20.yy da Matematiğin Temellerini Sarsan Düşünceler 1

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "20.yy da Matematiğin Temellerini Sarsan Düşünceler 1"

Transkript

1 Matematikçiler Derneği Matematik Etkinlikleri Çağrılı Konuşma, Mayıs 2004, Milli Kütüphane, Ankara Bilim Tarihi, Felsefesi ve Sosyolojisi II.Ulusal Sempozyumu, Assos, Haziran yy da Matematiğin Temellerini Sarsan Düşünceler 1 Merhaba! Hepinize hoş geldiniz diyor ve bu güzel bahar gününde matematik dinleme cesaretini gösterdiğiniz için sizleri kutluyorum. Matematik-2001 etkinliklerinde matematiğin onca güzelliklerini, gücünü anlatmaya çalışmıştım. Matematik-2004 etkinliklerinde, aynı sözleri yinelemek yerine, 20.yy da matematiğin temellerini derinden sarsan düşünceleri konu edinmek istiyorum. Umarım, söyleyeceklerim, ona olan güvenimizi sarsmayacak; yalnızca insan aklının yarattığı görkemli bir tiyatroyu seyretmemizi sağlayacaktır yy başlarında bizler, sokaktaki adamlar, bilim adamları matematiğin sağlam yapısından asla kuşkulanmadan rahat yaşantımızı sürdürürken, o görkemli yapının temellerine sular inmeye başladı. Şimdi, bunun öyküsünü kısaca özetlemeye çalışacağım. Kısaca diyorum, çünkü geçen yüzyılda matematikteki her gelişim başlıbaşına bir okuldur. Bu okulları üç ana gruba ayırırsak çok kısıtlayıcı olmayız: 1 Matematik Dünyası, 13 (2), pp , Konuşmama geçmeden önce, bir şeyi açıklamam gerekiyor. Bu konuşmayı hazırlamaya haftalar önce başladım. Günlerce, kafamda kurgusunu yaptım. Sonra yazmaya başladım. Bir konuda yazarken, böyle yapmayı alışkanlık edinmişim. Kurguyu yaparken, açılışa gelecek ve çoğunluğu matematikçi olmayabilecek dinleyicileri sıkmamak için, ağır matematiksel düşünceleri hafifleterek, biraz da gülmece havasına sokarak anlatmayı düşündüm. Harika bir iş yapmanın heyecanını yaşarken Matematik Dünyası nın 4 numaralı 2003 (2004 olmalı) Kış sayısı elime geçti. Ali Nesin bu işi benim asla yapamayacağım güzellikte ve sabırla yapmış. Elimde olsa, bu konuşmayı ona yaptırarak cezalandırmak isterdim. Bu arada, Ali Nesin i ve dergi ekibini kutlarken, bir matematik dergisini bu denli ilginç kılan tılsımı bilebilmeyi çok istediğimi belirtmeliyim. 1

2 1. Usbilimsellik (logicism - Russell okulu) 2. Sezgisellik (intuitionism - Brouwer okulu) 3. Biçimsellik (formalism - Hilbert okulu) Bu okullar arasında büyük tartışmalar oldu. Tartışmalar büyük düşünceler doğurdu. Ama bütün bu tartışmalardan önce ya da sonra, sanırım, kimse Neden matematik? sorusunu sormadı. Onun yadsınamaz varlığı, gerekliliği ve gücü asla kuşku uyandırmadı. O, doğal olarak insanoğlunun yaşantısına girmiştir. O dildir, sanattır, bilimdir. O, bu gün içinde yaşadığımız bilimi, tekniği, teknolojiyi yaratmıştır. Uygarlıklarımızın temelinde o vardır. İnsanlığın refahı ve mutluluğu için ortaya konan her çaba içinde o varolmuştur, varolmayı sürdürecektir. Bilim onu sağlam ve güvenilir bir araç olarak görmüştür. O kadar ki, çoğunlukla, bir bulguya, bir kurala bilimseldir nitelemesini vermek için, onun matematik diliyle söylenmiş olması gerekli ve yeterli sayılmıştır. Onun ortaya koyduğu kurallardan (teoremler) hiç kimsenin şüphesi yoktur. Ona verdiğimiz güzel nitelemelerin hepsini fazlasıyla hak etmiştir. O, kuşkusuz, insan aklının yarattığı en yüce, en değerli yapıttır. Neden öyledir? Buna verilen yanıtlar farklıdır. Çoğumuzun benimsediği yanıt şudur: Matematik tümdengelimli (deductive) dir. Usbilimsel çıkarım (inference) kurallarını kullanır. Kullandığımız usbilim (mantık, logic) doğru önermelerden yanlış önermeler çıkarmaz. İki bin yıl önce doğru bir önermeden yola çıkmış isek, iki bin yıl sonra ulaşacağımız yeni önerme de doğrudur. İki bin yıl önce ortaya konmuş olsa bile, matematiksel çıkarımlar bu günküler kadar taptazedir. İki bin yıl sonrakiler de öyle olacaktır. Bu görüş, bütün matematik sistemimizi kullandığımız usbilime (logic) ve en başta varsaydığımız belitlere (axiom) bağlar. Belitleri değiştirdiğimizde çok farklı sistemler elde ettiğimizi çoktan beri (Öklityen olmayan geometrilerin ortaya çıkışıyla) biliyoruz. Belitleri değiştirmeyi çok yadırgamıyoruz. Peki, kullandığımız usbilim değişirse ne olur? Onu henüz düşünmek istemiyoruz. O işi çok yadırgıyoruz. Hiç değilse, matematikçilerin büyük çoğunluğu, usbilimi değiştirme 2

3 düşüncesine karşıdır Konuşmamın bir yerinde farklı usbilim konusuna biraz değineceğim. Matematiğin Temelleri Matematiğin kurulabilmesi için ona bir temelin oluşması gereği açıktır. Matematiğin temellerinin neler olduğu konusunda da matematikçiler arasında bir uzlaşma yoktur. Daha doğrusu, matematiği nasıl kurmak istediğimize göre temel değişecektir. Zaten bütün tartışmalar da buradan çıkmıştır. O nedenle, temel tanımlamak yerine, o temelde ya da o temele dayalı olarak kurulacak yapı(lar)da yer alan başlıca kavramları sıralamak daha uygun olur. Hemen aklımıza geliverenler şunlardır: sayılar, kümeler, kategoriler, fonksiyonlar, sonsuzluk, tümevarım, usbilimsel (logic) araçlar, matematiğin dalları, Arayışlar! Burada matematiğin tarihini verecek değilim. Ama matematiğin temellerini sarsan düşüncelere ulaşabilmek için, matematiksel usbilime gelişin kısa resmigeçitini söylemeden olmayacak. Aristoteles(M.Ö ): İkideğerli usbilimin (mantık, logic) kurucusudur. Organon (alet) adlı yapıtı insanlığa miras kalan en büyük yapıtlardan biridir. Aristotles 14 syllogism (usavurma kuralı) verdi. Bu kurallar bu günkü biçimsel Aristoteles (M.Ö ) mantığın temelidir. Bu kurallar, 2000 yılı aşkın bir zaman dilimi içinde insanoğlunun düşünme ve doğruyu bulma eylemini etkisi altında tutmuştur. Kuşkusuz, matematik de bundan nasibini almıştır 3

4 Blaise Pascal ( ): Herkesin gördüğü, bildiği bir apaçık gerçeği, Pascal, matematik diliyle ifade etti: Bir para atıldığında, ya yazı ya tura gelir. Yazı gelme olasılığı ½, tura gelme olasılığı da ½ dir. Bu iki olasılığın toplamı ½ + ½ = 1 eder. Bu basit gerçek, olasılık kuramı (probability theory) adlı bilim dalını doğurdu. Bu bilim dalının, biçimsel usbilimle yakın ilişkisi Blaise Pascal ( ) o günlerde hiç sezilmiyordu; çünkü biçimsel usbilime matematiksel yöntemler henüz karışmamıştı. Gottfried Wilhelm von Leibniz ( ): Matematikte usbilimselliğin (logicism) ilk belirtileri onunla ortaya çıkmıştır. Usavurma sürecini konuşulan dilden bağımsız kılarak ona matematiksel bir yapı kazandırmaya çalışan ilk kişi olan Alman matematikçi Leibniz'in yaptığı işin önemi ölümünden iki yüzyıl sonra anlaşılabilmiştir. Dissertatio de Arte Combinatoria, 1666, adlı eserinde sembolik bir dil yaratmayı düşündü. Evrensel tam notasyon sistemi dediği bu dilde, her kavram en küçük bileşenlerine ayrışacak, kavramlar bu bileşenler Gottfried Wilhelm von Leibniz ( ) 4

5 cinsinden ifade edilecektir. Lingua characteristica universalis, Calculus ratiocinator (Akıl yürütmenin hesabı) adlı projeleri kuramsal olarak bile gerçekleşemedi. Logic konulu olan ve yaşarken yayımlanmamış makalelerinin önemi, ölümünden çok sonra anlaşılacaktır. Immanuel Kant ( ), mantığın tamamen işlenmiş, bitirilmiş, sona erdirilmiş bir doktrin olduğunu 1794 yılında ifade etmiştir. Ama Kant yanılıyordu. Mantığın görkemli dönüşü henüz başlamamıştı. (Kant haklı çıksaydı, matematik için ve dolayısıyla bilim için çok yazık olurdu.) George Boole ( ) Immanuel Kant ( ) George Boole ( ): İngiliz matematikçisi Boole, Leibniz in başladığı işi başka bir matematiksel yapı ile gerçekleştirdi. İki-değerli Aristotles mantığını matematiksel temellere oturtan simgesel mantığı yaratmışttı. Buna Boole mantığı, Boole cebiri, matematiksel mantık, simgesel mantık, vb adlar verilmektedir. Boole mantığında bu gün kullandığımız simgeleri yaratan kişi Ernst Schröder ( ) dir. Akıl yürütmede kullanılan simgeler sözcüklere, nesnelere, duyulara bağlı değildir. Soyut simgeler ve o simgeler arasında matematiksel işlemler kullanılarak akıl yürütme süreci tamamlanmaktadır. Kullandığı cebirsel yapı, mantığın istediği sağlamlığı sağlamaktadır. 5

6 Predicate calculus: Önermeler mantığı ve predicate calculus simgesel mantığın birisi ötekine kenetlenmiş iki ayrı dalıdır: Birincisi, önermeleri tek tek ele alır ve onların doğru ya da yanlış olduklarını belirler. İkincisi ise, bir küme üzerinde tanımlı önerme fonksiyonlarını ele alır. Predicate terimi, matematik dilindeki fonksiyon dan başka bir şey değildir lerden sonra Bernard Bolzano, Niels Abel, Louis Cauchy and Karl Weierstrass gibi ünlülerin, kendi zamanlarında matematikte beliren bazı belirsizlikleri gideren önemli buluşları oldu. 19.yy sonlarında William Hamilton karmaşık sayıları temsil etmek için gerçel sayı çiftlerini kullandı. Rasyonel sayılardan hareketle irrasyonel sayıları üretmek amacıyla Karl Weierstrass, Richard Dedekind ve Georg Cantor yöntemler geliştirdiler. H.G. Grassmann ve Richard Dedekind in çalışmalarına dayanan, Guiseppe Peano doğal sayılardan hareketle rasyonel sayıları elde eden yöntemini geliştirdi. Görülüyor ki Frege zamanında, matematiğin göreceli olarak küçük kümelerden (kavramlardan) çıkarılabileceği görüşü ağırlık kazanmıştı. Belirsizlik (uncertainty): Matematiksel (simgesel) mantığın sağlam ve soyut cebirsel bir yapı olarak ortaya konması, klâsik (sözel) mantıktan ancak 2000 yıl sonra yapılabilen çok büyük bir aşamadır. Ama, Boole mantığı da klâsik mantığın ortaya koyduğu iki-değerliliği korumaktadır. İki-değerli mantıkta belirsizlik olamaz. Orada bir önerme ya doğru ya da yanlış tır. Oysa, gerçek yaşamda önermeler hem doğru, hem yanlış ya da biraz doğru, biraz yanlış olabilir. Daha ötesi, gözlemlere dayalı önermelerin doğruluğu belli bir olasılık katsayısına bağlıdır. M.Ö.400 lü yıllardan beri, doğru ve yanlış arasında bir şeylerin daha olması gerektiği seziliyordu. Çünkü iki-değerli mantığın çatışkılar (paradox) yarattığı da görülüyordu. Jan Lukasiewicz ( ): Bu sorunu aşmak için çalışanlar arasında Polonyalı Lukasiewicz i anmak gerekir. Lukasiewicz geçen yüzyılın başında çok-değerli mantığı kurdu. Önce doğru ve yanlış arasına bir aradeğer (bilirsiz-değer) koyarak üç-değerli 6 Jan Lukasiewicz ( )

7 mantığı belitsel biçimde ortaya koydu. Bu sistem iki-değerli mantığı kapsayan daha genel bir sistem oldu. Ama bu işin üç değerle kısıtlanamayacağı, sonsuz-değerli mantığa geçişin doğallığı da ortaya çıkıyordu. Fuzzy Mantığı: Doğa olaylarını açıklamak için kullandığımız matematiksel yöntemlerin ve modellerin yararı, gücü ve heybeti tartışılamaz. Ancak, matematiğin kesin deterministik niteliğinin uygulamada gerçeğe çoğunlukla uymaması, yüzyıllar boyunca bilim adamlarını ve düşünürleri uğraştırmıştır. Matematiksel temsiller, evrenin karmaşıklığı ve sınırsızlığı karşısında daima yetersiz ve çok yapay kalmaktadır. Bu nedenle, doğa olaylarını açıklarken, çoğunlukla, kesinliği (exactness - certainty) değil, belirsizliği (vagueness - uncertainty) kullanırız. Doğal diller, doğal kavramları açıklamakta Lotfi A. Zadeh (1821- ) çoğunlukla matematiksel modellerden daha etkilidir yılında Lotfi Zadeh ilk cesur adımı attı ve fuzzy kümelerini ve fuzzy mantığını tanımladı. Antik-çağ matematikçilerinin eksikliğini sezdikleri ama ussal bilgiye dönüştüremedikleri önemli bir kavram vardır: Sonsuzluk 17. ve 18. yüzyılda, fiziksel olayların açıklanabilmesi için ortaya atılan sonsuz küçükler (infinitesimal) hesabı, bu yöndeki büyük bir adımdır. 20. yüzyıl başlarında ussal ve sistemli bilgiler disiplini olarak ortaya konan sonsuzluk kavramı, 6000 yıllık matematikte gerçekleşen en büyük aşamadır, en büyük devrimdir!... Sonsuzun doğuşunu sağlayan etmenlerden biri olan limit kavramının, dört işleme eklenen beşinci bir işlem olarak matematiğe girişi, analiz adıyla anılan büyük ve önemli bir bilim dalını doğurmuştur. Analizin doğuşunu ve gelişimini sağlayan zorlayıcı etmenlerin başında fizik gelir. Klasik fiziğin hemen her probleminin çözümü, analizin bilgi sınırlarını zorlamış ve onu gelişmeye itmiştir. Bugün klasik fizikte doğa olaylarının açıklanması, analiz bilim dalının kesin egemenliği altındadır. Benzer olgu, çağdaş fizik için de olmaktadır. Klasik fiziğin çözümleyemediği bazı doğa olaylarının açıklanabilmesi için yeni kuramlara gerekseme duyulmuştur. Bu yöndeki 7

8 çabalar sonunda, yılları arasında Kuantum Fiziği kurulmuştur. Bu yeni kuramın temelleri de adına Çağdaş Analiz ya da Fonksiyonel Analiz denilen matematik dalının ortaya çıkmasını sağlamıştır. Bu gelişim, doğa olaylarının matematiksel modellerle temsiline yeni ve önemli örnekler getirmiştir. Örneğin, ışığın niteliğini Schrödinger in Dalga Mekaniği Kuramı ile Heisenberg in Matris Mekaniği Kuramı farklı biçimlerde ama doğru olarak açıklıyorlardı. Kuantum Fiziğinin bu önemli problemine, Fonksiyonel Analiz bilim dalı, mükemmel ve zarif bir çözüm getirmiştir: Schrödinger in kuramı L²fonksiyon uzayı içine, Heisenberg in kuramı ise l²-dizi uzayı içine yerleştirilmekte ve bu modeller içinde açıklanmaktadır. İki kuramın farklı görüntüsü buradan gelmektedir. Ama, bu iki uzay, matematiksel açıdan yapıları biribirlerine denk olan iki uzaydır. Dolayısıyla iki kuram birbirine denktir. Bu kısa resmigeçitten sonra asıl konumuza dönebiliriz. Toplumlarda liderler, büyük kahramanlar zor zamanlarda (doğru zamanlarda) ortaya çıkar. Onları çevre koşulları yaratır. Bilimde de böyledir. Çözüm zamanı gelen büyük problemleri çözecek büyük bilginler daima (doğru zamanda) ortaya çıkar. 20. yüzyılın ilk yarısı, matematiğin temellerinin yeniden kurulması çabalarıyla doludur. Matematik böyle zor bir döneme girince, onu kurtarmak için kolları sıvayanlar çok oldu. Harika işler başardılar. Bunların hepsini önem sırasıyla verebileceğimi sanmıyorum. Ama 20.yy matematik tarihinin hiç unutamayacağı adlardan bazıları şunlardır: Cantor, Zermelo, Skolem, Fraenkel, Montague, Russell, Whitehead, Bernays, von Neumann, Hilbert, Gödel, Turing, Zadeh, Bu konuşmanın amacı açısından, bunlardan bazılarından sözetmemiz gerekiyor. Kümeler Kuramı ve Sonsuzluk Doğal diller, kuşkusuz bir şeylerin topluluk larını kavram olarak biliyor ve yerinde kullanıyordu. Matematikçiler de 8 Georg Ferdinand Ludwig Philipp Cantor ( )

9 sonsuz küçük ve sonsuz büyük kavramlarını kullanarak analiz dediğimiz harika aracı yaratmışlardı. Analizi kullanan fizik, doğa olaylarını bir bir açıklamaya başlamıştı. Her şey yolunda gidiyordu. Ama, geçen yüzyıla girilirken Alman matematikçi Georg Cantor ( ) küme kavramını ortaya attı. Ona dayalı yeni bir potansiyel sonsuz kavramı doğdu. Bu kavramlar matematikte bir devrim yarattı. Her devrim, kurulu düzende bir karmaşa yaratır. Matematikte de bu olgu kaçınılmaz olarak gerçekleşti; beklenmedik ve istenmedik bir zamanda büyük bir karmaşa doğdu. Doğan karmaşayı açıklamak için şimdi hepimizin iyi bildiği N={0,1,2,3, } doğal sayılar kümesinden başlayalım ve Cantor un yaptıklarını anımsayalım: Cantor 1, 2, 3, sayılarına ω ile gösterdiği (bir) sonsuz sayıyı ekledi: 1, 2, 3,, ω Burada durması için bir nedeni yoktu. Sayı eklemeyi sürdü: 1, 2, 3,, ω, ω+1, ω+2, ω+3, , 2, 3,, ω,..., 2ω,..., 3ω,..., 4ω,..., ωω, , 2, 3,, ω,..., ω 2,..., ω 3,..., ω 4,..., ω 5, , 2, 3,, ω,..., ω 2,..., ω 3,..., ω 4,..., ω ω,..., ω ω+ω, ,2,3,..., ω,..., ω ω,..., ω ω ω,..., ω ω ω ω,... Sonunda ulaştığı (sonlu ötesi) sayılar, analizin bildiği sonsuz sayı kavramını ve bazılarının hayal sınırlarını çok çok aşıyordu. Matematikçiler önceleri buna pek aldırış etmediler; önemini de anlamadılar. Ama giderek işin vehametini anladılar: temel sarsılıyordu!.. 9

10 Dünyanın en akıllı adamları arasında, yani matematikçiler arasında büyük bir tartışma başladı. Kimileri Cantor un söylediklerinin gerçekle ilgisi olmadığı, kafa yormaya değmeyecek kurgular (fanteziler) olduğu görüşündeydi. Kimileri ise bu gibi şeylerin matematikçilerin değil, teolojistlerin düşüneceği saçmalıklar olduğunu savundu. En radikal kişiler ise, Cantor un bir tımarhaneye kapatılarak ortaya çıkan sorunun yokedilmesi gerektiğini söyledi. Öyle de oldu. Cantor son yıllarını akıl hastanesinde geçirdi. Ama sorunlar çözülmedi. Cantor un ortaya attığı kümeler kuramı, matematikte yepyeni bir çığır açtı. Çığır demek az, tam anlamıyla bir devrim yarattı! Bundan sonra matematiğin temelleri kümeler üzerine kurulmalıydı!.. Usbilimsellik (logicism) Bertrand Russell, gençliğine matematikçi olarak başladı, sonradan filozofluğa kadar düştü(!). Onunla da yetinmedi, son yıllarında hümanist akımlara kapıldı, savaş karşıtı eylemlere karıştı(!). Durup dururken, neredeyse, yaşamının son yıllarını zora sokacaktı. Her neyse, matematikle başladığına göre, Russel ın, insanlığa önemli hizmetlerde bulunmuş bir İngiliz düşünür olduğunu kabul edebiliriz. Matematiğin temellerinin sarsıldığını ilk gören kişi değilse bile, sanırım, ilk gösteren kişidir. O nedenle, bazı matematikçilerin onu sevmemesini Bertrand Arthur William Russell ( ) anlayışla karşılamak gerekir. Hatta, insanlık adına söylediği ve yaptığı güzel şeyleri matematikçi olarak yaptı diye onunla öğünebiliriz. Çok popularize edilmiş olarak bildiğimiz çatışkıların (paradox) çoğunun Russel tarafından ortaya konduğu bilinmektedir. Bunların çoğu Matematik Dünyası nda çıkmıştır; burada yinelemenin gereğini görmüyorum. Yalnızca bir örnek vermek için berber çatışkısını Ali Nesin in dilinden aktaracağım: Köyün birinde bir berber varmış. Bu berber, o köyde kendini traş etmeyen herkesi traş edermiş, kendini traş edenleriyse traş etmezmiş. Soru şu: bu berber kendini traş eder mi? Kendini traş etmezse, kendini traş etmeyen herkesi traş ettiğinden, 10

11 kendini traş etmeli. Kendini traş ederse, kendini traş edenleri traş etmediğinden, kendini traş etmemeli. Rahatına düşkün kişiler olarak, berberin kendini traş edip etmemesinden bize ne! diyebiliriz. Ama bu çatışkıların birer oyun, birer bilmece olmayıp, matematiğin temellerini derinden sarsan üstün düşünceler olduğuna inananlar çıktı orta yere. Principia Mathematica: Russel ve Whitehead matematiğin temellerinde oluşan sarsıntıyı görmek ve söylemekle yetinmediler. Matematikte doğan çelişkiyi yokedecek yöntem aradılar. Sırasıyla 1910, 1912 ve 1913 yıllarında yayımlanan üç ciltlik Principia Mathematica da bütün matematiğin usbilimselliğe (logicism) indirgenebileceğini savundular. Tezlerini iki bölüme ayırabiliriz. Birincisi, bütün matematiksel doğrular usbilimsel doğrulara (logical truths) dönüştürülebilir. Başka bir deyişle, matematiksel deyimler usbilimsel deyimlerin bir alt kümesidir. İkincisi, bütün matematiksel kanıt (proof) yöntemleri usbilimsel kanıt yöntemleriyle ifade edilebilir. Başka bir deyişle, matematiksel teoremler usbilimsel teoremlerin bir alt kümesidir. Russell in sözleriyle özetlersek, bütün (pure) matematiğin usbilimsel kurallarla elde edilebileceğini göstermek usbilimcinin işidir. Öyleyse, matematik usbilimdir, matematikçi de usbilimcidir. Principia Mathematica modern matematiksel usbilimin doğmasına neden olmuştur. İlk yayımı parasızlık yüzünden geciken Principia Mathematica, Aristotle'in Organon adlı ünlü yapıtından sonra, usbilim alanında yazılmış en önemli yapıt olarak kabul edilir. Sezgisellik (intuitionism) Matematiği sezgisel olarak kurmayı amaçlayan bu okul esas olarak Luitzen Egbertus Jan Brouwer in ( ) ortaya koyduğu sistemdir. Cantor un kümeler kuramına dayalı yapıyı şiddetle yadsırken, Russell in usbilimselliğine de karşı durur. Tartışma, akıl oyunları nın sergilendiği görkemli bir tiyatroya dönüşür. Sergilenen oyuna seyirciler de katılır Poincare 11 Luitzen Egbertus Jan Brouwer ( )

12 matematiğin temellerini varsayımlara dayamak isterken, Kronecker teolojiye sığınıyordu. David Hilbert ( ) Biçimsellik (formalism) David Hilbert ( ), akıl oyunları nın son perdesini indirmek istedi. Adına Kanıt Kuramı (Proof Theory) dediği biçimsel bir matematik dili geliştirdi (1927). Ona göre sezgisel matematik yaparken konuştuğumuz dil, duygularımız, özne (madde) geleneksel çıkarım yöntemlerimize dışarıdan etki etmektedir. Dış etkileri yoketmek için bir matematik dili, yapay bir dil oluşturdu. Yedi ana grupta topladığı 17 formül ile matematik teoremlerini kanıtlayabiliyordu. Ortaya attığı kuramın ilk sunumunu yaparken şöyle diyordu: Matematik önyargısızdır. Onu bulmak için Kronecker in yaptığı gibi Tanrıya, Poincare nin yaptığı gibi yeteneklerimize hitabeden varsayımlara, Brouwer in yaptığı gibi temel sezgilere, Russell in yaptığı gibi belitlere gereksinim yoktur. Matematik formüllerden oluşan kendi içinde kapalı bir sistemdir. Hilbert büyük bir matematikçidir. 20. yüzyıl matematiğine damgasını vurmuştur yılında Paris te yapılan Uluslararası Matematik Kongresinde ortaya attığı problemler, aradan geçen 100 yılda tam çözülememiştir, ama bu problemler yüzyılın matematiğine yön vermiştir. Herkes böyle bir dahinin akıl oyunları için yazdığı son perdeyle temsilin bittiğine inanmaktadır. Ta ki Gödel denen biri çıkıp oyuna hiç bitmeyecek bir perde daha ekleyene kadar!... Gödel diye biri! Bir M matematik sisteminde iki nitelik ararız. Birincisi, tamlık (completeness): İçindeki her teorem kanıtlanabiliyorsa sistem tamdır. Başka bir deyişle, sistemdeki her p önermesi için ya p doğrudur ya da p yanlıştır teoremlerinden biri kanıtlanabiliyorsa M sistemi tamdır. 12

13 İkincisi, tutarlılık (çelişkisizlik, consistency): M sistemindeki her p önermesi için ya p doğrudur ya da p yanlıştır teoremlerinden ancak birisi geçerliyse M sistemi tutarlı, her ikisi aynı anda varsa M sistemi tutarsızdır yılında Kurt Gödel ( ) ortaya çıkıp ortalığı toz dumana katana kadar Hilbert in formal sisteminin matematikteki krizi tamamen çözdüğü sanılıyordu. Eksiklik (incompleteness) teoremi adını verdiği teorem, bir sistemin tutarlı olup olmadığının o sistem içinde kanıtlanamayacağını söylüyordu. Bu sonuç, matematiğin tutarlı olduğunun (matematikle) Kurt Gödel ve Albert Einstein (Princeton 1950) kanıtlanamayacağının kanıtıydı. Dolayısıyla, kendi içinde kapalı bir sistem oluşturduğu sanılan Hilbert formalizminin çöküşü anlamına geliyordu. O zamana kadar kimse Hilbert in yanılmış olabileceğini düşünmüyordu. Dahi matematikçi von Neumann bile Gödel in yaptığını öğrenince Yanıldım, gemiyi kaçırdım! diye hayıflanmıştır. Principia Mathematica, Organon dan sonra usbilimde yazılan en büyük yapıt sayılıyor, demiştik. Benzer olarak, Kurt Gödel, Aristoteles ten sonra gelmiş en büyük usbilimci ününü kazanmıştır. Burada ilginç olan şey, Gödel in kanıtının bir bilgisayar dili olan Lisp in yapısına benzemesidir. Benzer iş Turing makinası için de söz konusudur. Bazı bilgisayarcıların hoşuna gitmese de, bu olgu, matematikçilerin yarattığı bilgisayar biliminin matematikten kopamayacağının bir göstergesidir. Alan Mathison Turing ( ): Leibniz'in düşünü gerçekleştirecek bir makinayı tasarladı (1936). Turing machine diye anılan bu hayal 13

14 makina, her matematik problemini çözecek mekanik bir alet olarak düşünüldü. Turing, bu günkü bilgisayarların çalışma ilkelerine çok benzeyen bir yöntemle, bütün problemleri çözen mekanik bir makinanın (ya da algoritmanın) var olamayacağını kanıtladı. Bu sonuç, farklı bir yaklaşımla Gödel i doğrulamaktadır. Hatta, Gregory Chaitin e göre, Gödel in yaptığı işten daha büyüktür. Bu yönde yapılan çok önemli bulgulardan birisi de şudur: 1970 yılında, Diophant denklemlerini çözecek bir algoritmanın olmadığı ispatlandı. Bu sonuç, 1900 yılındaki Matematik Kongresinde Alan Mathison Turing ( ) Hilbert'in sunduğu ünlü 10. problemin çözümsüzlüğünü ortaya koymuştur. Sonuç: Akıl Oyunları sürüyor; henüz son perdesini kimse yazamadı. Evrenin karmaşası o son perdenin yazılmasına belki hiç izin vermeyecektir. Böyle olması, gelecek için umudumuz olmalıdır; çünkü insan soyuna üstünlük sağlayan şey evrenin gizlerini tümüyle biliyor olması değil, o gizleri durmaksızın arama iradesine sahip olmasıdır. Kimbilir, belki bu oyuna erdemi de katabilir. Kaynaklar 1. Baum,R. Philosophy and Mathematics. San Francisco: Freeman, Cooper,

15 2. Benacerraf,P and Putnam, H. Philosophy of Mathematics, Selected Readings. Cambridge: Cambridge University Press, Boyer, Carl B. The History of The Calculus and its Conceptual Development. New York: Dover, Courant,R. and Robbins,H. What is Mathematics? Oxford: Oxford University Press, Frege, Gottlob (1893, 1903) Grundgesetze der Arithmetik, Band I (1893), Band II (1903), Jena: Verlag Hermann Pohle. Ed. 6. Kline, M. Mathematics, the Loss of Certainty. Oxford: Oxford University Press, Nagel, E. and Newman,J.R. Godel's Proof. New York: New York University Press, Quine, W.V. Ways of Paradox, New York: Random House, Rand, A. Introduction to Objectivist Epistemology. New York: Penguin Group, Ross,D. "The Cognitive Basis of Arithmetic." Poughkeepsie, N.Y.: Institute for Objectivist Studies (forthcoming). 11. Russell, Bertrand Principles of Mathematics, Cambridge: Cambridge University Press, Russell, Bertrand Introduction to Mathematical Philosophy, London: George Allen and Unwin, Sir Thomas Heath. Mathematics in Aristotle. Oxford: Clarendon Press, Stephan Korner. The Philosophy of Mathematics, an Introductory Essay. New York: Dover, Veatch, Henry. Intentional Logic. New Haven: Yale University Press, Whitehead, Alfred North A Treatise on Universal Algebra, Cambridge: Cambridge University Press, Whitehead, Alfred North On Mathematical Concepts of the Material World, London: Dulau, Whitehead, Alfred North, and Bertrand Russell (1910, 1912, 1913) Principia Mathematica, 3 vols, Cambridge: Cambridge University Press. Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3). Abridged (1962). 19. Walley, P. Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, London, Willaeys, D. - Malvache, N. The use of Probability Functions for the Treatment of Fuzzy Information by Computer, Probability Functions and Systems, 5, , (1981). 21. Wilson, N - Moral,S. A Logical View of Probability, Proc. of the 11th Europ. Conf. on Artificial Intelligence (ECAI'94) (Ed. A.G. Cohn), Amsterdam, The Netherlands, Aug. 8-12, Wiley, New York, , (1994). 22. Zadeh,L.A. Quantitative Fuzzy Semantics, Information Sciences, 3, , (1971). 15

Merhaba! Hepinize hofl geldiniz diyor, ve bu

Merhaba! Hepinize hofl geldiniz diyor, ve bu Yirminci Yüzy lda Matemati i Sarsan Temel Düflünceler Merhaba! Hepinize hofl geldiniz diyor, ve bu güzel bahar gününde matematik dinleme cesaretini gösterdi iniz için sizleri kutluyorum. Matematik-2001

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. w w w. m a t b a z. c o m ÖNERMELER- BİLEŞİK ÖNERMELER

Örnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. w w w. m a t b a z. c o m ÖNERMELER- BİLEŞİK ÖNERMELER Terim: Bir bilim dalı içerisinde konuşma dilinden farklı anlamı olan sözcüklerden her birine o bilim dalının bir terimi denir. Önermeler belirtilirler. p,q,r,s gibi harflerle Örneğin açı bir geometri terimi,

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Ön Bilgiler 5 Bibliography 13 1 Ön Bilgiler Bu kitapta, matematiğin temeli olan mantık, kümeler,

Detaylı

Bilgisayar Mühendisliğinin Temelleri. Yrd. Doç. Dr. Fatih KOCAMAZ

Bilgisayar Mühendisliğinin Temelleri. Yrd. Doç. Dr. Fatih KOCAMAZ Bilgisayar Mühendisliğinin Temelleri Yrd. Doç. Dr. Fatih KOCAMAZ 1 Bilgisayar Bilimi Tarihine Kısa bir Bakış Bilgisayar bilimi, genç bir bilim olarak bilinmesine rağmen, kökleri eski çağlara uzanan ve

Detaylı

T I M U R K A R A Ç AY- H AY D A R E Ş - İ B R A H I M İ B R A H I M O Ğ L U C A L C U L U S S E Ç K I N YAY I N C I L I K

T I M U R K A R A Ç AY- H AY D A R E Ş - İ B R A H I M İ B R A H I M O Ğ L U C A L C U L U S S E Ç K I N YAY I N C I L I K T I M U R K A R A Ç AY- H AY D A R E Ş - İ B R A H I M İ B R A H I M O Ğ L U C A L C U L U S S E Ç K I N YAY I N C I L I K Copyright 2017 Timur Karaçay-Haydar Eş-İbrahim İbrahimoğlu bu kitap başkent üniversitesinde

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

Matematik Ve Felsefe

Matematik Ve Felsefe Matematik Ve Felsefe Felsefe ile matematik arasında, sorunların çözümüne dayanan, bir bağlantının bulunduğu görüşü Anadolu- Yunan filozoflarının öne sürdükleri bir konudur. Matematik Felsefesi ; **En genel

Detaylı

MANTIĞIN GÖRKEMLİ DÖNÜŞÜ

MANTIĞIN GÖRKEMLİ DÖNÜŞÜ MANTIK, MATEMATİK ve FELSEFE I.Ulusal Sempozyumu 26-28 Eylül 2003, Assos MANTIĞIN GÖRKEMLİ DÖNÜŞÜ Timur KARAÇAY Başkent Üniversitesi Ankara e-posta : tkaracay@baskent.edu.tr Özet Bu konuşmada, insanoğlunun

Detaylı

IV.Ünite: SEMBOLİK MANTIK: D - Çok Değerli Mantık Özet

IV.Ünite: SEMBOLİK MANTIK: D - Çok Değerli Mantık Özet ÇOK DEĞERLİ MANTIK Klasik mantık sistemleri, sadece belirli koşullarda oluşan, kesin doğruluk değerleri doğru ya da yanlış olan önermelerle ilgilenirler. Belirsizlikle ilgilenmezler. İki değerlikli bu

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 İyi Sıralama 5 Bibliography 13 1 İyi Sıralama Well Ordering İyi sıralama kavramı, doğal sayıların

Detaylı

11/26/2010 BİLİM TARİHİ. Giriş. Giriş. Giriş. Giriş. Bilim Tarihi Dersinin Bileşenleri. Bilim nedir? Ve Bilim tarihini öğrenmek neden önemlidir?

11/26/2010 BİLİM TARİHİ. Giriş. Giriş. Giriş. Giriş. Bilim Tarihi Dersinin Bileşenleri. Bilim nedir? Ve Bilim tarihini öğrenmek neden önemlidir? Bilim Tarihi Dersinin Bileşenleri BİLİM TARİHİ Yrd. Doç. Dr. Suat ÇELİK Bilim nedir? Ve Bilim tarihini öğrenmek neden önemlidir? Bilim tarihi hangi bileşenlerden oluşmaktadır. Ders nasıl işlenecek? Günümüzde

Detaylı

Bilim ve Teknolojideki Gelişmişliğin Matematiksel Temeli

Bilim ve Teknolojideki Gelişmişliğin Matematiksel Temeli Bilim ve Teknolojideki Gelişmişliğin Matematiksel Temeli Prof. Dr. Erhan Güzel 17.06.2009 TÜSSİDE-Gebze Bilim basit bir tanımla açıklanabilecek tekdüze bir etkinlik değildir; olgu-kuram bağlamında çok

Detaylı

SANAT FELSEFESİ. Sercan KALKAN Felsefe Öğretmeni

SANAT FELSEFESİ. Sercan KALKAN Felsefe Öğretmeni SANAT FELSEFESİ Sercan KALKAN Felsefe Öğretmeni Estetik güzel üzerine düşünme, onun ne olduğunu araştırma sanatıdır. A.G. Baumgarten SANATA FELSEFE İLE BAKMAK ESTETİK Estetik; güzelin ne olduğunu sorgulayan

Detaylı

FİZİK. Mekanik 12.11.2013 İNM 103: İNŞAAT MÜHENDİSLİĞİNE GİRİŞ. Mekanik Nedir? Mekanik Nedir?

FİZİK. Mekanik 12.11.2013 İNM 103: İNŞAAT MÜHENDİSLİĞİNE GİRİŞ. Mekanik Nedir? Mekanik Nedir? İNM 103: İNŞAAT MÜHENDİSLİĞİNE GİRİŞ 22.10.2013 MEKANİK ANABİLİM DALI Dr. Dilek OKUYUCU Mekanik Nedir? Mekanik: Kuvvetlerin etkisi altında cisimlerin davranışını inceleyen bilim dalıdır. FİZİK Mekanik

Detaylı

ÖZ ÖBEĞİN TÜMLEYENİ KÜME MİDİR, ÖZ ÖBEK MİDİR? 1. Ahmet İnam

ÖZ ÖBEĞİN TÜMLEYENİ KÜME MİDİR, ÖZ ÖBEK MİDİR? 1. Ahmet İnam ÖZ ÖBEĞİN TÜMLEYENİ KÜME MİDİR, ÖZ ÖBEK MİDİR? 1 Ahmet İnam Bu çalışmada Russell Paradoksunun çözülmesi için oluşturulan aksiyomatik sistemlerden Von Neumann, Bernays, Gödel ve Morse un geliştirdiği yapı

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 11 CONTENTS 5 0.1 Kartezyen Çarpım 0.2 Sıralı İkililer Şimdiye kadar sıra ya da

Detaylı

Bulanık Kümeler ve Sistemler. Prof. Dr. Nihal ERGİNEL

Bulanık Kümeler ve Sistemler. Prof. Dr. Nihal ERGİNEL Bulanık Kümeler ve Sistemler Prof. Dr. Nihal ERGİNEL İçerik 1. Giriş, Temel Tanımlar ve Terminoloji 2. Klasik Kümeler-Bulanık Kümeler 3. Olasılık Teorisi-Olabilirlik Teorisi 4. Bulanık Sayılar-Üyelik Fonksiyonları

Detaylı

BLM 4811 MESLEKİ TERMİNOLOJİ II Salı , D-109 Dr. Göksel Biricik

BLM 4811 MESLEKİ TERMİNOLOJİ II Salı , D-109 Dr. Göksel Biricik BLM 4811 MESLEKİ TERMİNOLOJİ II 2017-1 Salı 13.00 14.50, D-109 Dr. Göksel Biricik goksel@ce.yildiz.edu.tr Ders Planı Hafta Tarih Konu 1 19.09 Tanışma, Ders Planı, Kriterler, Giriş 2 26.09 Bilgisayarın

Detaylı

MATEMATİK VE POSTMODERNİZM

MATEMATİK VE POSTMODERNİZM MATEMATİK VE POSTMODERNİZM Timur KARAÇAY Başkent Üniversitesi, Fen-Edebiyat Fakültesi, Bağlıca Yerleşkesi, 06530 Bağlıca Ankara, tel: 0312 2341010, fax: 0312 2341041 e-posta: tkaracay@baskent.edu.tr ÖZET

Detaylı

Matematikle ifade edebiliyorsanız, bilginiz doyurucudur. (Lord KELVIN)

Matematikle ifade edebiliyorsanız, bilginiz doyurucudur. (Lord KELVIN) Matematik ile ilgili sözler Matematikle ifade edebiliyorsanız, bilginiz doyurucudur. (Lord KELVIN) Algoritma şöyle diyor: Rabbimiz ve koruyucumuz olan Allah a hamd ve senalar olsun (Harezmi) Tarihte üç

Detaylı

FİZİK. Mekanik İNM 101: İNŞAAT MÜHENDİSLİĞİNE GİRİŞ. Mekanik Nedir? Mekanik Nedir?

FİZİK. Mekanik İNM 101: İNŞAAT MÜHENDİSLİĞİNE GİRİŞ. Mekanik Nedir? Mekanik Nedir? İNM 101: İNŞAAT MÜHENDİSLİĞİNE GİRİŞ 12.10.2017 MEKANİK ANABİLİM DALI Dr. Dilek OKUYUCU Mekanik Nedir? Mekanik: Kuvvetlerin etkisi altında cisimlerin davranışını inceleyen bilim dalıdır. FİZİK Mekanik

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS YAPAY ZEKA BG-421 4/2 2+1+0 2+.5 4 Dersin Dili : TÜRKÇE Dersin Seviyesi : LİSANS

Detaylı

FRAKTAL VE TARİHÇESİ. Benoit Mandelbrot

FRAKTAL VE TARİHÇESİ. Benoit Mandelbrot FRAKTAL VE TARİHÇESİ Matematiksel gerçeklerin niteliğinde var olan kesinliğin özetinde aksiyomatik yapılar vardır. Öklid geometrisi, matematik tarihinde bunun önde gelen örneğidir. Matematiksel doğruların,

Detaylı

Önermeler mantığındaki biçimsel kanıtlar

Önermeler mantığındaki biçimsel kanıtlar Önermeler mantığındaki biçimsel kanıtlar David Pierce 26 Aralık 2011, saat 11:48 Bu yazının ana kaynakları, Burris in [1] ve Nesin in [4] kitapları ve Foundations of Mathematical Practice (Eylül 2010)

Detaylı

Leyla Bugay Doktora Nisan, 2011

Leyla Bugay Doktora Nisan, 2011 ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Doktora 2010913070 Nisan, 2011 Yarıgrup Teorisi Nedir? Yarıgrup teorisi cebirin en temel dallarından biridir. Yarıgrup terimi ilk olarak 1904

Detaylı

Esnek Hesaplamaya Giriş

Esnek Hesaplamaya Giriş Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan

Detaylı

FİZİK. Mekanik İNM 221: MUKAVEMET -I. Mekanik Nedir? Mekanik: Kuvvetlerin etkisi altında cisimlerin davranışını inceleyen bilim dalıdır.

FİZİK. Mekanik İNM 221: MUKAVEMET -I. Mekanik Nedir? Mekanik: Kuvvetlerin etkisi altında cisimlerin davranışını inceleyen bilim dalıdır. İNM 221: MUKAVEMET -I 03.07.2017 GİRİŞ: MEKANİK ANABİLİM DALI Dr. Dilek OKUYUCU Mekanik Nedir? Mekanik: Kuvvetlerin etkisi altında cisimlerin davranışını inceleyen bilim dalıdır. FİZİK Mekanik 1 Mekanik

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : ANALİZ I Ders No : 0310250035 : 4 Pratik : 2 Kredi : 5 ECTS : 8 Ders Bilgileri Ders Türü Öğretim Dili Öğretim Tipi Zorunlu

Detaylı

MATEMATİK BÖLÜMÜ BÖLÜM KODU:3201

MATEMATİK BÖLÜMÜ BÖLÜM KODU:3201 BÖLÜM KODU:01 011-01 01.Yarıyıl Dersleri 0.Yarıyıl Dersleri MTK 101 Analiz I Analysis I 4 1 5 6 MTK 10 Analiz II Analysis II 4 1 5 6 MTK 11 Lineer Cebir I Linear Algebra I 1 4 MTK 1 Lineer Cebir II Linear

Detaylı

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER MANTIK MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER İçerisinde değişken olan ve değişkenin değerlerine göre doğru ya da yanlış olabilen önermelere açık önerme denir. Açık önermeler değişkenine göre P( x), Q( a)

Detaylı

B Ö L Ü M. ve kitaplar yayınlamış olan bir bilim adamıdır. 2 JULIUS WILHELM RICHARD DEDEKIND ( ), Gauss un öğrencilerinden biridir.

B Ö L Ü M. ve kitaplar yayınlamış olan bir bilim adamıdır. 2 JULIUS WILHELM RICHARD DEDEKIND ( ), Gauss un öğrencilerinden biridir. B Ö L Ü M 2 DOĞAL SAYILAR En basit ve temel sayılar doğal sayılardır, sayı kelimesine anlam veren saymak eylemi bu sayılarla başlamıştır. Fakat insanoğlunun var oluşundan beri kullanılan bu sayıların açık

Detaylı

DENİZ HARP OKULU BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS Yapay Zeka BİM-433 4/II 2+2+0 3 4,5 Dersin Dili Dersin Seviyesi

Detaylı

MATEMATİK BİLİM GRUBU III KURS PROGRAMI

MATEMATİK BİLİM GRUBU III KURS PROGRAMI MATEMATİK BİLİM GRUBU III KURS PROGRAMI 1.Kurumun Adı 2.Kurumun adresi 3.Kurucunun Adı 4.Programın Adı : OĞUZHAN ÖZKAYA ÖZEL ÖĞRETİM KURSU : Onur Mahallesi Leylak Sok.No:9 Balçova-İzmir : Oğuzhan Özkaya

Detaylı

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48 İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58 Önermeler ve İspat Yöntemleri

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Kümeler Cebiri 5 1 Kümeler Cebiri 1 Doğa olaylarının ya da sosyal olayların açıklanması için,

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Bölüm 1: Felsefeyle Tanışma

Bölüm 1: Felsefeyle Tanışma İÇİNDEKİLER Bölüm 1: Felsefeyle Tanışma 1. FELSEFE NEDİR?... 2 a. Felsefeyi Tanımlamanın Zorluğu... 3 i. Farklı Çağ ve Kültürlerde Felsefe... 3 ii. Farklı Filozofların Farklı Felsefe Tanımları... 5 b.

Detaylı

KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR

KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR Kümeler Koşullu ve Mantıksal Denklik Kümeler Kümeler Ayrık Kümeler De-Morgan Kuralı Z (Zahlen; alm.) tamsayılar kümesi Z negatif tamsayılar kümesi, Z nonneg

Detaylı

BİLGİ EDİNME İHTİYACI İnsan; öğrenme içgüdüsünü gidermek, yaşamını sürdürebilmek, sayısız ihtiyaçlarını karşılayabilmek ve geleceğini güvence altına a

BİLGİ EDİNME İHTİYACI İnsan; öğrenme içgüdüsünü gidermek, yaşamını sürdürebilmek, sayısız ihtiyaçlarını karşılayabilmek ve geleceğini güvence altına a BİLİMSEL YÖNTEM Prof. Dr. Şahin Gülaboğlu Mühendislik Fakültesi -------------------------------------------------------------------- BİLİM, ETİK ve EĞİTİM DERSİ KONUŞMASI 19 Ekim 2007, Cuma, Saat-15.00

Detaylı

SEMBOLİK MANTIK MNT102U

SEMBOLİK MANTIK MNT102U DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. SEMBOLİK MANTIK MNT102U KISA ÖZET KOLAY

Detaylı

Kompleks Analiz (MATH 346) Ders Detayları

Kompleks Analiz (MATH 346) Ders Detayları Kompleks Analiz (MATH 346) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kompleks Analiz MATH 346 Güz 4 0 0 4 7 Ön Koşul Ders(ler)i Math 251 Dersin Dili

Detaylı

Merhaba! Hepinize hofl geldiniz diyor, ve bu

Merhaba! Hepinize hofl geldiniz diyor, ve bu Yirminci Yüzy lda Matemati i Sarsan Temel Düflünceler Merhaba! Hepinize hofl geldiniz diyor, ve bu güzel bahar gününde matematik dinleme cesaretini gösterdi iniz için sizleri kutluyorum. Matematik-2001

Detaylı

Bölüm 3. Klasik Mantık ve Bulanık Mantık. Serhat YILMAZ 1

Bölüm 3. Klasik Mantık ve Bulanık Mantık. Serhat YILMAZ 1 Bölüm 3. Klasik Mantık ve Bulanık Mantık Serhat YILMAZ serhaty@kocaeli.edu.tr 1 Klasik Mantık ve Bulanık Mantık Bulanık kümeler, bulanık mantığa bulanıklık kazandırır. Bulanık kümelerde yürütme işini işleçler

Detaylı

Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS MATH 501 İleri Analiz

Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS MATH 501 İleri Analiz İçerik Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS MATH 501 İleri Analiz 1 3 0 0 3 8 Ön Koşul Derse Kabul Koşulları Dersin Dili Türü Dersin Düzeyi Dersin Amacı İçerik Kaynaklar Türkçe

Detaylı

İktisat Tarihi I. 6-7 Ekim

İktisat Tarihi I. 6-7 Ekim İktisat Tarihi I 6-7 Ekim Giriş İnsanoğlu dünyada var olduğundan bugüne değin hayatını devam ettirebilmek için üretim ve tüketim faaliyeti içinde olmuştur. İktisat tarihi üzerindeki önemli bir problemli

Detaylı

Editörler Prof.Dr.Işıl Bayar Bravo & Doç.Dr.Mustafa Yıldız MODERN MANTIK

Editörler Prof.Dr.Işıl Bayar Bravo & Doç.Dr.Mustafa Yıldız MODERN MANTIK Editörler Prof.Dr.Işıl Bayar Bravo & Doç.Dr.Mustafa Yıldız MODERN MANTIK Yazarlar Prof.Dr.Hüseyin Subhi Erdem Prof.Dr.Işıl Bayar Bravo Doç. Dr.Aytekin Özel Doç. Dr.Mustafa Yıldız Yrd.Doç.Dr.Abdullah Durakoğlu

Detaylı

Bulanık Mantık. Bulanık Mantık (Fuzzy Logic)

Bulanık Mantık. Bulanık Mantık (Fuzzy Logic) Bulanık Mantık (Fuzzy Logic) Bulanık mantık, insan düşünmesini ve mantık yürütmesini modellemeye ve karşılaşılan problemlerde ihtiyaç doğrultusunda kullanmayı amaçlar. Bilgisayarlara, insanların özel verileri

Detaylı

ROBOTİK VE YAPAY ZEKA

ROBOTİK VE YAPAY ZEKA ROBOTİK VE YAPAY ZEKA Robot Nedir? Robotik Nedir? Robotun Tarihçesi Nerelerde Kullanılır? Yapay Zeka Nedir? Robot Yarışmaları Robot Malzemeleri Robot Nedir? Robot; Elektronik, yazılım ve mekanik sistemlerin

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ EĞİTİM ÖĞRETİM YILI FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİRİNCİ VE İKİNCİ ÖĞRETİM DERSLERİ

KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ EĞİTİM ÖĞRETİM YILI FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİRİNCİ VE İKİNCİ ÖĞRETİM DERSLERİ I. YARIYIL Adı Teori Uygulama KSU MT101 Analiz I 6 4 2 5 7 MT107 Soyut Matematik I 4 4 0 4 5 MT109 Analitik Geometri I 4 4 0 4 5 FZ173 Fizik I 4 4 0 4 4 OZ101 Türk Dili I 2 2 0 2 2 OZ121 Ingilizce I 2

Detaylı

MARS DA HAYAT VAR MI??????

MARS DA HAYAT VAR MI?????? Cilt 1, Sayı 1 Bülten Tarihi MARS DA HAYAT VAR MI?????? M A R S İçindekiler: 1-Mars da Hayat var mı?? 2-Mars da ilginç bilimler!! 3-Bulmacalar 4-Bilgiler 5-Ödülü Sorular 6-Bilim Adamları nın Gizemli Hayatı

Detaylı

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE ÖZEL EGE LİSESİ GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE HAZIRLAYAN ÖĞRENCİ: Berk KORKUT DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI 3.33 2. GİRİŞ... 3 3. YÖNTEM 3 4.

Detaylı

Mantıksal Operatörlerin Semantiği (Anlambilimi)

Mantıksal Operatörlerin Semantiği (Anlambilimi) Mantıksal Operatörlerin Semantiği (Anlambilimi) Şimdi bu beş mantıksal operatörün nasıl yorumlanması gerektiğine (semantiğine) ilişkin kesin ve net kuralları belirleyeceğiz. Bir deyimin semantiği (anlambilimi),

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Matematik Tarihi II (MATH 419) Ders Detayları

Matematik Tarihi II (MATH 419) Ders Detayları Matematik Tarihi II (MATH 419) Ders Detayları Ders Adı Matematik Tarihi II Ders Kodu MATH 419 Dönemi Ders Uygulama Saati Saati Laboratuar Saati Kredi AKTS Her İkisi 3 0 0 3 6 Ön Koşul Ders(ler)i YOK Dersin

Detaylı

ESTETİK (SANAT FELSEFESİ)

ESTETİK (SANAT FELSEFESİ) ESTETİK (SANAT FELSEFESİ) Estetik sözcüğü yunanca aisthesis kelimesinden gelir ve duyum, duyularla algılanabilen, duyu bilimi gibi anlamlar içerir. Duyguya indirgenebilen bağımsız bilgi dalına estetik

Detaylı

Türev Uygulamaları. 9.1 Ortalama Değer teoremi

Türev Uygulamaları. 9.1 Ortalama Değer teoremi 1 2 Bölüm 9 Türev Uygulamaları 9.1 Ortalama Değer teoremi Türevin çok farklı uygulamaları vardır. Bunlar arasında çok önemli olan bazılarını ele alacağız. Ortalama Değer Teoremi ni daha önce görmüştük.

Detaylı

MATEMATİK ÖĞRETİMİNDE GÖZDEN KAÇANLAR

MATEMATİK ÖĞRETİMİNDE GÖZDEN KAÇANLAR MATEMATİK ÖĞRETİMİNDE GÖZDEN KAÇANLAR Seyfullah HIZARCI seyfullahhizarci@mynet.com Süheyla ELMAS suheylaelmas@mynet.com Atatürk Üniversitesi K.KE.F, Matematik Bölümü Erzurum / TÜRKİYE ÖZET Bu çalışma matematik

Detaylı

12. SINIF MANTIK DERSİ SÖKE ANADOLU LİSESİ 1. ORTAK SINAVI KAZANIM TABLOSU (Sınav Tarihi: 4 Nisan 2017)

12. SINIF MANTIK DERSİ SÖKE ANADOLU LİSESİ 1. ORTAK SINAVI KAZANIM TABLOSU (Sınav Tarihi: 4 Nisan 2017) 12. SINIF MANTIK DERSİ SÖKE ANADOLU LİSESİ 1. ORTAK SINAVI KAZANIM TABLOSU (Sınav Tarihi: 4 Nisan 2017) ÜNİTE: 2-KLASİK MANTIK Kıyas Çeşitleri ÜNİTE:3-MANTIK VE DİL A.MANTIK VE DİL Dilin Farklı Görevleri

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

Sevdiğim Birkaç Soru

Sevdiğim Birkaç Soru Sevdiğim Birkaç Soru Matematikte öyle sorular vardır ki, yanıtı bulmak önce çok zor gibi gelebilir, sonradan saatler, günler, aylar, hatta kimi zaman yıllar sonra yanıtın çok basit olduğu anlaşılır. Bir

Detaylı

GEORG CANTOR UN SONSUZLARI

GEORG CANTOR UN SONSUZLARI GEORG CANTOR UN SONSUZLARI Zekeriya GÜNEY Muğla Üniversitesi, Eğitim Fakültesi, Ortaöğretim Fen/Matematik Alanlar Eğitimi Bölümü, Matematik Eğitimi ABD E-mail: zguney@mu.edu.tr Nebiye KORKMAZ Muğla Üniversitesi,

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 9 Index 13 CONTENTS 5 0.1 Doğru, Düzlem, Uzay Bu derste sık sık doğru, düzlem ve

Detaylı

Kuantum Fiziği (PHYS 201) Ders Detayları

Kuantum Fiziği (PHYS 201) Ders Detayları Kuantum Fiziği (PHYS 201) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kuantum Fiziği PHYS 201 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i PHYS 102, MATH 158

Detaylı

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

6. Ders. Mahir Bilen Can. Mayıs 16, 2016 6. Ders Mahir Bilen Can Mayıs 16, 2016 Bu derste lineer cebirdeki bazı fikirleri gözden geçirip Lie teorisine uygulamalarını inceleyeceğiz. Bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği

Detaylı

4 Matematik ve Doğa adlı kitabımda Zenon un paradokslarını bulabilirsiniz.

4 Matematik ve Doğa adlı kitabımda Zenon un paradokslarını bulabilirsiniz. Bertrand Russell ın Paradoksu Ali Nesin 1. Yamyam Paradoksu (Çatışkısı): Bilinen bilmecedir. Yamyamlar bir mantıkçı yakalarlar ve şöyle derler mantıkçıya: Biz her yakaladığımız yabancıyı yeriz. Kimini

Detaylı

MÜFREDAT DERS LİSTESİ

MÜFREDAT DERS LİSTESİ MÜFREDAT DERS LİSTESİ MÜHENDİSLİK FAK. / BİLGİSAYAR MÜHENDİSL / 2010 BİLGİSAYAR MÜHENDİSLİĞİ Müfredatı 0504101 Matematik I Calculus I 1 GÜZ 4 5 Z 0504102 Genel Fizik I General Physics I 1 GÜZ 4 4 Z 0504103

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

SAYILARA GİRİŞ. Her şeyden önce temel kavramları bilmeliyiz. Nedir temel kavramlar? Matematik dilinin abc'si olarak tanımlayabiliriz.

SAYILARA GİRİŞ. Her şeyden önce temel kavramları bilmeliyiz. Nedir temel kavramlar? Matematik dilinin abc'si olarak tanımlayabiliriz. SAYILARA GİRİŞ Her şeyden önce temel kavramları bilmeliyiz. Nedir temel kavramlar? Matematik dilinin abc'si olarak tanımlayabiliriz. Rakamlar {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} On tane rakam bulunmaktadır.

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

Bilimsel Bilginin Oluşumu

Bilimsel Bilginin Oluşumu Madde ve Özkütle 2 YGS Fizik 1 YGS Fizik Fiziğin Doğası başlıklı hazırladığımız bu yazıda; bilimin yöntemleri, fiziğin alt dalları, ölçüm, birim, vektörel ve skaler büyüklüklerle birlikte fizik dünyası

Detaylı

ALAN TURING: BİLGİSAYARIN ATASI

ALAN TURING: BİLGİSAYARIN ATASI ALAN TURING: BİLGİSAYARIN ATASI Alan Turing in doğumunun 100. yılı olan 2012 Turing Yılı ilan edildi. Turing, bilgisayarların temel prensiplerini belirleyen İngiliz matematikçidir. Nature Dergisi Turing

Detaylı

ÖZGEÇMİŞ. : 0216 626 10 50 / 2233 (ofis); 0532 718 49 83 (cep) : zekiyekutlusoy@maltepe.edu.tr

ÖZGEÇMİŞ. : 0216 626 10 50 / 2233 (ofis); 0532 718 49 83 (cep) : zekiyekutlusoy@maltepe.edu.tr ÖZGEÇMİŞ 1. Adı Soyadı : Zekiye Kutlusoy İletişim Bilgileri Adres Telefon E-Posta : Maltepe Üniversitesi, Fen-Edebiyat Fakültesi, Felsefe Bölümü, Marmara Eğitim Köyü, 34857 Maltepe/İSTANBUL : 0216 626

Detaylı

EĞİTİM-ÖĞRETİM YILI MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ (İNGİLİZCE) BÖLÜMÜ DERS PROGRAMINDA YAPILAN DEĞİŞİKLİKLER

EĞİTİM-ÖĞRETİM YILI MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ (İNGİLİZCE) BÖLÜMÜ DERS PROGRAMINDA YAPILAN DEĞİŞİKLİKLER BİRİNCİ SINIF GÜZ YARIYILI 2015-2016 EĞİTİM-ÖĞRETİM YILI MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ (İNGİLİZCE) BÖLÜMÜ DERS PROGRAMINDA YAPILAN DEĞİŞİKLİKLER DEĞİŞİKLİK FORMU COM101 BİLGİSAYAR PROGRAMLAMA

Detaylı

ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI MATEMATİK PROGRAMI DERS LİSTESİ

ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI MATEMATİK PROGRAMI DERS LİSTESİ Ders List ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI MATEMATİK PROGRAMI DERS LİSTESİ 17.11.2016 Yüksek Lisans Dersleri Kod Ders Adı Ders Adı (EN) T U L K AKTS MTK501 Reel

Detaylı

Matris Analizi (MATH333) Ders Detayları

Matris Analizi (MATH333) Ders Detayları Matris Analizi (MATH333) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Matris Analizi MATH333 Her İkisi 3 0 0 3 6 Ön Koşul Ders(ler)i Math 231 Linear Algebra

Detaylı

Olasılık Kuramı ve İstatistik. Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları

Olasılık Kuramı ve İstatistik. Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları Olasılık Kuramı ve İstatistik Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları OLASILIK Olasılık teorisi, raslantı ya da kesin olmayan olaylarla ilgilenir. Raslantı

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Otoma Teorisi Ve Biçimsel Diller BIL445 7 3+0 3 4 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu

Detaylı

A B = A. = P q c A( X(t))

A B = A. = P q c A( X(t)) Ders 19 Metindeki ilgili bölümler 2.6 Elektromanyetik bir alanda yüklü parçacık Şimdi, kuantum mekaniğinin son derece önemli başka bir örneğine geçiyoruz. Verilen bir elektromanyetik alanda hareket eden

Detaylı

KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N )

KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N ) KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N ) KENDİNE BENZERLİK VE AFİNİTE (SELF SIMILARITY AND AFFINITY) Mandelbrot

Detaylı

Fizikteki Tek Hız Sınırı Işık Hızı Mıdır?

Fizikteki Tek Hız Sınırı Işık Hızı Mıdır? Fizikteki Tek Hız Sınırı Işık Hızı Mıdır? Popüler bilimin şu günlerde dilinden düşürmediği bir ifade vardır hani; X parçacığı parçaçık çarpıştırıcılarında ışık hızının %99.9 hızına ulaştırıldı şeklinde.

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

MATEMATİKSEL MAKALELERİN İNCELEMELERİ MURAT KAŞLI. https://www.facebook.com/mrtkasli

MATEMATİKSEL MAKALELERİN İNCELEMELERİ MURAT KAŞLI. https://www.facebook.com/mrtkasli MATEMATİKSEL MAKALELERİN İNCELEMELERİ MURAT KAŞLI https://www.facebook.com/mrtkasli İnteraktif Oyunların Matematik Açısından Etkisi Van Hiele Geometri Anlama Düzeyleri 1. Düzey: Görsel düzey Öğrenci

Detaylı

Fen Edebiyat Fakültesi Matematik Bölümü Bölüm Kodu: 3201

Fen Edebiyat Fakültesi Matematik Bölümü Bölüm Kodu: 3201 Fen Edebiyat Fakültesi 2016-2017 Matematik Bölümü Bölüm Kodu: 3201 01. Yarıyıl Dersleri 02. Yarıyıl Dersleri MTK 101 Analiz I Analysis I 4 1 5 6 MTK 102 Analiz II Analysis II 4 1 5 6 MTK 121 Lineer Cebir

Detaylı

harfi almanca kökenli (Zahlen) Z X bir sonlu küme ise, X = X deki öğelerin sayısını gösterir

harfi almanca kökenli (Zahlen) Z X bir sonlu küme ise, X = X deki öğelerin sayısını gösterir BÖLÜM 1 Kümeler harfi almanca kökenli (Zahlen) Z X bir sonlu küme ise, X = X deki öğelerin sayısını gösterir Tanım 1.1.1: X ve Y herhangi iki küme olsunlar. Eğer X Y= ise, X ve Y kümelerine ayrıktırlar

Detaylı

BÖLÜM 24 PAULI SPİN MATRİSLERİ

BÖLÜM 24 PAULI SPİN MATRİSLERİ BÖLÜM 24 PAULI SPİN MATRİSLERİ Elektron spini için dalga fonksiyonlarını tanımlamak biraz kullanışsız görünüyor. Çünkü elektron, 3B uzayda dönmek yerine sadece kendi berlirlediği bir rotada dönüyor. Elektron

Detaylı

Sonsuzküçük Analiz. Infinitesimal Analysis. David Pierce

Sonsuzküçük Analiz. Infinitesimal Analysis. David Pierce Sonsuzküçük Analiz Infinitesimal Analysis David Pierce 30 Aralık 2018 Matematik Bölümü Mimar Sinan Güzel Sanatlar Üniversitesi mat.msgsu.edu.tr/~dpierce/ david.pierce@msgsu.edu.tr Önsöz Bu notlar, kalkülüs

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

RUSSELL PARADOKSU TEMELİNDE 20. YÜZYIL MANTIKSAL PARADOKSLARI. Canan DURMAZ. (Yüksek Lisans Tezi)

RUSSELL PARADOKSU TEMELİNDE 20. YÜZYIL MANTIKSAL PARADOKSLARI. Canan DURMAZ. (Yüksek Lisans Tezi) RUSSELL PARADOKSU TEMELİNDE 20. YÜZYIL MANTIKSAL PARADOKSLARI Canan DURMAZ (Yüksek Lisans Tezi) Eskişehir 2014 RUSSELL PARADOKSU TEMELİNDE 20. YÜZYIL MANTIKSAL PARADOKSLARI Canan DURMAZ T.C. Eskişehir

Detaylı

Yakın Çağ da Hukuk. Jeremy Bentham bu dönemde doğal hukuk için "hayal gücünün ürünü" tanımını yapmıştır.

Yakın Çağ da Hukuk. Jeremy Bentham bu dönemde doğal hukuk için hayal gücünün ürünü tanımını yapmıştır. Yakın Çağ da Hukuk Yazan: Av. BURCU TAYANÇ Yakın Çağ, çoğu tarihçinin Fransız Devrimi ve Sanayi Devrimi ile başladığını kabul ettiği, günümüzde de devam eden tarih çağlarından sonuncusudur. Bundan dolayı

Detaylı

ISBN

ISBN Bu kitapta verilen örnek ve öykülerde ve kitabın metnindeki açıklamalarda sağlık, hukuk, yatırım gibi çeşitli alanlardan uzmanlık bilgilerine yer verilmiştir. Bu uzmanlık bilgileri sadece kitabın konusuyla

Detaylı

"Bütün kümelerin kümesi", X olsun. Öyle ise her alt kümesi kendisinin elemanıdır. X'in "Alt kümeleri kümesi" de X'in alt kümesidir.

Bütün kümelerin kümesi, X olsun. Öyle ise her alt kümesi kendisinin elemanıdır. X'in Alt kümeleri kümesi de X'in alt kümesidir. Matematik Paradoksları: Doğru Parçası Paradoksu: Önce doğru parçasının tarifini yapalım: Doğru Parçası: Başlangıcı ve sonu olan ve sonsuz adet noktadan oluşan doğru. Pekiyi nokta nedir? Nokta: Kalemin

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr Ders Bilgisi Ders Kodu 9060528 Ders Bölüm 1 Ders Başlığı BİLİŞİM SİSTEMLERİ İÇİN MATEMATİĞİN TEMELLERİ Ders Kredisi 3 ECTS 8.0 Katalog Tanımı Ön koşullar Ders saati Bu dersin amacı altyapısı teknik olmayan

Detaylı

BİLGİSAYARIN TARİHÇESİ Tarihsel olarak en önemli eski hesaplama aleti abaküstür; 2000 yildan fazla süredir bilinmekte ve yaygın olarak

BİLGİSAYARIN TARİHÇESİ Tarihsel olarak en önemli eski hesaplama aleti abaküstür; 2000 yildan fazla süredir bilinmekte ve yaygın olarak BİLGİSAYARIN TARİHÇESİ Tarihsel olarak en önemli eski hesaplama aleti abaküstür; 2000 yildan fazla süredir bilinmekte ve yaygın olarak kullanılmaktadır. Blaise Pascal, 1642 de dijital hesap makinesini

Detaylı

Bölüm 1: Lagrange Kuramı... 1

Bölüm 1: Lagrange Kuramı... 1 İÇİNDEKİLER Bölüm 1: Lagrange Kuramı... 1 1.1. Giriş... 1 1.2. Genelleştirilmiş Koordinatlar... 2 1.3. Koordinat Dönüşüm Denklemleri... 3 1.4. Mekanik Dizgelerin Bağ Koşulları... 4 1.5. Mekanik Dizgelerin

Detaylı

Programlama Dilleri 1. Ders 3: Rastgele sayı üretimi ve uygulamaları

Programlama Dilleri 1. Ders 3: Rastgele sayı üretimi ve uygulamaları Ders 3: Rastgele sayı üretimi ve uygulamaları Ders 3 Genel Bakış Giriş Rastgele Sayı Rastgele Sayı Üreteci rand Fonksiyonunun İşlevi srand Fonksiyonunun İşlevi Monte Carlo Yöntemi Uygulama 1: Yazı-Tura

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

Newton un F = ma eşitliğini SD den türete bilir miyiz?

Newton un F = ma eşitliğini SD den türete bilir miyiz? burada yine kısmi integrasyon kullanıldı ve ± da Ψ ın yok olduğu kabul edildi. Sonuç olarak, p = p, yani p ˆ nin tüm beklenti değerleri gerçeldir. Bir özdeğer kendisine karşı gelen kararlı durumun beklenti

Detaylı