok kutuplu magnetler (wigglers and undulators) Magnetooptik Düşük vakum teknolojileri v.b , Bodrum 18

19 Hızlandırıılar, yüksek enerji fiziği deneyleri, nükleer fizik deneyleri, sinkrotron ışınım kaynağı, serbest elektron lazeri, atmalı (pulslu) nötron kaynağı, ikinil demetlerin elde edilmesi, malzeme bilimi (iyon implantasyonu), kimya, biyoloji, teşhis ve radyoterapi, petrol ve maden aranması, gıda sterilizasyonu, savunma v.b. Sektörlerde yüzlere kullanım alanı bulmaktadır , Bodrum 19

20 Hızlandırıı Tipleri ve Önemli Kavramlar Yüksek Gerilim Hızlandırııları (High Voltage Aelerators) : Bu düzenekte her parçaık oluşturulan bir potansiyel farkını birkez geçerek kinetik enerji kazanır. Đndüksiyon Hızlandırııları (Indution Aelerators) : Parçaıklar zamanla şiddeti değişen manyetik alan tarafından indüklenen elektrik alan ile hızlandırılırlar. Lineer Hızlandırıılar (Linear Aelerators) : nerji kazanımı bölgeleri olan RF kavitelerin bir doğru boyuna sıralandığı bir hızlandırıı düzenektir. Dairesel Hızlandırıılar (Cirular Aelerators) : Parçaıklar eğii magnetler araılığı ile kapalı bir yörüngede RF lerden defalara geçirilerek hızlandırılırlar. Tekrarlı Hızlandırıılar (Cyli Aelerators) : Parçaıklar lineer veya dairesel olarak aynı potansiyel farkını defalra geçerler. Çarpışan Demetler Deneyi ( Colliding Beams xperiment) : Zıt yönde hızlandırılmış demetlerin çarpışma sonuçlarının inelendiği deneylerdir. Sabit Hedef Deneyi ( Fixed Target xperiment) : Hızlandırılmış demetlerin katı, sıvı veya gaz hedeflerle çarpışma sonuçlarının inelendiği deneylerdir. Betatron (Betatron) : Hafif parçaıklar için kullanılan sabit yarıçaplı indüksiyon ilkesiyle hızlandırma yapan düzeneklerdir , Bodrum 0

21 Siklotron (Cylotron) : Proton veya ağır iyonların sinüsel RF gerilim sayesinde dairesel magnetler içinde spiral çizerek hızlandırılmasını ve kullanılmasını sağlayan düzeneklerdir. Mikrotron (Mirotron) : Parçaık demetinin yörüngenin tek noktasına uygulanan alanla bükülerek aynı kaviteden pek çok kez artan yörünge yarıçaplarıyla geçirilmesi ilkesine dayanan bir hızlandırma düzeneğidir. Sinkrotron (Synrotoron) : Parçaıkların uygun magnetler ile sabit R yarıçapında tutulduğu ve RF kaviteler ile hızlandırıldığı düzeneklerdir. Depolama Halkaları (Storage Rings) : Bir veya daha fazla demeti kapalı yörüngelerde belirli enerjilerde dolndırmak için kulllnılan düzenektir. Đkini Demetler (Seondary Beam) : Bir birinil demetin sabit hedeften saçılması sonuu elde edilen demetlerdir , Bodrum 1

22 Hızlandırıı fiziğinde kullanılan temel birim ve bağıntılar Hızlandırıı fiziğinde enerji ev insinden verilir (1eV J, 1J erg). Momentum ise ev/ insinden verilir ( p 1eV). Đyonlar için nükleon başına enerjiden bahsedilir. Yüklü bir parçaığa etkiyen toplam elektrik ve magnetik kuvvet Lorentz kuvveti adını alır. F q + q( V B) v β Bir dairesel hızlandırııda, parçaıkların ortalama hızı ve toplam yük Z ise demet akımı ; I eznf rev , Bodrum

23 Lineer hızlandırıılarda ise demet akımı, N demet akısı olmak üzere ; I Ze N B manyetik alan gradyenidir ve (G/m) veya (T/m) birimleriyle verilir. 7 Boşluğun dieletrik geçirgenliği, 10 /Vm 1 ε /Vm π Boşluğun manyetik alınganlığı, µ 0 4π 10 6 Vs/mA Vs/mA , Bodrum 3

24 Lorentz Dönüşümleri Temel Rölativistik Formülasyon Birbirine göre hareketli iki sistem arasındaki dönüşüm Lorentz dönüşümleri araılığı ile yapılmaktadır. x x' y y' s s' + β st' 1 β s t t' + β 1 β s s β s v s S, laboratuvar sistemine göre hızıya hareket eden bir S` sisteminde gözlenen uzunluk büzülmesi ve zaman genişlemesi Lorentz dönüşümleri altında ifade edilebilmektedir. S' S / γ t ' γτ V γv ' ρ' / V 1 ρ γ 1+ β s , Bodrum 4

25 , Bodrum 5 Bazı Diferansiyeller lektromagnetik alanlar ve bu alanların yüklü parçaıklarla etkileşimi hızlandırıı fiziği açısından önemlidir. Alanlar için birbirlerine göre hareketli gözlem çerçeveleri arasındaki dönüşümler: β β γ β d kin d d m dp v p p β β γ β β β d d p dp γ dβ m dp 3 s s x s y y y s x x B B + * ), ( * ), ( * β γ β γ s s x s y y y s x x B B B B B B + * ), ( * ), ( * β γ β γ

26 Demet Dinamiğinin Temel Đlkeleri Yüklü parçaıkların elektromagnetik alan varlığında dinamiği veya diğer yüklü parçaıkların ouşturduğu alanların tanımları geniş kapsamda hızlandırıı fiziğidir. Bu elektromagnetik alanları açıklamak için Maxwell denklemleri ve alanlar altında parçaık dinamiği formulasyonu için ve Lorentz Kuvvet tanımı kullanılır..( ε ). B r 0 4πρ 1 t B, B 4π ρ v+ µ r r r F q + q( v B) 1 t , Bodrum 6

27 Lorentz kuvvetinin parçaığın alanla etkileştiği zaman üzerinden integralini alırsak, parçaığın momentumundaki değişimi buluruz: p Fdt Diğer taraftan, Lorentz kuvvetinin alınan yola göre integrali, parçaığın kinetik enerjisindeki değişimi vereektir: kin Fds Momentum ve kinetik enerji diferansiyelleri arasındaki ilişki: βdp d kin Kinetik enerjideki değişim: q kin q ds + ( v B) vdt , Bodrum 7

28 q kin q ds + ( v B) vdt Açıkça görülüyor ki; parçaığın kinetik enerjisi sonlu bir hızlandırıı alanı varlığında artaak ve ivmelenme alanı doğrultusunda olaaktır. Bu ivmelenme parçaık hızından bağımsızdır, hızı sıfır olan parçaığa da etkiyeektir. Lorentz kuvvetinin ikini bileşeni parçaığın hızına bağımlıdır ve yayılma doğrultusu ile magnetik alan doğrultusuna diktir. Bu ikini terim kinetik enerjiyi etkilemez anak yörüngeyi eğer. lektromagnetik alan varlığında yüklü parçaık için hareket denklemi: d dt p d e ( γmv) ze + z( v B) dt Buradaki ve B, skaler ve vektör potansiyel alanlarından türetilen elektrik ve magnetik alanlardır. φ + 1 A t B A , Bodrum 8

29 d dt p dv mγ + dt mv dγ dt ifadesinden yola çıkarsak, γ 3 d dt dp dt γ β dv dt dv 3 β dv m γ + γ ( ) v dt dt Bağıntıda ilk terim kuvvetin parçaık hareketine dik bileşenini, ikini terim ise kuvvetin parçaık hareketine paralel bileşenini vermektedir. dp dt dp ll dt Yörüngeye paralel ve dik hızlandırma arasındaki fark hızlandırıı tasarımını önemli ölçüde etkiler , Bodrum 9

30 Yüklü Parçaık Demetlerinin Kararlılığı Yoğun demet içindeki tek başına parçaıklar ileri düzeyde kararlılık problemlerine sebep olaak şekilde, elektrostatik itme kuvvetlerinin etkisi altında kalabilir. Bütün parçaıkların durgun olduğu bir haim içinde, parçaıkların diğer parçaıkların itme kuvveti etkisi altında yük merkezinden çabuak dışarı kaçmalarını bekleyebiliriz. Bu durum açıkça tüm parçaıkların aynı yönde hareket ettiği bir parçaık demetindeki durumdan farklıdır. Bu nedenle bir demetteki yüklü parçaıkların oluşturduğu alan hesaplanaak ve bu alanlardan kaynaklanan Lorentz kuvveti türetileektir. Laboratuvarda yoğunluklu bir demet varsa: 4πρ 0 B 4π r ρ 0 v Gauss ve Ampere yasalarını kullanarak elektrik ve magnetik alanları hesaplanabilir , Bodrum r πρ 0 r v B πρ φ 0 r 30

31 ! Bu alanlar demet tarafından oluşturulur ve demet içindeki parçaığı etkiler. F e( v v Bφ ) πeρ 0(1 ) πeρ 0 γ r r r F F p F dt r r γ ' ρ ' γ F γ dt ρ γ Yüksek enerjilerde bu itii kuvvet magnetik alan ile karşılanır. Yüksek enerjilerde uzay yükü kuvveti ortadan kalkmaktadır ( ) Đyon durumunda yük çokluğundan dolayı uzay yükü kuvveti Z kat artaaktır. ' e r ' e πρ 0 ' r dp r dt p ' r r ' ' Demetin durgun çerçevesinde (v0, F r 0 ) yalnız elektrostatik kuvvetler vardır. Laboratuvar sisteminde : ρ F r πe r γ , Bodrum F ' γ 0 r γ 31

32 Sonuç: Rölativistik demet kendi alanları etkisi altında kararlıdır. Düşük enerjilerde kararlılığı sağlamak için odaklayıı dış kuvvetler diverging fores kullanmak gerekir , Bodrum 3

33 Işınlık (Luminosite):Hızlandırılan ve çarpıştırılan demetler paketçikli (bunhed) yapıda ise ve bu demetler kafa-kafaya (head-on) çarpıştırıldığını düşünelim. N parçaık içeren silindirik paketçikler A kesit alanına sahip olsun. Böyle bir paketçiğin karşısıdan gelen tek test parçaığı ele alınırsa, test parçaığının paketçikte gördüğü toplam tesir kesiti; Nσ int tkileşme oranı ile orantılıdır. Orantı katsayısı ışınlık (luminoite) olarak bilinir ve ile tanımlanır. A σ int σ int R L , Bodrum 33

34 R, etkileşme sayısıdır. Paketçiklerin frekansı f ise; R N A fσ int L, birim zamanda, birim kesit alanında gerçekleşen etkileşme sayısıdır. L R N f 1 σ A m s int N parçaıklı iki paketçik, f frekansı ile çarpışıyorsa, etkileşme sayısı L ile verilmektedir. Paketçik şekli (kesiti), yuvarlak, elips, Gaussian v.b. olabilir. m s 1 m s 1 Günümüz çarpıştırııları için ışınlık 10 4 ile arasında değişmektedir , Bodrum 34

35 Büyük bir hızlandırıının 1 yıldaki ortalama çalışma süresi 4 aydır (~10 7 s). Çalışma süresindeki toplam ışınlığa integre ışınlık integrated luminosity denir int / L L ay m s 10 Toplam Işınlık ( Lint) genel olarak pb -1 olarak anılır. Hızlandırıı fiziği açısından bir çok demet parametresine bağımlı olan ışınlık (luminosity) değerinin tutturulması son deree önemlidir , Bodrum 35

36 Örnek : DSY deki HRA ep çarpıştırıısının ışınlık değerini hesaplayınız. lektron demeti paketçikleri için : σ 80 m σ 50 m ex µ ey µ n e Foton demeti paketçikleri için : σ 65 m σ 50 m px µ py µ n p Đki çarpışma arası geçen süre: τ µ s τ Çarpışma frekansı : 6 L ep x f oll nen p f σ σ 4π y Bu eşitlikte elektron veya proton tesir kesitlerinden büyük olan kullanılır. oll 11 L ep m s ( m) ( m) 4π , Bodrum 36

37 Kütle Merkezi nerjisi ( s ). m. Kütle merkezi koordinat sistemi çarpışan demetlerin toplam momentumunun sıfır olduğu gözlem çerçevesidir. m ( i i ) ( i p i ) Kullanılabilir enerjiyi, iki demetin çarpışması sonuunda tamamı yeni parçaık üretiminde kullanılaak enerji olarak tanımlarız. avail m i m 0 i Kullanılabilir enerji, kütle merkezi enerjisinden sistemin toplam durgun kütle merkezi enerjisini çıkararak hesaplanır , Bodrum 37

38 , Bodrum 38 Örnek :m 1 kütleli parçaıklardan oluşmuş v 1 hızlı bir demet ile, m kütleli parçaıklardan oluşmuş v hızıyla buna zıt yönde hareket eden bir başka demetten oluşan sistemin kütle merkezi enerjisini bulunuz. 1 ) ( ) ( ) ( γ γβ β γ β γ γ γ m m m m p m m i i i i kin m

39 m m Uygulama : γ, olsun. 0 1 m m ( γ + 1) mp ( γ 1) mp ( γ + 1) mp Kullanılabilir enerji : a avail m i m γ m p i 0 Bu iki proton demeti için : ( ) ( 1) m mp p Maksimum kütle merkezi enerjisi için parçaıklar kafa-kafaya (head-on) eşit enerjilerde (hızlarda) çarpışmalıdır. Bu durumda : γ γ γ 1 m 1 β β β 1 m m m a γm ( m HRA e - (0.7 TeV) (0.8 TeV) e +, 0 ) m 97GeV LHC p (7 TeV) (7 TeV) p, m 14TeV , Bodrum 39

40 Parçaık Hızlandırııları Doğrusal (Lineer) Hızlandırıılar (Linak) LINear ACelerator (LINAC) , Bodrum 40

41 Lineer Hızlandırıılar (Linak) Yüklü parçaık hızlandırıılarının gelişimi parçaıkların izlediği yörüngeye göre lineer ve dairesel hızlandırıılar olarak iki ayrışekilde olmuştur. Dairesel hızlandırıılarda parçaıklar, hızlandırıı yapıyı periodik olarak dolanır ve her defasında enerji alarak kapalı yörüngeler izler. Lineer hızlandırıılarda ise parçaıklar hızlandırıı yapıyı bir kez geçmektedir. TTF LĐnak Hızlandırıı türlerinin birinin diğerine göre temel bir avantaj veya dezavantajından bahsedilemez. Bu iki sınıf arasındaki seçimi hedeflenen uygulama veya bazen de eldeki teknoloji belirlemektedir. Lineer hızlandırıılarda parçaıklar tanıma uygun olarak doğrusal yörüngeler boyuna, elektrostatik veya salınımlı rf alanlarla hızlandırılırlar , Bodrum 41

42 lektrik Alanlar Đçinde Yüklü Parçaıklar Hızlandırıı fiziğinde parçaıklar üzerine etkiyen tüm kuvvetler elektromagnetik alanlardan kaynaklanır. Parçaık hızlandırmada Lorentz kuvvetinin yalnıza elektrik alan bileşenini göz önünde bulundurulur.bu elektrik alan statik, atmalı, zamanla değişen bir magnetik alandan (betatronlarda kulanılır) veya bir rf alan (modern lineer hızlandırıılarda kullanılır) olabilir. Maxwell denklemini ve Stokes integral teoremini kullanarak: 1 d B. da dt. da. ds 1 db dt Düzlem dalga denklemi : i( ωt ks) ( ψ ) 0. e 0. e iψ d mγβ e(ψ dt lektik yüklü bir parçaığa etkiyen Lorentz kuvveti, F ) , Bodrum 4

43 Bu kuvvet etkisi altındaki parçaığın kazandığı momentum her iki tarafın integrasyonu ile bulunur. p m( γβ γ β ) 0 e ( ψ ). dt 0 p mγ 0 0β0 kin kin β p e (ψ ). ds L y , Bodrum 43

44 lektrostatik Hızlandırıılar lektrostatik hızlandırıılarda parçaık hızlandırmak için, arasında potansiyel farkı bulunan iki elektrot kullanılır. Katot ışınları tüpü buna iyi bir örnektir. Diğer daha modern bir örnekte ise x-ışını tüplerinde hızlandırılan elektronlar x-ışını üretmek üzere metal hedefe çarptırılırlar , Bodrum 44

45 Kafes Üreteçleri (asade generators) Bir sığanın levhaları arasındaki potansiyel farkını, gerilim çoğaltıı devre ile istenilen düzeye çıkarma ilkesine dayanır. Bir dizi sığa, uygun yerleştirilmiş diyotlar araılığı ile yüklenir. Bu şekilde N tane kapasitör ile yükleme gerilimi N katına çıkarılabilir. Sonuç olarak, anahtarlama nedeni ile atmalı demet elde edilmektedir. Bu metoda dayanarak Cokroft ve Walton birkaç milyon voltluk gerilimlere ulaşan yüksek enerjili parçaık hızlandırııları inşa etmişlerdir , Bodrum 45

46 Van de Graaff Hızlandırıısı Van de Graaff hızlandırıısı ile daha yüksek gerilim farklarına ulaşılabilir. Metal bir elektroddan çıkan elektrik yükleri bir taşıyıı banda aktarılır ve bu band araılığı ile büyük bir iletken küreye aktarılır. Sonuçta bu küresel iletken yüksek bir yük değerine ulaşır. Bu kürenin potansiyeli ile toprak uu arasında yeterine yüksek bir gerilimini oluşturulabilmektedir. ğer tüm sistem Freon veya SF6 gibi elektriksel olarak asal bir gaz ile dolu yüksek vakumlu ortama alınırsa 0 MV gibi değerlere ulaşılabilir , Bodrum 46

47 Örnek : Bir hidrojen iyonu,, Van de Graaff hızlandırıısı kullanılarak hızlandırılırsa : q e kin e V şeklinde olaaktır Van de Graaff üreteinden elde edilen yüksek gerilim iki eletrot arasına doğrudan uygulanamaz. Hızlandırma bölgesi boyuna düzgün elektik alan oluşturmak için gerilim elektrotlara bağlı seri dirençlere uygulanır , Bodrum 47

48 Lineer indüksiyon hızlandırıısı Oldukçaşiddetli parçaık demetlerini hızlandırmak için, tekrarlanan transformatör uygulamasıyla bir boşluk içinde atmalı elektrik alan üretilir ve parçaık demeti ikinil bobin görevi görür. Betatronda değişen magnetik akı alan çevresinde azimutal hızlandırıı elektrik alanı üretilir. Betatron ilkesinde indüksiyonla oluşan elektrik alan dairesel yola teğettir. Bu magnetik alan ile gap boyuna atmalı elektrik alan indükleyebilir. Đndüksiyon lineer hızlandırıılar 1 ka e kadar demet akımını birkaç MeV lik ılımlı enerjilere hızlandıraakşekilde tasarlanabilir. Bu şekilde ilk hızlandırıı 1964 yılında başarıyla çalıştırılmıştır , Bodrum 48

49 . RF Alanlarla Hızlandırma Güçlü kaynakların varlığından dolayı günümüzde en başarılı parçaık hızlandırma işlemleri rf alanlarla yapılmaktadır. Rf rezonans boşlukları içinde, aynı boyutlardaki elektrostatik hızlandırıılarla elde edilen gerilimden oldukça yüksek hızlandırma gerilimlerine ulaşılabilmektedir. Lineer Hızlandırııların Temel Prensipleri Lineer hızlandırııların çalışma prensibi, salınımlı alanlara ve sürüklenme tüplerine dayanır. Negatif yönlü ivmelendirmeyi engellemek için, alanın ters işaretli yarı periodunda yüklü parçaık demeti kalkanlanarak alandan korunmalıdır. Teknik olarak kalkanlama, demet yolunun metalik sürüklenme tüpleriyle çevrelenmesiyle gerçekleştirilmektedir. Şekilde TSLA (DSY) için geliştirilen süperiletken RF kavite (9 hüreli Nb) görülmektedir , Bodrum 49

50 şzamanlılık: Verimli hızlandırma için parçaık hareketi hızlandırma bölgeleri içinde rf alanla eşzamanlı olmalıdır. Sürüklenme tüplerinin boyutları, parçaığı negatif yarı period boyuna alandan koruyaak, alanın pozitif maksimuma ulaşaağı kesimde ise diğer sürüklenme tüpüne kadar rf alan ile etkileşeeği bir boşluğa girmesini sağlayaak şekilde olmalıdır. L i 1 v T i i. sürüklenme tüpünün uzunluğu parçaığın v i hızıyla alanın yarı periyodu boyuna gideeği yol kadar olmalıdır. Yirmini yüzyılda bu prensip geliştirildiğinde, kayda değer güçte yüksek frekanslı üreteçler imal etmek çok zordu. 198 de anak 7 MHz e kadar rf üreteçler elde edilebildi. 7 MHz de, ışık hızının yarısına sahip bir parçaık için 10.7 m lik tüp gerekmektedir. Daha kısa tüpler kullanabilmek için daha yüksek frekanslı rf donanıma ihtiyaç duyulmuştur. RF lineer hızlandırııların gelişimindeki ilerleme, II. Dünya Savaşı sırasında radar tekniklerindeki gelişme ile bağlantılı olarak, yüksek frekanslı rf donanımın gelişiminden önemli ölçüde etkilenmiştir de Stanford da Hansen ve Varian kardeşlerin klistron u (klistron) iadıyla yaklaşık 100 MHz den 10 GHz in üstlerine kadar geniş bir yüksek frekans aralığı elde edilebilir olmuştur. rf , Bodrum 50

51 Wideroe lineer hızlandırıısının şematik yapısı. Alvarez linak yapısının şematik gösterimi. Bununla birlikte daha yüksek frekanslarda Wideroe yapısının kapasitif doğası elektromagnetik ışınımdan dolayı oldukça kayıplı olmaktadır. Bunu ortadan kaldırmak için Alvarez tüpler arasındaki boşlukları metal kavitelerle çevrelemeyi önerdi , Bodrum 51

52 Yüksek Frekanslı M DalgalarĐçin Dalga Kılavuzları Önelikle düzgün bir kılavuz yapı boyuna dalgaların yayılma karakteristiklerinden bahsedilmelidir. Yayılma yönünde herhangi bir dalga bileşeni bulunmayan enine elektromagnetik dalgalar (TM) modunun yanısıra, boyuna elektrik alan bileşenine sahip enine magnetik (TM) dalgalar ve boyuna magnetik alan bileşenine sahip enine elektrik (T) dalgalarda bulunmaktadır. TM ve T modların her ikisi de karakteristik kesim (ut off frequeny) frekansına sahiptir. Kesim frekansının altında kalan belirli bir moddaki dalgalar yayılamazlar. Bir moddaki güç ve sinyal iletimi anak kesim frekansının üstündeki frekanslar için mümkündür. lektromagnetik alanları parçaık hızlandırma açısından kullanışlı hale getirmek için, e.m. alanların boyuna bileşene sahip olaak şekilde değiştirilmesi gibi sınır koşullar göz önünde bulundurulmalıdır. Bu amaçla, em dalgaların silindirik veya dikdörtgen biçimli tüpler içinde yayılım karakteristikleri ve alan desenleri (pattern) çalışılmaktadır , Bodrum 5

53 , Bodrum 53 Bu denklemin çözümüşuşekildedir ; ) ( 0 ks t i s s e ω Azimutal magnetik alan için benzer eşitlikler, 0 + H ω φ ) ( 0 ks t i e H H ω φ φ Hızlandırıı alan bileşeni s için dalga denklemi Laplae denklemi ile verilir. 0 + s ω

54 , Bodrum 54 Silindirik Dalga Kılavuzları lektromagnetik dalgalar yuvarlak metal tüpler içinde de yayılabilir. Silindirik RF kavite Silindirik koordinatlarda diverjans ve Laplasyen şu şekilde ifade edilir: ),, ( θ φ r s s r r r ˆ ˆ 1 ˆ + + θ θ 1 ) ( 1 z r r r r r + + ψ θ ψ ψ ψ Azimut açısı daki periyodiklik n ise, olmak üzere: θ n θ 0 ) ( s s s r n k r r r Burada k kesilme dalga sayısıdır. Denklem, Bessel diferansiyel denklemidir. s için bu diferansiyel denklemin çözümü Bessel fonksiyonlarını verir: ) ( ) ( r k BY r k AJ n n s + n sayısı Bessel fonksiyonunun dereesini belirtmektedir.

55 s AJ n( kr) + BYn ( kr) Fonksiyonun özelliklerinden dolayı r 0 da singülarite olmaması için B0 olmalıdır. Jn modu, sınır koşulları ile uyumlu n mod sağlar. θ,r, s Daha öne bahsedilen TM modu için koordinatlardarındaki periyodiklik TM npq şeklinde ifade edilir. Buradaki indisler sırasıyla, θ,r, s koordinatlarındaki periyodikliği belirtmektedir. Verilen bir mod ve periodiklik belli 0 ( r a) s θ sınır koşulları ve geometri için r θ 0 ( s 0, s l) sağlanabilir. n0 için çözüm buşartları sağlarsa azimutal periodiklik yoktur. lektrik alan bileşenleri s θ r 0 0, i J 0 k k ( k 0 r), J ( k 0 r) e i( ωt ks). Magnetik alan bilşenleri: H H H s θ r 0, ω i k 0. 0 J ( k 0 r) e i( ωt ks), , Bodrum 55

56 Silindirik kavite içinde TM 010 modu için alan deseni J ( x) x 0 Burada, J0 ( x), J0 J1 olarak verilir. Kavite duvarında s 0 olaaksa, J 0 (k a)0 olaağından, Bessel fonksiyonunun köklerinden k a değeri bulunur , Bodrum 56

57 TM 010 modu, s doğrultusunda, radyal periyodikliğe sahip elektrik alanın varlığını belirtmektedir. Dalga kılavuzu boyuna üstel olarak azalan dalgalar yerine (kesilim dalga sayısının negative olduğu durum), ilerleyen dalgalar elde etmek için kesilim dalga sayısı pozitif olmalıdır. k ω k > ω k a Burada kesilim frekansını belirleyen a sayısı, λ < a şartını sağlamalıdır. k ω ω ( ) (1 ω ) Đlerleyen dalganın fazı: ψ ωt ψ& 0 v ph s& ks ω ω k ks& sabit Faz hızı: v ph > 1 ω Bu, parçaık hızlandırma açısından kararlı değildir. Kullanılabilir hale getirmek için dalgların faz hızı en fazla ışık hızına eşit olmalıdır , Bodrum 57

58 Grup hızı ise dalga kılavuzu boyuna dalgaların enerji taşıma hızıdır. v dω dk k ω v g < ph tkin hızlandırma için yayılan dalganın faz hızı, parçaığın hızına yakın olmalıdır. v ~ ph v p Bir elektron lineer hızlandırıısı için diskle bölmelenmiş dalga klavuzu , Bodrum 58

59 nerji Kazanımı Parçaığın t0 da hızlandırıı aralığın tam ortasında v hızıyla ilerlediğini varsayalım. Kavitedeki elektomagnetik alan salındığından: ev ( t) ev os t ev os( ) l uzunluklu kavite için enerji kazanımı: kin ev ( t) dt l λ dt ds l rf uzunluklu kavite için enerji kazanımı: kin ev ˆ0 λrf sin( ω ) 4v λrf ω 4v kin l / l / ˆ evˆ l ω s ω v 0 os( ) geçiş zaman faktörü: T t λrf sin( ω ) 4v λrf ω 4v ˆ s ω v s vt ds , Bodrum 59

60 V p <<V ph ise geçiş zaman faktörü ve hatta kazanç negatif olabilir. Maksimum enerji kazanımı T t ~ 1 için sağlanır. Bu ise V p ~ için sağlanır. V p ~ ise T t ~ 1 dir ve kinetik enerjideki değişim maksimumdur. lektromagnetik dalgalar için V g dir , Bodrum 60

61 tkin Hızlandırma Koşulu Hızlandırma bölümü sonunda parçaığın sahip olduğu enerji, parçaık ile alanın bağıl hareketenin eşzamanlılığına bağlıdır. v << v >> p ph v ~ v p v ph p Bu durum hızlandırmayı olumsuz etkiler. tkin hızlandırma için şarttır. Parçaığın ve alanın bağıl hareketi laboratuvardan gözlendiğinde: s ph v ph t s p v p t faz kayması ψ k( s s ) k( v v ) ph p ph p s v p p k ω π v λ v ph rf ph π ψ λ rf v ph v ph v v p p s p , Bodrum 61

The Physics of Particle Accelerators - Klaus Wille (1.3.5-1.3.6-1.3.7)

The Physics of Particle Accelerators - Klaus Wille (1.3.5-1.3.6-1.3.7) - Klaus Wille (1.3.5-1.3.6-1.3.7) 2 Temmuz 2012 HF Çalışma Topluluğu İçerik 1.3.5 - Doğrusal Hızlandırıcılar 1 1.3.5 - Doğrusal Hızlandırıcılar 2 3 Doğrusal Hızlandırıcılar Tüm elektrostatik hızlandırıcılar

Detaylı

Hızlandırıcı Fiziği-2. Veli YILDIZ (Veliko Dimov) 04.02.2016

Hızlandırıcı Fiziği-2. Veli YILDIZ (Veliko Dimov) 04.02.2016 Hızlandırıcı Fiziği-2 Veli YILDIZ (Veliko Dimov) 04.02.2016 1 İçerik Hızlı bir tekrar. Doğrusal hızlandırıcılar Doğrusal hızlandırıcılarda kullanılan bazı yapılar. Yürüyen dalga kovukları ve elektron hızlandırma

Detaylı

Hızlandırıcı Fiziği-1. Veli YILDIZ (Veliko Dimov) 29.07.2014

Hızlandırıcı Fiziği-1. Veli YILDIZ (Veliko Dimov) 29.07.2014 Hızlandırıcı Fiziği-1 Veli YILDIZ (Veliko Dimov) 29.07.2014 1 İçerik Hızlandırıcı Çeşitleri Rutherford ve çekirdeğin keşfi, İlk defa yapay yollar ile atom çekirdeğinin parçalanması, Elektrostatik hızlandırıcılar,

Detaylı

Hızlandırıcı Fiziği-1. Veli YILDIZ (Veliko Dimov) 03.02.2016

Hızlandırıcı Fiziği-1. Veli YILDIZ (Veliko Dimov) 03.02.2016 Hızlandırıcı Fiziği-1 Veli YILDIZ (Veliko Dimov) 03.02.2016 1 2 İçerik Rutherford ve çekirdeğin keşfi, İlk defa yapay yollar ile atom çekirdeğinin parçalanması, Elektrostatik hızlandırıcılar, Hızlandırıcılarda

Detaylı

Hızlandırıcı Fiziğine ine Giriş

Hızlandırıcı Fiziğine ine Giriş LOGO Hızlandırıcı Fiziğine ine Giriş Orhan Çakır Ankara Üniversitesi Hızlandırıcı ve Parçacık Fiziğinde Bilgisayar Uygulamaları, 6-30 Ocak 009, Ç.Ü., Adana İçerik 1 Hızlandırıcılar Tasarım ve Simulasyon

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

Parçacık Hızlandırıcılarının Medikal Uygulamaları 2. Doç.Dr. Bahar DİRİCAN GATA Radyasyon Onkolojisi AD.

Parçacık Hızlandırıcılarının Medikal Uygulamaları 2. Doç.Dr. Bahar DİRİCAN GATA Radyasyon Onkolojisi AD. Parçacık Hızlandırıcılarının Medikal Uygulamaları 2 Doç.Dr. Bahar DİRİCAN GATA Radyasyon Onkolojisi AD. 09.06.2005 Parçacık Hızlandırıcıları Van de Graff Jeneratörleri Lineer Hızlandırıcılar Betatron Mikrotron

Detaylı

PARÇACIK HIZLANDIRICILARININ BİLİME KATKILARI

PARÇACIK HIZLANDIRICILARININ BİLİME KATKILARI PARÇACIK HIZLANDIRICILARININ BİLİME KATKILARI (Çağrılı Konuşma) Prof. Dr. D. Ali ERCAN Savunma Sanayii Müsteşarlığı Katot ışınları tübü olarak bilinen ilk hızlandırıcı, aralarında yüksek voltaj farkı uygulanmış

Detaylı

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar ÖLÜM 29 Manyetik alanlar Manyetik alan Akım taşıyan bir iletkene etkiyen manyetik kuvvet Düzgün bir manyetik alan içerisindeki akım ilmeğine etkiyen tork Yüklü bir parçacığın düzgün bir manyetik alan içerisindeki

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

BÖLÜM 2. Gauss s Law. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

BÖLÜM 2. Gauss s Law. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley BÖLÜM 2 Gauss s Law Hedef Öğretiler Elektrik akı nedir? Gauss Kanunu ve Elektrik Akı Farklı yük dağılımları için Elektrik Alan hesaplamaları Giriş Statik Elektrik, tabiatta birbirinden farklı veya aynı,

Detaylı

Hızlandırıcı Fiziği-1. Veli YILDIZ (Veliko Dimov) 27.02.2014

Hızlandırıcı Fiziği-1. Veli YILDIZ (Veliko Dimov) 27.02.2014 Hızlandırıcı Fiziği-1 Veli YILDIZ (Veliko Dimov) 27.02.2014 1 İçerik Parçacıkları nasıl elde ediyoruz? Bazı dairesel hızlandırıcı çeşitleri Siklotron (cyclotron) Zayıf odaklama Sinkrotron (synchrotron)

Detaylı

T.C. TÜBİTAK-BİDEB. YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI

T.C. TÜBİTAK-BİDEB. YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI T.C. TÜBİTAK-BİDEB YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI İKİ ELEKTROMIKNATIS ARASINDA BULUNAN BİR DEMİR PARÇACIĞIN HAREKETİ HAZIRLAYANLAR

Detaylı

Fizik Terimler Sözlüğü - 2. Yönetici tarafından yazıldı Pazar, 08 Şubat 2009 09:34 - Son Güncelleme Pazar, 08 Şubat 2009 09:47 - K

Fizik Terimler Sözlüğü - 2. Yönetici tarafından yazıldı Pazar, 08 Şubat 2009 09:34 - Son Güncelleme Pazar, 08 Şubat 2009 09:47 - K - K - Kara delik: Kütlesel çekim kuvvetinin çok büyük olduğu hatta ışığı bile kendine çekebilen çok küçük kütleli sönmüş yıldızlardır. - Kalori:1 gram suyun sıcaklığını 1 Celcius artırmak için gerekli

Detaylı

DAİRESEL HIZLANDIRICILAR

DAİRESEL HIZLANDIRICILAR III. ULUSAL PARÇACIK ACIK HIZLANDIRICILARI ve DEDEKTÖRLER RLERİ YAZOKULU (UPHDYO-III) DAİRESEL HIZLANDIRICILAR Prof. Dr. Ömer YAVAŞ Ankara Üniversitesi Fizik MühendisliM hendisliği i BölümüB 20-24.09.2007

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez.

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez. MODERN ATOM TEORİSİ ÖNCESİ KEŞİFLER Dalton Atom Modeli - Elementler atom adı verilen çok küçük ve bölünemeyen taneciklerden oluşurlar. - Atomlar içi dolu küreler şeklindedir. - Bir elementin bütün atomları

Detaylı

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26 Elektrostatik Elektrik Alan Elektrik Akı Kondansatör Kaynak : Serway-Beichner Bölüm 23, 24, 26 İndüksiyon Nötr Maddenin indüksiyon yoluyla yüklenmesi (Bir yük türünün diğer yük türüne göre daha fazla olması)

Detaylı

Ahenk (Koherans, uyum)

Ahenk (Koherans, uyum) Girişim Girişim Ahenk (Koherans, uyum Ahenk (Koherans, uyum Ahenk (Koherans, uyum http://en.wikipedia.org/wiki/coherence_(physics#ntroduction Ahenk (Koherans, uyum Girişim İki ve/veya daha fazla dalganın

Detaylı

RADYOTERAPİ CİHAZLARINDAKİ GELİŞMELER. Hatice Bilge

RADYOTERAPİ CİHAZLARINDAKİ GELİŞMELER. Hatice Bilge RADYOTERAPİ CİHAZLARINDAKİ GELİŞMELER Hatice Bilge KISA TARİHÇE 1895: X-ışınlarının keşfi 1913: W.E.Coolidge, vakumlu X-ışını tüplerinin geliştirilmesi 1931: Sikletronun Lawrence tarafından geliştirilmesi

Detaylı

Fizik bilimi nedir? Fizik Bilimi nedir? Fizik biliminin uğraşı alanları nelerdir? On5yirmi5.com. Fizik Bilimi nedir?

Fizik bilimi nedir? Fizik Bilimi nedir? Fizik biliminin uğraşı alanları nelerdir? On5yirmi5.com. Fizik Bilimi nedir? On5yirmi5.com Fizik bilimi nedir? Fizik Bilimi nedir? Fizik biliminin uğraşı alanları nelerdir? Yayın Tarihi : 22 Ekim 2012 Pazartesi (oluşturma : 11/28/2015) Fizik Bilimi nedir? Fizik, deneysel gözlemler

Detaylı

Hızlandırıcı Fiziği. İleri Hızlandırma Yöntemleri. Plazma Dalgası ile Hızlandırma

Hızlandırıcı Fiziği. İleri Hızlandırma Yöntemleri. Plazma Dalgası ile Hızlandırma Hızlandırıcı Fiziği İleri Hızlandırma Yöntemleri Plazma Dalgası ile Hızlandırma Dr. Öznur METE University of Manchester The Cockcroft Institute of Accelerator Science and Technology İletişim Bilgileri

Detaylı

MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI

MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI KONDANSATÖR Kondansatör iki iletken plaka arasına bir yalıtkan malzeme konarak elde edilen ve elektrik enerjisini elektrostatik enerji olarak depolamaya

Detaylı

TR0300008 RARE B -> VVY DECAY AND NEW PHYSICS EFFECTS

TR0300008 RARE B -> VVY DECAY AND NEW PHYSICS EFFECTS TFD2I. Fizik Kf>ıı K r^i 11-14 E\lıil 21102 /.S/OTcm TR0300008 Y F. l- Sil RARE B -> VVY DECAY AND NEW PHYSICS EFFECTS B. ŞİRVANLI Using the most general model independent form of the effective Hamillonian

Detaylı

HIZLANDIRICILARA DAYALI IŞINIM KAYNAKLARI

HIZLANDIRICILARA DAYALI IŞINIM KAYNAKLARI HIZLANDIRICILARA DAYALI IŞINIM KAYNAKLARI Dr. Bora KETENOĞLU Ankara Üniversitesi Fizik Mühendisliği Bölümü & European XFEL GmbH, Hamburg İçerik Bilim, sanayi ve teknolojide parçacık hızlandırıcıları ve

Detaylı

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison Sensörler Öğr. Gör. Erhan CEMÜNAL Sıkı bir çalışmanın yerini hiç bir şey alamaz. Deha yüzde bir ilham ve yüzde doksandokuz terdir. Thomas Alva Edison İçerik TEMEL ELEKTRONİK KAVRAMLARI Transdüser ve Sensör

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi Fizik Mühendisliği Bölümü F M İ N S E S İ T O P L U L U Ğ U Y A Z I L I R Ö P O R T A J

Ankara Üniversitesi Mühendislik Fakültesi Fizik Mühendisliği Bölümü F M İ N S E S İ T O P L U L U Ğ U Y A Z I L I R Ö P O R T A J 26.01.2009, Ankara Ankara Üniversitesi Mühendislik Fakültesi Fizik Mühendisliği Bölümü F M İ N S E S İ T O P L U L U Ğ U Y A Z I L I R Ö P O R T A J Prof. Dr. Ömer Yavaş Ankara Üniv. Fizik Müh. Bölümü

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Elektromanyetik Alan Kaynakları (1)

Elektromanyetik Alan Kaynakları (1) (4) Elektrostatik Giriş Elektrostatik zamana bağlı olarak değişen elektrik alanlar için temel oluşturur. Pek çok elektronik cihazın çalışması elektrostatik üzerine kuruludur. Bunlara örnek olarak osiloskop,

Detaylı

I FİZİĞE ÖN HAZIRLIKLAR

I FİZİĞE ÖN HAZIRLIKLAR İÇİNDEKİLER Önsöz. III Bölüm I FİZİĞE ÖN HAZIRLIKLAR 1 1 Ölçme ve Birim Sistemleri 1 2 Uzunluk, Kütle ve Zaman Büyüklükleri (Standartları) 1 3 Boyut Analizi 1 4 Birim Çevirme ve Dönüşüm Çarpanları 1 5

Detaylı

Elektrik Yük ve Elektrik Alan

Elektrik Yük ve Elektrik Alan Bölüm 1 Elektrik Yük ve Elektrik Alan Bölüm 1 Hedef Öğretiler Elektrik yükler ve bunların iletken ve yalıtkanlar daki davranışları. Coulomb s Yasası hesaplaması Test yük kavramı ve elektrik alan tanımı.

Detaylı

İSG 514 RADYASYON GÜVENLİĞİ

İSG 514 RADYASYON GÜVENLİĞİ İSG 514 RADYASYON GÜVENLİĞİ İŞ SAĞLIĞI VE GÜVENLİĞİ TEZSİZ YÜKSEK LİSANS PROGRAMI Ders koordinatörü: Yrd. Doç. Dr. Mustafa GÜNGÖRMÜŞ mgungormus@turgutozal.edu.tr http://www.turgutozal.edu.tr/mgungormus/

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

İletim Hatları ve Elektromanyetik Alan. Mustafa KOMUT Gökhan GÜNER

İletim Hatları ve Elektromanyetik Alan. Mustafa KOMUT Gökhan GÜNER İletim Hatları ve Elektromanyetik Alan Mustafa KOMUT Gökhan GÜNER 1 Elektrik Alanı Elektrik alanı, durağan bir yüke etki eden kuvvet (itme-çekme) olarak tanımlanabilir. F parçacık tarafından hissedilen

Detaylı

2 MALZEME ÖZELLİKLERİ

2 MALZEME ÖZELLİKLERİ ÖNSÖZ İÇİNDEKİLER III Bölüm 1 TEMEL KAVRAMLAR 11 1.1. Fizik 12 1.2. Fiziksel Büyüklükler 12 1.3. Ölçme ve Birim Sistemleri 13 1.4. Çevirmeler 15 1.5. Üstel İfadeler ve İşlemler 18 1.6. Boyut Denklemleri

Detaylı

Çift yarık: Foton saçılımı ve girişim deseninin matematiksel modeli

Çift yarık: Foton saçılımı ve girişim deseninin matematiksel modeli Çift yarık: Foton saçılımı ve girişim deseninin matematiksel modeli Girişim olayına ait daha çok sezgi geliştirmek üzere; kuantum sistemi ve (klasik) gereç arasındaki eşilişkilerin kuantum mekaniğinin

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

2. Işık Dalgalarında Kutuplanma:

2. Işık Dalgalarında Kutuplanma: KUTUPLANMA (POLARİZASYON). Giriş ve Temel ilgiler Işık, bir elektromanyetik dalgadır. Elektromanyetik dalgalar maddesel ortamlarda olduğu gibi boşlukta da yayılabilirler. Elektromanyetik dalgaların özellikleri

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

NORMAL ÖĞRETİM DERS PROGRAMI

NORMAL ÖĞRETİM DERS PROGRAMI NORMAL ÖĞRETİM DERS PROGRAMI 1. Yarıyıl 1. Hafta ( 19.09.2011-23.09.2011 ) Nükleer reaktör türleri ve çalışma prensipleri Atomik boyuttaki parçacıkların yapısı Temel kavramlar Elektrostatiğin Temelleri,

Detaylı

MANYETİK REZONANS GÖRÜNTÜLEMENİN TEMELLERİ. Yrd.Doç.Dr. Ayşegül Yurt Dokuz Eylül Üniversitesi Medikal Fizik AD.

MANYETİK REZONANS GÖRÜNTÜLEMENİN TEMELLERİ. Yrd.Doç.Dr. Ayşegül Yurt Dokuz Eylül Üniversitesi Medikal Fizik AD. MANYETİK REZONANS GÖRÜNTÜLEMENİN TEMELLERİ Yrd.Doç.Dr. Ayşegül Yurt Dokuz Eylül Üniversitesi Medikal Fizik AD. Tanı amaçlı tüm vücut görüntüleme yapılır. Elektromanyetik radyasyon kullanır. İyonlaştırıcı

Detaylı

ELEKTRİK DEVRE TEMELLERİ

ELEKTRİK DEVRE TEMELLERİ ELEKTRİK DEVRE TEMELLERİ Dr. Cemile BARDAK Ders Gün ve Saatleri: Çarşamba (09:55-12.30) Ofis Gün ve Saatleri: Pazartesi / Çarşamba (13:00-14:00) 1 TEMEL KAVRAMLAR Bir atom, proton (+), elektron (-) ve

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

Doğrusal Hızlandırıcılar İle Düşük Enerjilerde Protonların ve İyonların Hızlandırılması. Veli Yıldız Mayıs 2012

Doğrusal Hızlandırıcılar İle Düşük Enerjilerde Protonların ve İyonların Hızlandırılması. Veli Yıldız Mayıs 2012 Doğrusal Hızlandırıcılar İle Düşük Enerjilerde Protonların ve İyonların Hızlandırılması Veli Yıldız Mayıs 2012 İçerik Düşük enerjilerde elektron ve proton hızlandırma arasındaki fark, Doğru Akım Hızlandırıcıları,

Detaylı

Alternatif Akım Devre Analizi

Alternatif Akım Devre Analizi Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım

Detaylı

2: MALZEME ÖZELLİKLERİ

2: MALZEME ÖZELLİKLERİ İÇİNDEKİLER Önsöz III Bölüm 1: TEMEL KAVRAMLAR 11 1.1.Mekanik, Tanımlar 12 1.1.1.Madde ve Özellikleri 12 1.2.Sayılar, Çevirmeler 13 1.2.1.Üslü Sayılarla İşlemler 13 1.2.2.Köklü Sayılarla İşlemler 16 1.2.3.İkinci

Detaylı

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 İletim Hatları İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla (ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin

Detaylı

1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir Kapasiteli Diyot (Varaktör - Varikap)

1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir Kapasiteli Diyot (Varaktör - Varikap) Diyot Çeºitleri Otomotiv Elektroniði-Diyot lar, Ders sorumlusu Yrd.Doç.Dr.Hilmi KUªÇU Diðer Diyotlar 1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir

Detaylı

BALIKESİR KARESİ ADNAN MENDERES ANADOLU LİSESİ 2015 2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI

BALIKESİR KARESİ ADNAN MENDERES ANADOLU LİSESİ 2015 2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI EKİM EYLÜL EYLÜL EYLÜL AY HAFTA DERS SAATİ BALIKESİR KARESİ ADNAN MENDERES ANADOLU LİSESİ 2015 2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE KONULAR KAZANIMLAR ÖĞRENME-ÖĞRETME

Detaylı

IV. ULUSAL PARÇACIK HIZLANDIRICILARI ve DEDEKTÖRLERİ YAZOKULU

IV. ULUSAL PARÇACIK HIZLANDIRICILARI ve DEDEKTÖRLERİ YAZOKULU IV. ULUSAL PARÇACIK HIZLANDIRICILARI ve DEDEKTÖRLERİ YAZOKULU HIZLANDIRICIYA DAYALI IŞINIM KAYNAKLARI - I SERBEST ELEKTRON LAZERİ (SEL) Prof. Dr. Ömer YAVAŞ Ankara Üniversitesi Fizik ik Mühendisliği liğibölümüü

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI TÜPÜ X-IŞINI TÜPÜ PARÇALARI 1. Metal korunak (hausing) 2. Havası alınmış cam veya metal tüp 3. Katot 4. Anot X-ışın

Detaylı

TEMEL MRG FİZİĞİ. Prof. Dr. Kamil Karaali Akdeniz Üniversitesi Tıp Fakültesi

TEMEL MRG FİZİĞİ. Prof. Dr. Kamil Karaali Akdeniz Üniversitesi Tıp Fakültesi TEMEL MRG FİZİĞİ Prof. Dr. Kamil Karaali Akdeniz Üniversitesi Tıp Fakültesi Ders Planı Giriş MRG Cihazı Manyetizma Relaksasyon Rezonans Görüntü oluşumu Magnet MRG sisteminin kalbi Güçlü; Homojen; Sabit

Detaylı

MEHMET FEVZİ BALIKÇI

MEHMET FEVZİ BALIKÇI MERSİN ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ FİZİK BÖLÜMÜ FİZİK ve TEKNOLOJİK GELİŞMELER DERSİ KONU MANYETİK REZONANS GÖRÜNTÜLEME MR CIHAZI SPİN KAVRAMI ve SÜPER İLETKENLER MEHMET FEVZİ BALIKÇI 07102007

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya 2014-2015 Bahar Yarıyılı 10. Bölüm Özeti 26.05.2015 Ankara Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya 2014-2015 Bahar Yarıyılı 10. Bölüm Özeti 26.05.2015 Ankara Aysuhan OZANSOY FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Kimya 2014-2015 Bahar Yarıyılı 10. Bölüm Özeti 26.05.2015 Ankara Aysuhan OZANSOY Bölüm 10: Faraday Yasası 1. İndüksiyon (Etkileme) Deneyleri 2. Faraday

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI ERİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI KOMPANZASYON DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II DOĞRUSAL ISI İLETİMİ DENEYİ 1.Deneyin Adı: Doğrusal ısı iletimi deneyi..

Detaylı

A B = A. = P q c A( X(t))

A B = A. = P q c A( X(t)) Ders 19 Metindeki ilgili bölümler 2.6 Elektromanyetik bir alanda yüklü parçacık Şimdi, kuantum mekaniğinin son derece önemli başka bir örneğine geçiyoruz. Verilen bir elektromanyetik alanda hareket eden

Detaylı

6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ

6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ 6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ 3.1 ÇEKİRDEK KUVVETLERİ 3.1.1. GENEL KARAKTERİSTİK Çekirdek hakkında çok fazla bir şey bilmezden önce yalnızca iki farklı etkileşim kuvveti bilinmekteydi.

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

Yeni bir radyoterapi yöntemi: Hadron terapi

Yeni bir radyoterapi yöntemi: Hadron terapi Yeni bir radyoterapi yöntemi: Hadron terapi Hadron terapi, nükleer kuvvetlerle (yeğin kuvvet) etkileşen parçacıkları kullanarak yapılan bir radyasyon tedavi (ışın tedavisi) yöntemidir. Bu parçacıklar protonlar,

Detaylı

Elektrik Makinaları I SENKRON MAKİNALAR

Elektrik Makinaları I SENKRON MAKİNALAR Elektrik Makinaları I SENKRON MAKİNALAR Dönen Elektrik Makinaları nın önemli bir grubunu oluştururlar. (Üretilen en büyük güç ve gövde büyüklüğüne sahip dönen makinalardır) Generatör (Alternatör) olarak

Detaylı

Alüminyum Hedefte Depolanan Enerjinin Elektron Enerjisi ile Değişimi. Variation of Deposition Energy with Electron Energy in Aluminum Target

Alüminyum Hedefte Depolanan Enerjinin Elektron Enerjisi ile Değişimi. Variation of Deposition Energy with Electron Energy in Aluminum Target Alüminyum Hedefte Depolanan Enerjinin Elektron Enerjisi ile Değişimi Zehra Nur Demirci 1,*, Nilgün Demir 2, İskender Akkurt 1 1 Süleyman Demirel Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, Çünür

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ DENEY FÖYÜ DENEY ADI AC AKIM, GERİLİM VE GÜÇ DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEY SORUMLUSU DENEY GRUBU: DENEY TARİHİ : TESLİM

Detaylı

TÜRK HIZLANDIRICI MERKEZİ SERBEST ELEKTRON LAZERİ PROJESİ

TÜRK HIZLANDIRICI MERKEZİ SERBEST ELEKTRON LAZERİ PROJESİ TÜRK HIZLANDIRICI MERKEZİ SERBEST ELEKTRON LAZERİ PROJESİ Turkish Accelerator and Radiation Laboratory at Ankara (TARLA) Doç. Dr. Suat ÖZKORUCUKLU İÇERİK Serbest Elektron Lazeri Prensibi Türk Hızlandırıcı

Detaylı

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır.

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır. 6. Osiloskop Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır. Osiloskoplar üç gruba ayrılabilir; 1. Analog osiloskoplar 2. Dijital osiloskoplar

Detaylı

Fizik ve Ölçme. Fizik deneysel gözlemler ve nicel ölçümlere dayanır

Fizik ve Ölçme. Fizik deneysel gözlemler ve nicel ölçümlere dayanır Fizik ve Ölçme Fizik deneysel gözlemler ve nicel ölçümlere dayanır Fizik kanunları temel büyüklükler(nicelikler) cinsinden ifade edilir. Mekanikte üç temel büyüklük vardır; bunlar uzunluk(l), zaman(t)

Detaylı

Dairesel Dalga Kılavuzlarının 2 Boyutlu FDTD Yöntemi le Modellenmesi

Dairesel Dalga Kılavuzlarının 2 Boyutlu FDTD Yöntemi le Modellenmesi Dairesel Dalga Kılavuzlarının 2 Boyutlu FDTD Yöntemi le Modellenmesi Yavuz EROL, Hasan H. BALIK Fırat Üniversitesi Elektrik-Elektronik Mühendisli i Bölümü 23119 Elazı yerol@firat.edu.tr, hasanbalik@gmail.com

Detaylı

Bölüm 7. Manyetik Alan ve. Manyetik Kuvvet. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

Bölüm 7. Manyetik Alan ve. Manyetik Kuvvet. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Bölüm 7 Manyetik Alan ve Manyetik Kuvvet Hedef Öğretiler Manyetik Kuvvet Manyetik Alan ve Manyetik Akı Manyetik Alanda Yüklerin hareketi Yarıiletkenlerde Manyetik Kuvvet hesabı Manyetik Tork Elektrik Motor

Detaylı

MIT 8.02, Bahar 2002 Ödev # 2 Çözümler

MIT 8.02, Bahar 2002 Ödev # 2 Çözümler Adam S. Bolton bolton@mit.edu MIT 8.02, Bahar 2002 Ödev # 2 Çözümler 22 Şubat 2002 Problem 2.1 İçi boş bir metalik küre içerisindeki bir noktasal yükün elektrik alanı - Gauss Yasası İş Başında Bu problemi

Detaylı

ELEKTRİKSEL ÖZELLİKLER

ELEKTRİKSEL ÖZELLİKLER ELEKTRİKSEL ÖZELLİKLER İletkenlik Elektrik iletkenlik, malzeme içerisinde atomik boyutlarda yük taşıyan elemanlar (charge carriers) tarafından gerçekleştirilir. Bunlar elektron veya elektron boşluklarıdır.

Detaylı

ELEKTRİK VE MANYETİZMA

ELEKTRİK VE MANYETİZMA ELEKTRİK VE MANYETİZMA ELEKTROSTATİK 1)COULOM KANUNU: İki yük arasındaki itme ya da çekme kuvveti yüklerin çarpımı ile doğru yükler arasındaki uzaklığın karesi ile ters orantılıdır. q1q 1 u kanun F k şeklinde

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı 8. Bölüm özeti 06.05.2015 Ankara A. OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı 8. Bölüm özeti 06.05.2015 Ankara A. OZANSOY FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı 8. Bölüm özeti 06.05.2015 Ankara A. OZANSOY Bölüm 8: Manyetik Alan 1. Mıknatıslar ve manyetik alan 2. Elektrik Yüküne

Detaylı

PARÇACIK DETEKTÖRLERİNİN TIPTA KULLANIMI * Medical Applications Of Particle Detectors

PARÇACIK DETEKTÖRLERİNİN TIPTA KULLANIMI * Medical Applications Of Particle Detectors PARÇACIK DETEKTÖRLERİNİN TIPTA KULLANIMI * Medical Applications Of Particle Detectors Mehmet Oğuz ULU Fizik Anabilim Dalı Ayşe POLATÖZ Fizik Anabilim Dalı ÖZET X-ışınlarının 1895 yılında Röntgen tarafından

Detaylı

BÖLÜMÜMÜZDE 2 Profesör 1 Doçent 5 Yardımcı Doçent 3 Araştırma Görevlisi bulunmaktadır.

BÖLÜMÜMÜZDE 2 Profesör 1 Doçent 5 Yardımcı Doçent 3 Araştırma Görevlisi bulunmaktadır. 1 BÖLÜMÜMÜZDE 2 Profesör 1 Doçent 5 Yardımcı Doçent 3 Araştırma Görevlisi bulunmaktadır. 43+20(İ.Ö) lisans, 69 yüksek lisans ve 17 doktora olmak üzere toplam 149 öğrenci fizik bölümünde öğrenim görmektedir.

Detaylı

Higgs ve Higgs Buluşu. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 26-30 Ocak 2015

Higgs ve Higgs Buluşu. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 26-30 Ocak 2015 Higgs ve Higgs Buluşu Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 26-30 Ocak 2015 1 STANDART MODEL temel parçacıklar ve etkileşimler hakkındaki bütün bilgimizi içeren bir kuramlar bütünüdür. Force carriers

Detaylı

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu,

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu, Geçen Derste Kırınım olayı olarak Heisenberg belirsizlik ilkesi ΔxΔp x 2 Fourier ayrışımı Bugün φ(k) yı nasıl hesaplarız ψ(x) ve φ(k) ın yorumu: olasılık genliği ve olasılık yoğunluğu ölçüm φ ( k)veyahut

Detaylı

6.12 Örnekler PROBLEMLER

6.12 Örnekler PROBLEMLER 6.1 6. 6.3 6.4 6.5 6.6 6.7 Çok Parçalı Taşıyıcı Sistemler Kafes Sistemler Kafes Köprüler Kafes Çatılar Tam, Eksik ve Fazla Bağlı Kafes Sistemler Kafes Sistemler İçin Çözüm Yöntemleri Kafes Sistemlerde

Detaylı

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Mekaniği Düşüncesinin Gelişimi Dalga Mekaniği Olarak da Adlandırılır Atom, Molekül ve Çekirdeği Açıklamada Oldukça Başarılıdır Kuantum

Detaylı

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? Temel Kavramlar Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 1 Elektriksel Yük Elektrik yükü bu dış yörüngede dolanan elektron sayısının çekirdekteki proton

Detaylı

: Bilgisayar Mühendisliği. Genel Fizik II

: Bilgisayar Mühendisliği. Genel Fizik II Ad Soyadı Şube No : Fahri Dönmez : TBIL-104-03 Öğrenci No : 122132151 Bölüm : Bilgisayar Mühendisliği Genel Fizik II HIZLI TRENLERİN YAVAŞLAMASINI VE DURMASINI SAĞLAYAN FREN SİSTEMİNDE MANYETİK KUVVETLERİN

Detaylı

Atomların Kuantumlu Yapısı

Atomların Kuantumlu Yapısı Atomların Kuantumlu Yapısı Yazar Yrd. Doç. Dr. Sabiha AKSAY ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra, Atom modellerinin yapısını ve çeşitlerini, Hidrojen atomunun enerji düzeyini, Serileri, Laser ve

Detaylı

CAIN PROGRAMI ile DEMET-DEMET SĐMÜLASYONU

CAIN PROGRAMI ile DEMET-DEMET SĐMÜLASYONU CAIN PROGRAMI ile DEMET-DEMET SĐMÜLASYONU E. RECEPOĞLU TAEK-Sarayköy Nükleer Araştırma ve Eğitim Merkezi erdal.recepoglu@taek.gov.tr Işınlık Işınlık artırma faktörü CAIN Programı kurulması ve çalıştırılması

Detaylı

Temel Ders Kitabı: Fen Bilimcileri ve Mühendislik için Fizik; Douglas C. Giancoli, Akademi, 2009 (Dördüncü Baskıdan Çeviri)

Temel Ders Kitabı: Fen Bilimcileri ve Mühendislik için Fizik; Douglas C. Giancoli, Akademi, 2009 (Dördüncü Baskıdan Çeviri) FİZİK 102 Temel Ders Kitabı: Fen Bilimcileri ve Mühendislik için Fizik; Douglas C. Giancoli, Akademi, 2009 (Dördüncü Baskıdan Çeviri) 1. Hafta: Elektrik Alanları (Bölüm 21) Elektrik Yükü: Pozitif ve negatif

Detaylı

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda

Detaylı

11.1. ELEKTRONİK ATEŞLEME SİSTEMLERİ ( ELECTRONIC IGNATION )

11.1. ELEKTRONİK ATEŞLEME SİSTEMLERİ ( ELECTRONIC IGNATION ) 11. DİĞER ELEKTRONİK SİSTEMLER 11.1. ELEKTRONİK ATEŞLEME SİSTEMLERİ ( ELECTRONIC IGNATION ) Elektronik ateşlemenin diğerlerinden farkı, motorun her durumda ateşleme zamanlamasının hassas olarak hesaplanabilmesidir.

Detaylı

DA DEVRE. Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI

DA DEVRE. Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI DA DEVRE Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI BÖLÜM 1 Temel Kavramlar Temel Konular Akım, Gerilim ve Yük Direnç Ohm Yasası, Güç ve Enerji Dirençsel Devreler Devre Çözümleme ve Kuramlar

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

ALAN ETKİLİ TRANSİSTÖR

ALAN ETKİLİ TRANSİSTÖR ALAN ETKİLİ TRANİTÖR Y.oç.r.A.Faruk BAKAN FET (Alan Etkili Transistör) gerilim kontrollu ve üç uçlu bir elemandır. FET in uçları G (Kapı), (rain) ve (Kaynak) olarak tanımlanır. FET in yapısı ve sembolü

Detaylı

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma Dielektrik malzeme DİELEKTRİK ÖZELLİKLER Dielektrik malzemeler; serbest elektron yoktur, yalıtkan malzemelerdir, uygulanan elektriksel alandan etkilenebilirler. 1 2 Dielektrik malzemeler Elektriksel alan

Detaylı

İstatistiksel Mekanik I

İstatistiksel Mekanik I MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 )

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) 5.111 Ders Özeti #4 Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) Ders #5 için Okuma: Bölüm 1.3 (3. Baskıda 1.6 ) Atomik Spektrumlar, Bölüm 1.7 de eģitlik 9b ye kadar (3. Baskıda

Detaylı

Ders 2- Temel Elektriksel Büyüklükler

Ders 2- Temel Elektriksel Büyüklükler Ders 2- Temel Elektriksel Büyüklükler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net Yük Elektriksel yük maddelerin temel özelliklerinden biridir. Elektriksel yükün iki temel

Detaylı

DÜŞÜK ENERJİLİ İYON-ATOM ÇARPIŞMASINDA TEK ELEKTRON YAKALANMASI

DÜŞÜK ENERJİLİ İYON-ATOM ÇARPIŞMASINDA TEK ELEKTRON YAKALANMASI DÜŞÜK ENERJİLİ İYON-ATOM ÇARPIŞMASINDA TEK ELEKTRON YAKALANMASI Kadir AKGÜNGÖR *, Nafiye Göneç KIYAK *, Emanuel KAMBER ** * Işık Üniversitesi ** Western Michigan Üniversitesi ÖZET Temelde atomun yapısını

Detaylı

ýçindekiler Ön Söz xiii Antenler 1.1 1.2 1.3 1.4 1.5 1.6 Temel Anten Parametreleri 27 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.

ýçindekiler Ön Söz xiii Antenler 1.1 1.2 1.3 1.4 1.5 1.6 Temel Anten Parametreleri 27 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2. çindekiler Ön Söz xiii 1 Antenler 1 1.1 Giri 1 1.2 Anten Tipleri 4 1.3 I ma Mekanizmas 7 1.4 nce Tel Antende Ak m Da l m 17 1.5 Tarihsel Geli meler 20 1.6 Multimedya 24 Kaynakça 24 2 Temel Anten Parametreleri

Detaylı

TÜRK HIZLANDIRICI KOMPLEKSİ ÖNERİSİ

TÜRK HIZLANDIRICI KOMPLEKSİ ÖNERİSİ TÜRK HIZLANDIRICI KOMPLEKSİ ÖNERİSİ A.K. ÇİFTÇİ, TAC Kollaborasyonu * adına Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü, 06100 Tandoğan, Ankara ÖZET Türk Hızlandırıcı Kompleksinin linak halka tipli

Detaylı