İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48"

Transkript

1 İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58

2 Önermeler ve İspat Yöntemleri p q p q Lamba Yanar Yanar Yanar Yanmaz A) Doğrudan İspat: p q önermesinde p nin doğruluğundan hareketle q nun da doğru olduğunun gösterilmesine doğrudan ispat yöntemi denir. Örnek: x tek sayı ise x 2 de tek sayıdır. Teoremini doğrudan ispat yöntemiyle ispatlayalım. AKSİYOM ve TEOREM İspat edilmeye gerek duyulmadan kabul edilen önermelere aksiyom, doğruluğu ispatlanması gereken önermelere de teorem denir. Teorem, hipotez ve hükümden oluşur. p q koşullu önermesinde (teoreminde) p önermesi varsayım (hipotez), q önermesi de hüküm (yargı) dür. İSPAT Hipotez (p): x tek sayı Hüküm (q): x 2 tek sayı x tek sayı ise x = 2k + 1 (k Z) x 2 = 4k 2 + 4k + 1 x 2 = 2. (2k 2 + 2k) + 1, n Z n Bir teoremin hipotezi doğru iken hükmünün de doğru olduğunun gösterilmesine ispat denir. x 2 = 2n + 1 olduğundan x 2 de tek sayıdır. B) Dolaylı İspat: 1) Olmayana Ergi Yöntemiyle İspat: p q q' p' denkliğinden yararlanarak p q yerine q' p' teoreminin ispatlanmasına olmayana ergi (karşıt ters) yöntemi ile ispat denir. Diğer bir ifadeyle hükmün olumsuzundan hareketle hipotezin Tümevarım: Özel bir önermeden genel bir önermeye doğru yapılan ispattır. Tümdengelim: Genel bir önermeden özel bir önermeye doğru yapılan ispattır. olumsuzunun elde edilmesidir. Örnek: x Z olmak üzere x 2 tek sayı ise x de tek sayıdır. Önermesinin doğruluğunu olmayana ergi yöntemiyle ispatlayalım. 8

3 Önermeler ve İspat Yöntemleri Hipotez (p): x 2 tek sayı (p q)' p q' 0 ise p q 1 olur. Buradan Hüküm (q): x tek sayı İspat: x tek sayı değilse x 2 de tek sayı değildir. x tek sayı değilse x = 2k (k Z) biçiminde bir çift sayıdır. x 2 = (2k) 2 x 2 = 4k 2 = 2. (2k 2 ) = 2n (n = 2k 2 ) olduğundan x 2 tek sayı değildir. q ' p ' : x tek sayı değilse x 2 de tek sayı değildir. önermesi doğru olduğundan p q önermesi de doğrudur. 2) Çelişki Yöntemiyle İspat: (p q)' p q' denkliğinden yararlanarak ispatlama çelişki yöntemiyle ispattır. Diğer bir ifadeyle hipotezin doğru olduğu kabul edilip hükmün olumsuzunun hipotez ile çeliştiğinin gösterilmesidir. 3x + 2 = 8 (2x ) önermesinin doğruluğu çelişki yöntemiyle ispatlanmış olur. 3) Deneme Yöntemi İle İspat: Değişkeni farklı değerler alan bir önermede, değişkenin farklı değerleri ayrı ayrı yerine yazılarak teoremin doğru olduğunun gösterilmesine deneme yöntemiyle ispat denir. Deneme yöntemiyle ispat, daha çok durum sayısı sınırlı olan önermelerde kullanılır. Sonsuz sayıda elemana sahip kümelerde birkaç durum için teoremin ispatının doğru olması gerekmez. Örnek: İki tam sayının çarpımı çift ise bu iki tam sayıdan en az biri çifttir. önermesinin doğruluğunu deneme yöntemiyle gösterelim. a, b Z olsun. I. Durum: a ve b tek tam sayı ise a.b de tek tam sayıdır. Örnek: 3x + 2 = 8 (2x ) önermesini çelişki yöntemiyle ispatlayalım. II. Durum: a tek, b çift tam sayı ise a.b de çift tam sayıdır. III. Durum: a çift, b tek tam sayı ise a.b de çift tam sayıdır. IV. Durum: a ve b çift tam sayı ise a.b de çift tam sayıdır. Tam sayılardan ikisi de tek iken çarpımın tek, en az biri çift iken çarpımın çift olduğu sonucuna deneme yöntemiyle ulaşılmış olur. Hipotez (p): 3x + 2 = 8 Hüküm (q): 2x p : 3x + 2 = 8 3x = 6 x = 2 q' : 2x + 5 = 13 önermesi x = 2 için yanlış olduğundan q' 0 ve p q' 0 (çelişki) elde edilir. 9

4 Önermeler ve İspat Yöntemleri 4) Aksine Örnek Verme Yöntemiyle İspat: Örnek: Verilen bir önermenin doğru olmadığını gösteren en az bir örnek vererek yapılan ispata aksine örnek verme yöntemiyle ispat denir. Bu yöntem genellikle p q şeklindeki bir önermenin doğru olmadığını ispatlamak için kullanılır. Örnek: a < 2 a 2 < 4 tür. Önermesi a = -3 için (-3) 2 < 4 yanlış olduğundan verilen önermenin doğru olmadığı aksine bir örnek verilerek ispatlanmış olur. NİCELEME MANTIĞI Tanım: İçerisinde en az bir değişken bulunan ve değişkenin aldığı değerlere göre doğru ya da yanlış bir hüküm bildiren ifadelere açık önerme veya önerme fonksiyonu denir. p(x), q(x),. bir değişkenli, p(x, y), q(x, y),. iki değişkenli açık önermelerdir. Açık önermeyi sağlayan değerler kümesi, açık önermenin doğruluk kümesidir. Örnek: p(x) : x N, 3x + 2 < 15 açık önermesinin doğruluk kümesini bulalım. p(x, y) : x, y N +, 2x + 3y = 24 açık önermesinin doğruluk kümesini bulalım. 2x + 3y = olduğundan doğruluk kümesi, D = (3, 6), (6, 4), (9,2) dir. NİCELEYİCİLER Tanım: Önüne geldiği elemanların miktarını belirten en az bir, her, bir tek ve hiçbir terimlerine niceleyiciler denir. 1. Evrensel Niceleyici (Her): simgesine evrensel niceleyici denir ve her diye okunur. p(x), A kümesinde tanımlı bir açık önerme olsun. x A, p(x) önermesi A nın her x elemanı için p(x) ten elde edilen önermelerin her biri için doğru ise doğru, aksi halde yanlıştır. 3x + 2 < x 3 Örnek: x N, x + 2 > 1 önermesinin doğruluk değerini bulalım. x N olduğundan doğruluk kümesi, D = 0,1,2,3,4 olarak bulunur. x + 2 > 1 açık önermesinin doğruluk kümesi N olduğundan verilen önerme doğru bir önermedir ve doğruluk değeri 1 dir. 10

5 Önermeler ve İspat Yöntemleri Örnek: x N, x + 3 > 7 Örnek: x Z, (x - 3). (2x + 1) = 0 önermesinin doğruluk değerini bulalım. önermesinin doğruluk değerini bulalım. x + 3 > 7 açık önermesinin doğruluk kümesi 5, 6, 7,. dir. Bu küme N kümesinden farklı olduğundan verilen açık önerme yanlıştır. Yani önermenin doğruluk değeri 0 dır. (x - 3). (2x + 1) = 0 önermesi x = 3 için doğru bir önerme olduğundan doğruluk değeri 1 dir. Niceleyicilerde Olumsuzlama Teorem (De Morgan): p(x), A kümesinde tanımlı bir açık önerme olsun. 2. Varlıksal Niceleyici (En az bir): simgesine i) [ x A, p(x)]' [ x A, p'(x)] varlıksal niceleyici denir ve en az bir ya da bazı diye okunur. ii) [ x A, p(x)]' [ x A, p'(x)] p(x), A kümesinde tanımlı bir açık önerme olsun. Niceleyicilerin Dağıtıcılığı x A, p(x) önermesi A nın en az bir x elemanı için p(x) ten elde edilen önerme doğru ise doğru, aksi halde yanlıştır. Teorem: p(x) ve q(x), A kümesinde tanımlı iki açık önerme olsun. i) [ x A, (p(x) q(x))] [( x A, p (x)) ( x A, q(x))] Örnek: x R, x 2 < 0 önermesinin doğruluk değerini bulalım. ii) [ x A, (p(x) q(x))] [( x A, p (x)) ( x A, q(x))] x 2 < 0 açık önermesinin doğruluk kümesi boş küme olduğundan verilen önerme yanlıştır. Yani önermenin doğruluk değeri 0 dır. 11

6 KONU TESTİ Önermeler ve İspat Yöntemleri 1. [(p q') (r q')] q A) 0 B) 1 C) p D) q E) p q' 4. p (q' r) 0 olduğuna göre, p, q, r önermelerinin doğruluk değerleri sırası ile aşağıdakilerden A) 0, 1, 0 B) 1, 1, 0 C) 1, 0, 0 D) 0, 1, 1 E) 1, 0, 1 5. [p (q (q' r))] r' 1 2. (p q) (p q') A) 1 B) p' C) p D) q' E) q olduğuna göre, aşağıdaki önermelerden hangisinin doğruluk değeri sıfırdır? A) q r B) r p C) q' p D) p q E) q p 6. p (p q) 3. (p q) (p q') ' A) p' q B) p q' C) p q' D) 0 E) 1 A) p q B) p' q C) p' q' D) p' q E) p q' 12

7 KONU TESTİ Önermeler ve İspat Yöntemleri 7. (p q)' q bileşik önermesinin değili aşağıdaki önermelerden hangisine A) p q B) p' q' C) q p D) p q E) p q 10. I. p (p q) p II. p p 1 III. p p' 1 IV. p 0 0 V. p p p Yukarıdaki bileşik önermelerden kaç tanesi doğrudur? A) 1 B) 2 C) 3 D) 4 E) Aşağıdaki önermelerden hangisi verildiğinde p q önermesinin doğruluk değeri her zaman 1 olur? A) (p q') 0 B) (q p) 1 r s C) (q' p') 0 D) (p' q) 1 E) (p' q') 0 p, q, r ve s anahtarları ile oluşturulan şekildeki elektrik devresine ait önerme aşağıdakilerden A) p (q r) s B) p (q r) s C) (p q s) r D) (p r s) q E) p [(q r) s] 9. p' (q p') bileşik önermesi için aşağıdakilerden hangisi doğrudur? A) q önermesine denktir. B) p' önermesine denktir. C) Çift gerektirmedir. D) Çelişkidir. E) Totolojidir. 12. a, b R olmak üzere, aşağıdaki önermelerden hangileri mantıksal olarak denk önermelerdir? I. a = 2 b < 5 II. a 2 b < 5 III. b 5 a 2 IV. b > 5 a = 2 A) I ve II B) I ve III C) I ve IV D) II ve III E) II ve IV 13

8 KONU TESTİ Önermeler ve İspat Yöntemleri 13. p q koşullu önermesinin olmayana ergi yöntemiyle ispatı aşağıdaki önermelerden hangisinin doğru olduğunu göstermekle yapılır? A) q p B) p' q' C) p' q D) p q' E) q p' 14. Bir doğal sayının karesi çift sayı ise kendisi de çift sayıdır. İspat: Hipotez (p) : x 2 çift sayıdır. Hüküm (q) : x çift sayıdır. q' : x çift sayı değilse x = 2k + 1 (k N) şeklinde tek sayıdır. p' : x 2 çift sayı değilse bu durumda x 2 = (2k + 1) 2 x 2 = 4k 2 + 4k + 1, (n N) 2n x 2 = 2n + 1 tek sayı olduğundan Bir doğal sayının kendisi çift sayı değilse karesi de çift sayı değildir. önermesi ispatlanmış olur. Buna göre, yukarıda yapılan ispat türü aşağıdakilerden A) Doğrudan ispat B) Olmayana ergi yöntemiyle ispat C) Çelişki yöntemiyle ispat D) Deneme yöntemiyle ispat E) Aksine örnek verme yöntemiyle ispat 16. x Z +, x 2 = 9 2x -1 7 önermesini ispatlayalım. Hipotez (p) : x 2 = 9 Hüküm (q) : 2x p : x 2 = 9 x = 3 q' : 2x -1 = 7 önermesi x = 3 için yanlış olduğundan p q' 0 olur. Buradan (p q)' 0 ise p q 1 olur. Buradan x 2 = 9 2x önermesinin doğruluğu ispatlanmış olur. Buna göre, yukarıda yapılan ispat türü aşağıdakilerden A) Doğrudan ispat B) Olmayana ergi yöntemiyle ispat C) Çelişki yöntemiyle ispat D) Deneme yöntemiyle ispat E) Aksine örnek verme yöntemiyle ispat 17. x Z, x 2-4 = 0 önermesinin olumsuzu aşağıdakilerden A) x Z, x B) x Z, x 2-4 = 0 C) x Z, x D) x Z, x 2-4 < 0 E) x Z, x 2-4 > ( x R, x 2 + 2x + 1 0) ( x R, x < -1) 15. Aşağıdak açık önermelerden hangisinin doğruluk değeri 0 dır? A) x R, x = -x B) x R, x 3 = -x C) x R, x - 1 < x x D) x R, 1 x E) x R, x 2 0 bileşik önermesinin değili aşağıdakilerden A) ( x R, x 2 + 2x + 1 < 0) ( x R, x -1) B) ( x R, x 2 + 2x + 1 < 0) ( x R, x -1) C) ( x R, x 2 + 2x + 1 < 0) ( x R, x -1) D) ( x R, x 2 + 2x + 1 > 0) ( x R, x > -1) E) ( x R, x 2 + 2x + 1 0) ( x R, x -1) CEVAP ANAHTARI 1. B 2. B 3. E 4. C 5. D 6. B 7. D 8. A 9. E 10. B 11. A 12. B 13. E 14. B 15. D 16. C 17. C 18. E 14

9 KONU TARAMI SINAVI - 1 Önermeler ve İspat Yöntemleri 1. (p q') (q p') A) p q B) p q C) p' q D) p p' E) p p' 5. ( x R, x > 1) ( x R, x 2-4x + 4 0) koşullu önermesinin değili aşağıdakilerden A) ( x R, x > 1) ( x R, x 2-4x + 4 < 0) B) ( x R, x 1) ( x R, x 2-4x + 4 < 0) C) ( x R, x 1) ( x R, x 2-4x + 4 < 0) 2. p (q r) bileşik önermesinin doğruluk tablosunda kaç tane 1 vardır? A) 3 B) 4 C) 5 D) 6 E) 7 3. p q koşullu önermesinin çelişki yöntemiyle ispatı aşağıdaki önermelerden hangisinin yanlış olduğunu göstermekle yapılır? A) p q' B) p q' C) p' q D) p' q E) p q D) ( x R, x > 1) ( x R, x 2-4x + 4 < 0) E) ( x R, x > 1) ( x R, x 2-4x + 4 < 0) 6. p (p' q) A) p q' B) p q' C) p' q D) p q E) p q 7. x, y R olmak üzere, aşağıdaki önermelerden hangileri mantıksal olarak I. x = 3 y < 4 II. x 3 y > 4 III. y < 4 x = 3 4. p : x R, x 2 > 0 q : x Z, 2x 2 - x - 1 = 0 r : x R, x x 1 önermelerinin doğruluk değerleri aşağıdakilerden A) p 1 B) p 0 C) p 0 q 1 q 1 q 1 r 1 r 0 r 1 D) p 0 E) p 1 IV. y 4 x 3 A) I ve II B) I ve III C) II ve III D) I ve IV E) II ve IV 8. I. p (p q) p II. p p 1 III. p 1 p IV. p 0 p' Yargılarından hangileri doğrudur? A) 0 B) 1 C) 2 D) 3 E) 4 q 0 q 0 r 1 r 1 CEVAP ANAHTARI 1. E 2. E 3. A 4. B 5. D 6. A 7. D 8. E 15

10 GENEL TARAMA SINAVI 1. I. p (p r) p II. p q q' p' III. p q q p IV. p q p' q' V. p p' 1 4. (p q) q A) p q' B) p' q C) p q' D) 0 E) 1 Yukarıdaki bileşik önermelerden kaç tanesi doğrudur? A) 1 B) 2 C) 3 D) 4 E) 5 5. p: x R, x 3 > x 2 q: x R, x 3 = -x r: x R, x 2 > 0 önermelerinin doğruluk değerleri aşağıdakilerin 2. p q koşullu önermesinin olmayana ergi yöntemiyle ispatı aşağıdaki önermelerden hangisinin doğru olduğunu göstermekle yapılır? A) p q' B) p' q C) p' q' D) (p q)' E) q' p' A) p 1 B) p 1 C) p 0 q 1 q 1 q 1 r 1 r 0 r 0 D) p 0 E) p 0 q 0 q 0 r 1 r 0 3. (p' q)' q' bileşik önermesi aşağıda verilen önermelerden hangisine A) p q B) p' q C) p q' D) p q E) p' q 6. I. p q önermesinin tersi q p II. p q önermesinin karşıtı p q III. p q önermesinin karşıt tersi q p yargılarından hangileri doğrudur? A) Yalnız I B) I ve III C) Yalnız III D) II ve III E) I, II ve III 58

11 GENEL TARAMA SINAVI ve 2, A kümesi üzerinde tanımlı iki bağıntı ve 1 2 olsun. I. 1 yansıyan ise 2 de yansıyandır. II. 1 simetrik ise 2 de simetriktir. III. 1 geçişken ise 2 de geçişkendir. Yargılarından hangileri daima doğrudur? A) Yalnız I B) Yalnız II C) Yalnız III D) I ve II E) I ve III 40. A, B iki küme ve A B olsun. I. A sonsuz bir küme ise B de sonsuz bir kümedir. II. B sonlu bir küme ise A da sonlu bir kümedir. III. A sonlu bir küme ise A B de sonlu bir kümedir. Yargılarından hangileri daima doğrudur? A) Yalnız I B) I ve II C) Yalnız III D) I ve III E) I, II ve III 38. A = a, b, c kümesi üzerinde değişme özelliği olan kaç farklı işlem tanımlanabilir? A) 18 B) 27 C) 162 D) 216 E) I. Asal sayılar kümesi sayılabilir sonsuz kümedir. II. Tam sayılar kümesi sayılabilir sonsuz kümedir. III. Reel sayılar kümesi sayılabilir sonsuz kümedir. ifadelerinden hangileri doğrudur? A) Yalnız I B) Yalnız II C) I ve II D) I ve III E) I, II ve III 39. Düzlemdeki d 1 ve d 2 doğruları = (d 1, d 2) d 1 d 2 bağıntısıyla veriliyor. Buna göre, I., yansıyandır. II., simetriktir. III., ters simetriktir. IV., geçişkendir. Yargılarından hangileri doğrudur? A) Yalnız II B) Yalnız III C) I ve II D) II ve IV E) III ve IV 42. A = 1, 2, 3 kümesi üzerinde = (1, 1), (2, 2), (3, 3), (1, 2), (2, 1) bağıntısı tanımlanıyor. Buna göre, 1 in denklik sınıfı aşağıdakilerden A) 1 B) 1, 2 C) 1, 3 D) 2, 3 E) 2 CEVAP ANAHTARI 1. D 2. E 3. B 4. A 5. C 6. C 7. D 8. E 9. C 10. B 11. E 12. A 13. E 14. E 15. B 16. C 17. B 18. E 19. D 20. A 21. A 22. C 23. D 24. C 25. A 26. B 27. E 28. C 29. B 30. E 31. E 32. E 33. C 34. A 35. B 36. E 37. A 38. E 39. A 40. E 41. C 42. B 64

Matematik Ders Föyü. Uygulayalım. Terim. Önerme. Doğruluk Değeri. Ortaöğretim Alanı MF - 01 NOT NOT. 1. Aşağıdaki tabloyu tanımlı veya tanımsız

Matematik Ders Föyü. Uygulayalım. Terim. Önerme. Doğruluk Değeri. Ortaöğretim Alanı MF - 01 NOT NOT. 1. Aşağıdaki tabloyu tanımlı veya tanımsız Ortaöğretim Alanı MF - 01 Matematik Ders Föyü Terim Bir sözcüğün bilim, spor, sanat, meslek vb. içerisinde kazandığı özel anlama terim denir. NOT Küp Matematik Ova Coğrafya Asit Kimya Mercek Fizik Sol

Detaylı

Matematik Ders Föyü. Uygulayalım. Terim. Önerme. Doğruluk Değeri. Ortaöğretim Alanı MF - 01 NOT NOT. 1. Aşağıdaki tabloyu tanımlı veya tanımsız

Matematik Ders Föyü. Uygulayalım. Terim. Önerme. Doğruluk Değeri. Ortaöğretim Alanı MF - 01 NOT NOT. 1. Aşağıdaki tabloyu tanımlı veya tanımsız Ortaöğretim Alanı MF - 01 Matematik Ders Föyü Terim Bir sözcüğün bilim, spor, sanat, meslek vb. içerisinde kazandığı özel anlama terim denir. NOT Küp Matematik Ova Coğrafya Asit Kimya Mercek Fizik Sol

Detaylı

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER MANTIK MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER İçerisinde değişken olan ve değişkenin değerlerine göre doğru ya da yanlış olabilen önermelere açık önerme denir. Açık önermeler değişkenine göre P( x), Q( a)

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 1.KONU Sembolik Mantık; Önermeler, Niceyiciler, Olumsuzluk, İspat yöntemleri KAYNAKLAR 1. Akkaş, S., Hacısalihoğlu, H.H., Özel, Z., Sabuncuoğlu, A.,

Detaylı

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler . ÜNİTE: MANTIK . ÜNİTE: MANTIK... Önerme Tanım (Önerme) BÖLÜM.. - Doğru ya da yanlış kesin bir hüküm bildiren ifadelere önerme adı veriler. Örneğin Bir hafta 7 gündür. (Doğru) Eskişehir Türkiye'nin başkentidir.

Detaylı

LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ

LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ 1 ÖNERMELER Kesin olarak doğru ya da yanlış hüküm bildiren ifadelere önerme denir. Önermeler p ve q gibi harflerle ifade edilirler.bir önerme doğru ise, doğruluk değeri

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. w w w. m a t b a z. c o m ÖNERMELER- BİLEŞİK ÖNERMELER

Örnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. w w w. m a t b a z. c o m ÖNERMELER- BİLEŞİK ÖNERMELER Terim: Bir bilim dalı içerisinde konuşma dilinden farklı anlamı olan sözcüklerden her birine o bilim dalının bir terimi denir. Önermeler belirtilirler. p,q,r,s gibi harflerle Örneğin açı bir geometri terimi,

Detaylı

Saygın KIRILMAZ, Tolga TANIŞ, Simay AYDIN

Saygın KIRILMAZ, Tolga TANIŞ, Simay AYDIN YAYIN KURULU Hazırlayanlar Saygın KIRILMAZ, Tolga TANIŞ, Simay AYDIN YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM Kurumsal Yayınlar Birimi Dizgi & Grafik Mustafa Burak SANK &

Detaylı

KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR

KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR Kümeler Koşullu ve Mantıksal Denklik Kümeler Kümeler Ayrık Kümeler De-Morgan Kuralı Z (Zahlen; alm.) tamsayılar kümesi Z negatif tamsayılar kümesi, Z nonneg

Detaylı

MANTIK. 3. p 0, q 1 ve r 1 iken aşağıdaki önermelerin doğruluk değerlerini bulunuz. p q q. q b. ( ) ' c. ( p q) r

MANTIK. 3. p 0, q 1 ve r 1 iken aşağıdaki önermelerin doğruluk değerlerini bulunuz. p q q. q b. ( ) ' c. ( p q) r MANTIK 1. p : Ali esmerdir., q : Ali bir avukattır. Önermeleri verildiğine göre, sembolik olarak gösterilen aşağıdaki ifadeleri yazıya çeviriniz. a. p b. p q c. p q d. p q e. p q. p 1 ve q iken aşağıdaki

Detaylı

MATEMATİK ADF. Önermeler - I ÜNİTE 1: MANTIK. Önerme. örnek 2. Bir önermenin değili (olumsuzu) örnek 3. Doğruluk Tablosu. örnek 1.

MATEMATİK ADF. Önermeler - I ÜNİTE 1: MANTIK. Önerme. örnek 2. Bir önermenin değili (olumsuzu) örnek 3. Doğruluk Tablosu. örnek 1. MATEMATİK ÜNİTE 1: MANTIK Önermeler - I ADF 01 Önerme Doğru ya da yanlış kesin bir hüküm bildiren ifadelere... denir. R Doğru hüküm bildiren önermeye..., Yanlış hüküm bildiren önermeye... denir. R Önermelerin

Detaylı

Sunum ve Sistematik 1. BÖLÜM: ÖNERMELER

Sunum ve Sistematik 1. BÖLÜM: ÖNERMELER Sunum ve Sistematik. ÜNİTE: MANTIK KONU ÖZETİ Bu başlık altında, ünitenin en can alıcı bilgileri, kazanım sırasına göre en alt başlıklara ayrılarak hap bilgi niteliğinde konu özeti olarak sunulmuştur..

Detaylı

harfi almanca kökenli (Zahlen) Z X bir sonlu küme ise, X = X deki öğelerin sayısını gösterir

harfi almanca kökenli (Zahlen) Z X bir sonlu küme ise, X = X deki öğelerin sayısını gösterir BÖLÜM 1 Kümeler harfi almanca kökenli (Zahlen) Z X bir sonlu küme ise, X = X deki öğelerin sayısını gösterir Tanım 1.1.1: X ve Y herhangi iki küme olsunlar. Eğer X Y= ise, X ve Y kümelerine ayrıktırlar

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

YAYINLARI. ISBN:

YAYINLARI.   ISBN: YAYINLARI www.alpaslanceran.com.tr ISBN: - - - - Bu kitabın tamamının ya da bir kısmının, kitabı yayınlayan şirketin önceden izni olmaksızın elektronik, mekanik, fotokopi ya da herhangi bir kayıt sistemi

Detaylı

Normal Alt Gruplar ve Bölüm Grupları...37

Normal Alt Gruplar ve Bölüm Grupları...37 İÇİNDEKİLER Ön Söz...2 Gruplar...3 Alt Gruplar...9 Simetrik Gruplar...13 Devirli Alt Gruplar...23 Sol ve Sağ Yan Kümeler (Kosetler)...32 Normal Alt Gruplar ve Bölüm Grupları...37 Grup Homomorfizmaları...41

Detaylı

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır.

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır. Sevgili Öğrenciler, Matematik ilköğretimden üniversiteye kadar çoğu öğrencinin korkulu rüyası olmuştur. Buna karşılık, istediğiniz üniversitede okuyabilmeniz büyük ölçüde YGS ve LYS sınavlarında matematik

Detaylı

İÇİNDEKİLER. Mantık Kurallarının Elektrik Devrelerine Uygulanması... 14

İÇİNDEKİLER. Mantık Kurallarının Elektrik Devrelerine Uygulanması... 14 İÇİNDEKİLER 1. BÖLÜM MANTIK Giriş... 1 Genel Olarak Mantık... 1 Mantığın Tarihçesi ve Modern Mantığın Doğuşu... 1 Mantık Öğretimin Önemi ve Amacı... 2 Önerme... 3 VE İşlemi (Birlikte Evetleme, Mantıksal

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b Bölüm 1 Temel Kavramlar Bu bölümde bağıntı ve fonksiyon gibi bazı temel kavramlar üzerinde durulacak, tamsayıların bazı özellikleri ele alınacaktır. Bu çalışma boyunca kullanılacak bazı kümelerin gösterimleri

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

ÜNİVERSİTEYE HAZIRLIK 9. SINIF OKULA YARDIMCI KONU ANLATIMLI SORU BANKASI MATEMATİK MANTIK - KÜMELER

ÜNİVERSİTEYE HAZIRLIK 9. SINIF OKULA YARDIMCI KONU ANLATIMLI SORU BANKASI MATEMATİK MANTIK - KÜMELER ÜNİVERSİTEYE HAZIRLIK 9. SINIF OKULA YARDIMCI KONU ANLATIMLI SORU BANKASI MATEMATİK MANTIK - KÜMELER ÜNİVERSİTEYE HAZIRLIK 9. SINIF OKULA YARDIMCI KONU ANLATIMLI SORU BANKASI ISBN 978 605 2273-66 - Editörler

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: ve iki grup ve f : G H bir fonksiyon

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

1 BAĞINTILAR VE FONKSİYONLAR

1 BAĞINTILAR VE FONKSİYONLAR 1 BAĞINTILAR VE FONKSİYONLAR Bu bölümde ilk olarak Matematikte çok önemli bir yere sahip olan Bağıntı kavramnı verip daha sonra ise Fonksiyon tanımı verip genel özelliklerini inceleyeceğiz. Tanım 1 A B

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak 7. Bölüm Grupları olmak üzere grubunu nasıl inşa ettiğimizi hatırlayalım. grubunun alt grubu grubu tüm olacak şekilde tüm sınıflardan oluşmuştur. Sınıfların toplamını ile, yani ile tanımlamıştık. Şimdi

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

A { x 3 x 9, x } kümesinin eleman sayısı A { x : x 1 3,x } kümesinin eleman sayısı KÜMELER

A { x 3 x 9, x } kümesinin eleman sayısı A { x : x 1 3,x } kümesinin eleman sayısı KÜMELER KÜMELER Küme, nesnelerin iyi tanımlanmış bir listesidir. Kümeyi oluşturan nesnelerin her birine kümenin elemanı denir. Kümeler genellikle A, B, C,... gibi büyük harflerle gösterilir. x nesnesi A kümesinin

Detaylı

İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı...

İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı... İÇİNDEKİLER Ön Söz... Saymanın Temel Kuralları... Permütasyon (Sıralama)... 8 Kombinasyon (Gruplama)... 6 Binom Açılımı... Olasılık... 9 İstatistik... 8... Dağılımlar... 5 Genel Tarama Sınavı... 6 RASTGELE

Detaylı

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. Tanım 2.2. boş olmayan bir küme olsun. ile den üzerine bire-bir fonksiyonlar kümesini

Detaylı

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır. 1. GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir., ) cebirsel 1) a b cg,, için a( bc) ( ab) c (Birleşme özelliği)

Detaylı

ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK 3 BİLİM GRUBU ÇERÇEVE PROGRAMI

ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK 3 BİLİM GRUBU ÇERÇEVE PROGRAMI ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK 3 BİLİM GRUBU ÇERÇEVE PROGRAMI 1.KURUM ADI: Özel Çorum Ada Özel Öğretim Kursu 2. KURUMUN ADRESİ: Yavruturna Mah. Kavukçu Sok. No:46/A ÇORUM/MERKEZ 3. KURUCUNUN

Detaylı

MATEMATİK BİLİM GRUBU III KURS PROGRAMI

MATEMATİK BİLİM GRUBU III KURS PROGRAMI MATEMATİK BİLİM GRUBU III KURS PROGRAMI 1.Kurumun Adı 2.Kurumun adresi 3.Kurucunun Adı 4.Programın Adı : OĞUZHAN ÖZKAYA ÖZEL ÖĞRETİM KURSU : Onur Mahallesi Leylak Sok.No:9 Balçova-İzmir : Oğuzhan Özkaya

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

YZM 3217 YAPAY ZEKA DERS#6: MANTIK

YZM 3217 YAPAY ZEKA DERS#6: MANTIK YZM 3217 YAPAY ZEKA DERS#6: MANTIK Önermeler Doğru veya yanlış değer alabilen ifadelerdir Bir önerme hem doğru hem de yanlış olamaz Bir önerme kısmen doğru yada kısmen yanlış olamaz Örnekler: Dünya yuvarlaktır.

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

Önermeler mantığındaki biçimsel kanıtlar

Önermeler mantığındaki biçimsel kanıtlar Önermeler mantığındaki biçimsel kanıtlar David Pierce 26 Aralık 2011, saat 11:48 Bu yazının ana kaynakları, Burris in [1] ve Nesin in [4] kitapları ve Foundations of Mathematical Practice (Eylül 2010)

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK BM202 AYRIK İŞLEMSEL YAPILAR Yrd. Doç. Dr. Mehmet ŞİMŞEK Önermelerin Eşdeğerlikleri Section 1.3 Totoloji, Çelişkiler, ve Tesadüf Bir totoloji her zaman doğru olan bir önermedir. Örnek: p p Bir çelişki

Detaylı

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun. 11. Cauchy Teoremi ve p-gruplar Bu bölümde Lagrange teoreminin tersinin doğru olduğu bir özel durumu inceleyeceğiz. Bu teorem Cauchy tarafından ispatlanmıştır. İlk olarak bu teoremi sonlu değişmeli gruplar

Detaylı

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c 0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade

Detaylı

CEBİR ÇÖZÜMLÜ SORU BANKASI

CEBİR ÇÖZÜMLÜ SORU BANKASI ÖABT CEBİR ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT CEBİR ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni olmaksızın, elektronik, mekanik, fotokopi ya da herhangi

Detaylı

10. DİREKT ÇARPIMLAR

10. DİREKT ÇARPIMLAR 10. DİREKT ÇARPIMLAR Teorem 10.1. H 1,H 2,, H n bir G grubunun alt gruplarının bir ailesi ve H = H 1 H 2 H n olsun. Aşağıdaki ifadeler denktir. a ) dönüşümü altında dır. b) ve olmak üzere her yi tek türlü

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

1 MATEMATİKSEL MANTIK

1 MATEMATİKSEL MANTIK 1 MATEMATİKSEL MANTIK Bu bölümde ilk olarak önerne tanımıverilip ispatlarda kullanılan düşünce biçimi incelenecektir. Tanım 1 Bir hüküm bildiren ve hakkında doğru veya yanlış denilmesi anlamlı olan ifadelere

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Kümeler Yük. Müh. Köksal GÜNDOĞDU 2 Kümeler Kümeler Ayrık Matematiğin en temel konularından biridir Sayma problemleri için önemli Programlama dillerinin

Detaylı

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz. Bölüm 3 Gruplar Bu bölümde ilk olarak bir küme üzerinde tanımlı işlem kavramını ele alıp işlemlerin bazı özelliklerini inceleyeceğiz. Daha sonra kümeler ve üzerinde tanımlı işlemlerden oluşan cebirsel

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

9SINIF MATEMATİK. Mantık Kümeler

9SINIF MATEMATİK. Mantık Kümeler 9SINIF MATEMATİK Mantık Kümeler YAYIN KOORDİNATÖRÜ Oğuz GÜMÜŞ EDİTÖR Hazal ÖZNAR - Uğurcan AYDIN DİZGİ Muhammed KARATAŞ SAYFA TASARIM - KAPAK F. Özgür OFLAZ Eğer bir gün sözlerim bilim ile ters düşerse,

Detaylı

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI 11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI Programın öğrencilerde geliştirmeyi hedeflediği becerilerle 11. sınıf matematik öğretim programı ilişkisi Modelleme/Problem çözme Matematiksel Süreç

Detaylı

II. DERECEDEN DENKLEMLER Test -1

II. DERECEDEN DENKLEMLER Test -1 II. DERECEDEN DENKLEMLER Test -. 5 {, 5} {, 5} { 5, } {, 5} {, 5} 5. 5 {,, } {,, } {,, } {,, } {,, }.. 5 7 7 5 5,, 5 5, 5 5, 5 5, 6. 7. 5 95 { 5,, } {,, 5} { 5,, 9} {,, 5} { 9,, 5} 6 66 {, } {,, } {,,

Detaylı

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon İçindekiler Cebir 1. Fonksiyonlar....... 1.1 Fonksiyonların Tanım, Değer ve Görüntü Kümesi...... 1.1.1 Fonksiyon.. 1.1. Görüntü Kümesi... 1.1.3 Eşit Fonksiyonlar. 1.1.4 Fonksiyonun Gösterimi. 1.1.4.1 Liste

Detaylı

7. Aşağıda verilen önermelerin değillerini yazınız. a. p: Bazı aylar 30 gündür. p : Bazı aylar 30 gün değildir.

7. Aşağıda verilen önermelerin değillerini yazınız. a. p: Bazı aylar 30 gündür. p : Bazı aylar 30 gün değildir. ADIM 0. Aşağıdaki ifadelerin bir önerme olup olmadığını belirtiniz. a. Asal sayıların hepsi tek sayıdır. önerme b. Türkiye 7 farklı coğrafi bölgeden oluşur. önerme c. Çay içmeye gelen var mı? önerme değil.

Detaylı

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom:

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom: Matematik A A ile B nin Kartezyen Çarpımı: Birinci bileşeni A dan, ikinci bileşeni B den alınarak elde edilen ikililerin kümesidir. A Kümesinden B nin Farkı: A kümesinin B kümesi ile ortak olmayan elemanlarından

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel

Detaylı

ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri

ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri ÇÖZÜMLER p q r q q p r q q. p r q q p r 5. p q q r r r, p q q r, r p, q q r q, q p q. p q p q p q p q p q q p p 6. p p q p p q p q p p p q

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

SINIFLARA GÖRE ALGILARININ KARŞILAŞTIRILMASI

SINIFLARA GÖRE ALGILARININ KARŞILAŞTIRILMASI ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI 2014-DP-002- ORTA ÖĞRETİMDE CEBİRSEL SOYUT KAVRAMLARIN GELİŞİMİ VE ÖĞRENCİLER TARAFINDAN SINIFLARA GÖRE ALGILARININ KARŞILAŞTIRILMASI

Detaylı

Sembolik gösterim matematiğin yarısıdır. Bertrand Russef

Sembolik gösterim matematiğin yarısıdır. Bertrand Russef MANTIK İnsanlık, tarihi boyunca doğru düşünmenin ve doğru sonuca ulaşmanın yol ve yöntemlerini araştırmıştır. Bu araştırmalar sonucunda farklı sistematik yaılar oluşmuştur. Oluşan sistematik yaıların başında

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Kümeler Cebiri 5 1 Kümeler Cebiri 1 Doğa olaylarının ya da sosyal olayların açıklanması için,

Detaylı

Leyla Bugay Doktora Nisan, 2011

Leyla Bugay Doktora Nisan, 2011 ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Doktora 2010913070 Nisan, 2011 Yarıgrup Teorisi Nedir? Yarıgrup teorisi cebirin en temel dallarından biridir. Yarıgrup terimi ilk olarak 1904

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

6. Ders. Mahir Bilen Can. Mayıs 16, 2016 6. Ders Mahir Bilen Can Mayıs 16, 2016 Bu derste lineer cebirdeki bazı fikirleri gözden geçirip Lie teorisine uygulamalarını inceleyeceğiz. Bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

Bu kitabın tüm basım ve yayın hakları Ömer ALSAN a. aittir. Kısmen de olsa alıntı yapılamaz. Metin ve sorular,

Bu kitabın tüm basım ve yayın hakları Ömer ALSAN a. aittir. Kısmen de olsa alıntı yapılamaz. Metin ve sorular, Bu kitabın tüm basım ve aın hakları Ömer ALSAN a aittir. Kısmen de olsa alıntı apılamaz. Metin ve sorular, Ömer ALSAN ın önceden izni olmaksızı n elektronik, mekanik, fotokopi a da herhangi bir kaıt sistemile

Detaylı

L İ S E S İ MATEMATİK. Kümeler. Üzerine Kısa Çalışmalar

L İ S E S İ MATEMATİK. Kümeler. Üzerine Kısa Çalışmalar MTEMTİK T T Ü R K N D O L U L İ S E S İ M T E M T İ K Üzerine Kısa Çalışmalar KONY \ SELÇUKLU 017 MTEMTİK KÜMELER (CÜMLELER).1 Küme (Cümle) Kavramı Matematiğin dili mantıktır., matematiğin kendisini anlatabilmesini

Detaylı

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1 SOYUT CEBÝR ( Genel Tekrar Testi-1) 1. A = { k k Z, < k 4 } 4. N tam sayılar kümesinde i N için, k 1 B = { k Z, 1 k < 1 } k 1 A = 1 i,i 1 i ( ] kümeleri verildiğine göre, aşağıdakilerden hangisi doğrudur?

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

İÇİNDEKİLER ÖNERMELER BİLEŞİK ÖNERMELER AÇIK ÖNERMELER İSPAT YÖNTEMLERİ

İÇİNDEKİLER ÖNERMELER BİLEŞİK ÖNERMELER AÇIK ÖNERMELER İSPAT YÖNTEMLERİ - MANTIK İÇİNDEKİLER Safa No Test No ÖNERMELER...-... - BİLEŞİK ÖNERMELER...-... -6 AÇIK ÖNERMELER...-6... 7-8 İSPAT YÖNTEMLERİ...7-8... 9-9 - KÜMELER KÜMELERDE TEMEL KAVRAMLAR...9-4... - KÜMELERDE İŞLEMLER...5-6...

Detaylı

Ayrık İşlemsel Yapılar

Ayrık İşlemsel Yapılar BÜLENT ECEVİT ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Ayrık İşlemsel Yapılar Hafta 3 Yrd. Doç.Dr. Nihat PAMUK 1 Mantık, Kümeler ve Fonksiyonlar 2.1 Mantık ve Önerme Çağdaş mantığın ve çağdaş felsefenin

Detaylı

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Đşlem ĐŞLEM A ve A x A nın bir alt kümesinden A ya her fonksiyona ikili işlem denir. Örneğin toplama, çıkarma, çarpma birer işlemdir. Đşlemler

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ 1. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için

Detaylı

YZM 3217 YAPAY ZEKA DERS#6: MANTIK

YZM 3217 YAPAY ZEKA DERS#6: MANTIK YZM 3217 YAPAY ZEKA DERS#6: MANTIK Önermeler Doğru veya yanlış değer alabilen ifadelerdir Bir önerme hem doğru hem de yanlış olamaz Bir önerme kısmen doğru yada kısmen yanlış olamaz Örnekler: Dünya yuvarlaktır.

Detaylı

EĞİTİM ÖĞRETİM YILI. FEN LİSESİ 9.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 9.SINIF KAZANIM VE SÜRE TABLOSU

EĞİTİM ÖĞRETİM YILI. FEN LİSESİ 9.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 9.SINIF KAZANIM VE SÜRE TABLOSU 08 09 EĞİTİM ÖĞRETİM YILI. FEN LİSESİ 9.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 9.SINIF KAZANIM VE SÜRE TABLOSU No Konular Kazanım sayısı Ders Saati Ağırlık (%) SAYILAR VE CEBİR 9. MANTIK 8

Detaylı

7. BAZI MATEMATİKSEL TEMELLER:

7. BAZI MATEMATİKSEL TEMELLER: 7. BAZI MATEMATİKSEL TEMELLER: Bilindiği üzere, matematikte ortaya konan her yeni kavram, kendinden önceki tanımlanmış kavramlar cinsinden, herhangi bir tereddüt veya muğlâklığa mahal bırakmayacak resmî

Detaylı

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde 1. Aşağıdaki kümelerden hangisi sonsuz küme belirtir? A) A = { x 4 < x < 36,x N} B) B = { x 19 < x,x asal sayı} C) C = { x x = 5k,0 < x < 100,k Z} D) D = { x x = 5, x Z} E) E = { x x < 19,x N}. A, B ve

Detaylı

A.Adnan Saygun Caddesi 10/1 Sıhhiye/ANKARA Tel: 312 433 37 57 433 25 49 Faks: 433 52 72 e-mail: nitelikyayincilik@gmail.com

A.Adnan Saygun Caddesi 10/1 Sıhhiye/ANKARA Tel: 312 433 37 57 433 25 49 Faks: 433 52 72 e-mail: nitelikyayincilik@gmail.com I Bu set 5846 sayılı yasanın hükümlerine göre kısmen ya da tamamen basılamaz, dolaylı dahi olsa kullanılamaz; teksir, fotokoi ya da başka bir teknikle çoğaltılamaz. Her hakkı saklıdır, NİTELİK YAYINCILIK

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

9. SINIF MATEMATİK KONU ÖZETİ

9. SINIF MATEMATİK KONU ÖZETİ 2012 9. SINIF MATEMATİK KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: MANTIK İnsan diğer canlılardan ayıran en önemli özelliklerden biri düşünebilme yeteneğidir. Bireyler karşılaştıkları günlük

Detaylı

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir.

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. Tanım 2.2. X boş olmayan bir küme olsun. S X ile X den X e tüm birebir örten fonksiyonlar

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 İyi Sıralama 5 Bibliography 13 1 İyi Sıralama Well Ordering İyi sıralama kavramı, doğal sayıların

Detaylı

ORTAÖĞRETİM MATEMATİK DERS KİTABI

ORTAÖĞRETİM MATEMATİK DERS KİTABI ORTAÖĞRETİM MATEMATİK 9. SINIF DERS KİTABI Bu kitap, Millî Eğitim Bakanlığı, Talim ve Terbiye Kurulu Başkanlığı nın 08..0 tarih ve sayılı kurul kararıyla 0-0 öğretim yılından itibaren (beş) yıl süreyle

Detaylı

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ DERS: CEBİRDEN SEÇME KONULAR KONU: KARDİNAL SAYILAR ÖĞRETİM GÖREVLİLERİ: PROF.DR. NEŞET AYDIN AR.GÖR. DİDEM YEŞİL HAZIRLAYANLAR: DİRENCAN DAĞDEVİREN ELFİYE ESEN

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

Önermeler. Önermeler

Önermeler. Önermeler Önermeler ers 1 1-1 Önermeler 1-2 1 Önerme Mantığı ve İspatlar Mantık önermelerin doğruluğunu kanıtlamak için kullanılır. Önermenin ne olduğu ile ilgilenmek yerine bazı kurallar koyar ve böylece önermenin

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

Olasılık Kuramı ve İstatistik. Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları

Olasılık Kuramı ve İstatistik. Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları Olasılık Kuramı ve İstatistik Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları OLASILIK Olasılık teorisi, raslantı ya da kesin olmayan olaylarla ilgilenir. Raslantı

Detaylı

T Y T MATEMATİK DENEMESİ ANTRENMAN SERİSİ

T Y T MATEMATİK DENEMESİ ANTRENMAN SERİSİ T Y T MATEMATİK DENEMESİ ANTRENMAN SERİSİ A N T R E N M A N S E R İ S İ 2 u denemeler öğretmen ve öğrencilerin ücretsiz indirerek kullanmaları için ANTRENMAN YAYINCILIK web sitesinde yayınlanmıştır. İçeriğinin

Detaylı

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir. Sunum ve Sistematik 1. BÖLÜM: POLİNOMLAR ALIŞTIRMALAR Bu başlık altında her bölüm kazanımlara ayrılmış, kazanımlar tek tek çözümlü temel alıştırmalar ve sorular ile taranmıştır. Özellikle bu kısmın sınıf

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3 1.3. Kompleks Düzlemin Topolojisi Tanım 1. D ε (z 0 ) = {z C : z z 0 < ε} kümesine z 0 ın bir ε komşuluğu denir. Tanım 2. Bir A C kümesi verilsin. z 0 ın sadece A nın elemanlarından oluşan bir komşuluğu

Detaylı