Genetik Algoritmalar (GA) Genetik Algoritmalar Đçerik Nesin Matematik Köyü E rim Ç lı l ş ı ta t yı Nisan, 2012 Mustafa Suphi Erden

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Genetik Algoritmalar (GA) Genetik Algoritmalar Đçerik Nesin Matematik Köyü E rim Ç lı l ş ı ta t yı Nisan, 2012 Mustafa Suphi Erden"

Transkript

1 Genetik Algoritmalar Nesin Matematik Köyü Evrim Çalıştayı Nisan, 202 Genetik Algoritmalar (GA Đçerik Biyolojiden esinlenme GA nın özellikleri GA nın unsurları uygulama Algoritma Şema teoremi Mustafa Suhi Erden Robotik uygulama 2 32 Biyolojik Evrimden Esinlenmeler GA doğal evrimden esinlenerek modellenen olasılıksal algoritmalar Kalıtım 2 Hayatta kalma savaşımı C. Darwin (859, Türlerin Kökeni doğal seçilim G. Mendel (865 kalıtım T. Morgan (933 genlerin kromozomlarla taşınması J. Holland (975 genetik algoritmalar GA nın Özellikleri Bir çeşit eniyileme (otimizasyon algoritması Genel amaçlı (neredeyse her orbleme uygulanır Çözüm kümesinin farklı bölgelerinde çok koldan arama-tarama yaar Yakalanan iyi çözümleri bir sonraki adımlara aktarır Sınanmak üzere yeni çözüm adayları yaratır Çarazlama bilgi aktarımı Mutasyon çeşitlilik Seçilim en iyiyi alma

2 GA nın Unsurları Uygulama Genetik kodlama 2 Başlangıç oülasyonu 3 Ölçme fonksiyonu 4 Üretme 5 Genetik oerasyonlar 6 Parametreler (oülasyon büyüklüğü, genetik oerasyonların gerçekleşme olasılığı, vb Fonksiyonun en yüksek değerini bulma f ( x = + xsin(0πx x [, 2] f x 6 32 Kodlama Kromozomlar bir-sıfır dizileri (ikilik sistem Aralık ([-, 2] aralığında noktadan sonra 6 hane (2 ( < 3.0 < 22 haneli kromozomlar 6 2 = 3.0 v = ( => x = v = ( => x = v = ( => x = Başlangıç oülasyonu rasgele -0 lardan oluşmuş kromozomlar Ölçme fonksiyonu v f (x v=( x= => ölç (v = f ( = Üretme Rulet seçilimi Seçilme olasılığı: kromozomun değerinin oülasyondaki bütün kromozomların değerlerinin tolamına oranı

3 Rulet Seçilimi Her bir kromozomun değeri v i Poülasyondaki bütün kromozomların değeri F = o _ büy i= v i Her bir kromozomun seçilme olasılığı vi i = F Her kromozom için kümülatif olasılık q i = j j= Rasgele üretilen bir sayı i r [0,] r q ise ilk kromozom seçilir, değilse q < r olacak şekilde i-inci kromozom seçilir i q i Genetik Oerasyonlar Çarazlama ( c Çarazlama için c olasılıkla rasgele kromozomlar seçilir v = ( v 2 = ( v = ( v 2 = ( Mutasyon ( m Poülasyondaki kromozomların genleri m olasılıkla değiştirilir v = ( v = ( Parametreler Poülasyon büyüklüğü: o_büy = 50 Çarazlanma olasılığı: c = 0.25 Mutasyon olasılığı: m = 0.0 Sonuç 50 jenerasyondan sonraki en iyi sonuç: v max = ( x max = f(x max = Jenerasyon sayısı Ölçüm değeri f x

4 Genetic ALGORĐTMA Başlangıç oülasyonunu belirle: P(, t=0 2 Ölçüm ya: ölçüm { P( } 3 Durma koşulu sağlandıysa 7. adıma git 4 Üretme ya: P( den P(t+ i üret 5 Değişim uygula: P(t+ i değiştir 6 2. adıma git 7 Dur Nasıl Oluyor da GA Đşe Yarıyor? John Holland ın Şema Teoremi (975 Şema benzer gen dizilimlerini temsil eden kalı : (**0000 ( (00000 (00000 (0000 Farketmez işareti (* * dışındaki bütün genlerin aynı olması gerekli Şema nın Özellikleri Derece: d( Şemadaki 0 ve lerin tolam sayısı (Mutasyon dan etkilenme şansını belirler S = ( * * * * 0 * * 0 * d( = 3 Uzunluk: u( Đlk ve son gen işareti arasındaki uzunluk (Çarazlamadan etkilenme şansını belirler Değer: S = (* * * * 0 * * 0 * u( = 9 5 = 4 Şemaya uygun bütün dizilimlerin ortalama değeri değ( = i= ölç ( v i Şema nın Üretimi (Seçilim t anında şemaya uyan kromozom sayısı ξ (. t+ anında şemaya uyan kromozom sayısının beklenen değeri ξ ( t+ =ξ( F ( ort Şema çoğalma denklemi (seçilim Ortalamanın üstünde değeri olan şemalar bir sonraki jenerasyonda sayıları artar Ortalamanın altında değeri olan şemalar bir sonraki jenerasyonda sayıları azalır

5 Çarazlamanın Etkisi S = ( * * * * 0 0 * * * * * * S 2 = ( * * * * * * * * ** 0 Çarazlama sonucu S 2 nin bozulma olasılığı daha fazla Çarazlama noktası Bozulma olasılığı Korunma olasılığı ( m farklı nokta (m: kromozom uzunluğu u( b ( S = ( m u( k ( = b( = ( m Şema çoğalma denklemi (seçilim ve çarazlama ξ( t+ ξ( F ( ort c δ ( m Mutasyonun Etkisi Şemanın korunma olasılığı d ( S s( = ( m d( Şema çoğalma denklemi (seçilim, çarazlama, mutasyon u( ξ ( S, t ξ ( c d(. F ( m + m ort Ortalamanın üstünde değeri olan, kısa ve küçük dereceli şemalar yeni jenerasyonlarda artan oranlarla temsil edilir. m Şema Teoremi Kısa, düşük dereceli ve ortalamanın üstünde değeri olan şemalar genetik algoritma ile üretilen yeni jenerasyonlarda artan oranlarda temsil edilir. Yaıtaşları Hiotezi: Bir genetik algoritma, yaıtaşı olarak adlandırılabilecek kısa, düşük dereceli ve yüksek değerli şemaları yanyana getirerek çalışır. Genetik Programlama: Bir başarı öyküsü 5 uygulamada: 20.yy da atentlenmiş bir buluş yeniden üretildi ya da atenti ihlal eden bir sonuç bulundu 6 uygulamada: Ocak 2000 den sonra atentlenmiş bir buluş yeniden üretildi ya da atenti ihlal eden bir sonuç bulundu 2 uygulamada: Patentlenebilir bir sonuç elde edildi (Kontrolcü tasarımı uygulamaları (Koza ve Poli

6 Uygulama: Genetik Algoritma ile Bulanık Mantık Kontrolcüsü Tasarımı Insan-Robot Sistemi ĐNSAN ROBOT Kontrol Sistemi Bulanık Mantık Kontrolcüleri OMUZ KONTROLCÜSÜ OMUZ açısı beta Hedefe x yönünde uzaklık dx OMUZ açısının hızı ws Hedefe y yönünde uzaklık dy

7 Amaç: En kısa yol, en kısa süre, en az enerji Genetik Kodlama En kısa yoldan fark Đlk üyelik fonksiyonu için Son üyelik fonksiyonu için Sonuç Sonuç Önce OMUZ açısı beta Hedefe x yönünde uzaklık dx OMUZ açısının hızı ws Önce Sonra Genetik Algoritma Sonrası Hedefe y yönünde uzaklık dy

8 Sonuç Videolar Video_0 Video_ Referanslar Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, Sringer-Verlag, 992. Koza, J.R., Genetic Programming, MIT Press, 992. Đlginiz için teşekkürler... Koza, J.R. And Poli, R., 2003, A genetic rogramming tutorial, in Introductory Tutorials in Otimization, Search and Decision Suort, ed. by Edmond Burke, Chater 8. Holland, J. H., Adatation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, Michigan, 975. Erden, M.S., Leblebicioğlu, K., Halıcı, U., Multi-agent system based fuzzy controller design with genetic tuning for a service mobile maniulator robot in the hand-over task. Journal of Intelligent and Robotic Systems, 38:

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Genetik Algoritma (Genetic Algorithm) Doç.Dr. M. Ali Akcayol Genetik Algoritma 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ

GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ VI. Ulusal Temiz Enerji Sempozyumu UTES 2006 25 27 Mayıs 2006, Isparta Sf.756 764 GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ Nida Nurbay ve Ali Çınar Kocaeli Üniversitesi Tek. Eğt. Fak. Makine

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

Google Maps ve Genetik Algoritmalarla GSP Çözümü İçin Öneri

Google Maps ve Genetik Algoritmalarla GSP Çözümü İçin Öneri Google Maps ve Genetik Algoritmalarla GSP Çözümü İçin Öneri Onur KARASOY 1, Serkan BALLI 2 1 Muğla Sıtkı Koçman Üniversitesi Bilgi İşlem Dairesi Başkanlığı 2 Muğla Sıtkı Koçman Üniversitesi Bilişim Sistemleri

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI

GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI ÖZEL EGE LĠSESĠ GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI HAZIRLAYAN ÖĞRENCĠLER: Berkin ĠNAN Doğa YÜKSEL DANIġMAN ÖĞRETMEN: Aslı ÇAKIR ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI. 3

Detaylı

RASSAL SAYI ÜRETİLMESİ

RASSAL SAYI ÜRETİLMESİ Dr. Mehmet AKSARAYLI Ekonometri Böl. Simülasyon Ders Notları Rassal Sayı Üretilmesi RASSAL SAYI ÜRETİLMESİ Simülasyon analizinde kullanılacak az sayıda rassal sayı üretimi için ilkel yöntemler kullanılabilir.

Detaylı

DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA

DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA Istanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi Yıl:8 Sayı:15 Bahar 2009 s.167-178 DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA Timur KESKİNTÜRK * Serap ŞAHİN ÖZET

Detaylı

Gevşek Hesaplama (COMPE 474) Ders Detayları

Gevşek Hesaplama (COMPE 474) Ders Detayları Gevşek Hesaplama (COMPE 474) Ders Detayları Ders Adı Gevşek Hesaplama Ders Kodu COMPE 474 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının

Detaylı

GENETĐK ALGORĐTMA VE UYGULAMA ALANLARI

GENETĐK ALGORĐTMA VE UYGULAMA ALANLARI GENETĐK ALGORĐTMA VE UYGULAMA ALANLARI Mustafa KURT*, Cumali SEMETAY* *M.Ü.Teknik Eğitim Fakültesi Makina Bölümü Bu çalışmada, geleneksel yöntemlerle çözümü zor veya imkansız olan problemlerin çözümünde

Detaylı

Genetik Algoritma ile Elde Edilen Uyumlu Renklerin Web Şablonları Üzerinde Gerçeklenmesi

Genetik Algoritma ile Elde Edilen Uyumlu Renklerin Web Şablonları Üzerinde Gerçeklenmesi Genetik Algoritma ile Elde Edilen Uyumlu Renklerin Web Şablonları Üzerinde Gerçeklenmesi Şerif Okumuş Melih Orhan Bilgisayar Mühendisliği Bölümü, Süleyman Demirel Üniversitesi, Isparta {serifokumus,melihorhan}@yahoo.com.tr

Detaylı

Rekombinasyon ve Bağlantı Analizi (Recombination and Linkage Analysis)

Rekombinasyon ve Bağlantı Analizi (Recombination and Linkage Analysis) Rekombinasyon ve Bağlantı Analizi (Recombination and Linkage Analysis) Mayoz bölünme sırasında aynı kromozom (bir kromatid) üzerindeki genler gametlere beraberce, başka bir ifade ile bağlı (zincirlenmiş)

Detaylı

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA i GENETİK ALGORİTMA YAKLAŞIMIYLA ATÖLYE ÇİZELGELEME Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2005 ANKARA ii Serdar BİROĞUL tarafından hazırlanan

Detaylı

1. DÖNEM Kodu Dersin Adı T U K. Matematik II Mathematics II (İng) Fizik I 3 2 4. Bilgisayar Programlama I (Java) Computer Programming I (Java) (İng)

1. DÖNEM Kodu Dersin Adı T U K. Matematik II Mathematics II (İng) Fizik I 3 2 4. Bilgisayar Programlama I (Java) Computer Programming I (Java) (İng) Müfredat: Mekatronik Mühendisliği lisans programından mezun olacak bir öğrencinin toplam 131 kredilik ders alması gerekmektedir. Bunların 8 kredisi öğretim dili Türkçe ve 123 kredisi öğretim dili İngilizce

Detaylı

Evrimsel Çok amaçlı eniyileme. Tahir Emre Kalaycı Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 25 Mart 2010

Evrimsel Çok amaçlı eniyileme. Tahir Emre Kalaycı Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 25 Mart 2010 Evrimsel Çok amaçlı eniyileme Tahir Emre Kalaycı Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 25 Mart 2010 Gündem Çok amaçlı eniyileme Giriş Evrimsel çok amaçlı eniyileme Sonuç Giriş Gerçek dünya problemleri

Detaylı

Evrimsel ekoloji. Erol Akçay. Proximate mechanisms and the evolution of cooperation. University of Pennsylvania.

Evrimsel ekoloji. Erol Akçay. Proximate mechanisms and the evolution of cooperation. University of Pennsylvania. Evrimsel ekoloji Erol Akçay Proximate mechanisms and the evolution of cooperation University of Pennsylvania eakcay@sas.upenn.edu Matematiksel Evrim Yazokulu 9 Eylül 2013 Nesin Matematik Köyü, Şirince,

Detaylı

DİFERANSİYEL GELİŞİM ALGORİTMASI

DİFERANSİYEL GELİŞİM ALGORİTMASI İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Yıl: 5 Sayı: 9 Bahar 2006/1 s.85-99 DİFERANSİYEL GELİŞİM ALGORİTMASI Timur KESKİNTÜRK ÖZET Doğrusal olmayan problemlerin çözümüne yönelik olarak geliştirilmiş

Detaylı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTUSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİMDALI. I. GENEL BİLGİLER Ders Adı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTUSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİMDALI. I. GENEL BİLGİLER Ders Adı BİM618 Evrimsel Algoritmalar Öğretim Üyesi Prof. Dr. Derviş Karaboğa Görüşme Saatleri 8.00-17.00 E posta: karaboga@erciyes.edu.tr http://abis.erciyes.edu.tr/sorgu.aspx?sorgu=236 Erciyes Üniversitesi, Mühendislik

Detaylı

GENETİK ALGORİTMALAR VE ÇALIŞMA PRENSİPLERİ

GENETİK ALGORİTMALAR VE ÇALIŞMA PRENSİPLERİ GAP IV. Mühendislik Kongresi Bildiriler Kitabı, 06-08 Haziran 2002, Şanlıurfa. Proceedings of the Fourth GAP Engineering Congress, 06-08 June 2002, Şanlıurfa. GENETİK ALGORİTMALAR VE ÇALIŞMA PRENSİPLERİ

Detaylı

GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı

GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı Erol Şahin Bilgisayar Mühendisliği Bölümü, Orta Doğu Teknik Üniversitesi Ankara, Türkiye 2. ULUSAL GRİD ÇALIŞTAYI, 1-2 Mart 2007, TÜBİTAK,

Detaylı

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM GENETİK ALGORİTMA İLE ÇÖZÜMÜ GERÇEKLEŞTİRİLEN ATÖLYE ÇİZELGELEME PROBLEMİNDE ÜRÜN SAYISININ ETKİSİ Serdar BİROĞUL*, Uğur GÜVENÇ* (*) Gazi Üniversitesi Teknik Eğitim Fakültesi Elektrik Eğitimi Bölümü, Beşevler

Detaylı

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008 Kablosuz Sensör Ağlar ve Eniyileme Tahir Emre KALAYCI 21 Mart 2008 Gündem Genel Bilgi Alınan Dersler Üretilen Yayınlar Yapılması Planlanan Doktora Çalışması Kablosuz Sensör Ağlar Yapay Zeka Teknikleri

Detaylı

MATEMATİK MÜHENDİSLİĞİ BÖLÜMÜ

MATEMATİK MÜHENDİSLİĞİ BÖLÜMÜ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK MÜHENDİSLİĞİ BÖLÜMÜ K-MEANS KÜMELEME ALGORİTMASININ GENETİK ALGORİTMA KULLANILARAK GELİŞTİRİLMESİ BİTİRME ÖDEVİ Yunus YÜNEL Tez Danışmanı:

Detaylı

Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü

Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü 322 Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü Nihat ÖZTÜRK *, Emre ÇELİK * Gazi Üniversitesi Teknoloji Fakültesi Elektrik Elektronik Mühendisliği Bölümü, ANKARA ÖZET Anahtar Kelimeler:

Detaylı

YÖNETİM BİLİŞİM SİSTEMLERİ BÖLÜMÜ YENİ DERS MÜFREDATI (1) FAKÜLTESİ: İŞLETME FAKÜLTESİ / BUSINESS SCHOOL

YÖNETİM BİLİŞİM SİSTEMLERİ BÖLÜMÜ YENİ DERS MÜFREDATI (1) FAKÜLTESİ: İŞLETME FAKÜLTESİ / BUSINESS SCHOOL (3) SINIFI: 1. Yıl Güz Dönemi MIS101 BİLGİSAYAR PROGRAMLAMA 1 COMPUTER PROGRAMMING 1 Z 3-0 4 BUS101 BİLİM VE TEKNOLOJİ TARİHİ HISTORY OF SCIENCE AND TECHNOLOGY Z 3-0 4 BUS103 İŞLETMECİLER İÇİN MATEMATİK

Detaylı

Yrd. Doç. Dr. Osman Kaan EROL (İ.T.Ü)

Yrd. Doç. Dr. Osman Kaan EROL (İ.T.Ü) İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONTROL SİSTEMLERİ İÇİN BULANIK PID KONTROLÖRLERİN GENETİK ALGORİTMALAR YARDIMIYLA AYARLANMASI Tezin Enstitüye Verildiği Tarih: 20 Mart 2007 Tezin Savunulduğu

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

Sigma 2006/3 Araştırma Makalesi / Research Article A SOLUTION PROPOSAL FOR INTERVAL SOLID TRANSPORTATION PROBLEM

Sigma 2006/3 Araştırma Makalesi / Research Article A SOLUTION PROPOSAL FOR INTERVAL SOLID TRANSPORTATION PROBLEM Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Sigma 6/ Araştırma Makalesi / Research Article A SOLUTION PROPOSAL FOR INTERVAL SOLID TRANSPORTATION PROBLEM Fügen TORUNBALCI

Detaylı

MÜFREDAT DERS LİSTESİ

MÜFREDAT DERS LİSTESİ MÜFREDAT DERS LİSTESİ MÜHENDİSLİK FAK. / BİLGİSAYAR MÜHENDİSL / 2010 BİLGİSAYAR MÜHENDİSLİĞİ Müfredatı 0504101 Matematik I Calculus I 1 GÜZ 4 5 Z 0504102 Genel Fizik I General Physics I 1 GÜZ 4 4 Z 0504103

Detaylı

www.tubiad.org ISSN:2148-3736 El-Cezerî Fen ve Mühendislik Dergisi Cilt: 3, No: 2, 2016 (363-371)

www.tubiad.org ISSN:2148-3736 El-Cezerî Fen ve Mühendislik Dergisi Cilt: 3, No: 2, 2016 (363-371) www.tubiad.org ISSN:2148-3736 El-Cezerî Fen ve Mühendislik Dergisi Cilt: 3, No: 2, 2016 (363-371) El-Cezerî Journal of Science and Engineering Vol: 3, No: 2, 2016 (363-371) ECJSE Makale / Research Paper

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

İleri Algoritma (COMPE 574) Ders Detayları

İleri Algoritma (COMPE 574) Ders Detayları İleri Algoritma (COMPE 574) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS İleri Algoritma COMPE 574 Güz 3 0 0 3 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

HAFTA II Mendel Genetiği

HAFTA II Mendel Genetiği GENETĐK 111-503 HAFTA II Mendel Genetiği Doç. Dr. Hilâl Özdağ 1865 Gregor Mendel kalıtım kurallarının temellerini attı. http://www.dnaftb.org/dnaftb/1/concept/ 1 Seçilen Özellikler Hartl DL, Jones EW,

Detaylı

SÜREKLİ BİR KİRİŞTE MAKSİMUM MOMENTLERİN GENETİK ALGORİTMALAR İLE BELİRLENMESİ

SÜREKLİ BİR KİRİŞTE MAKSİMUM MOMENTLERİN GENETİK ALGORİTMALAR İLE BELİRLENMESİ ÖZET/ABSTRACT DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: Sayı: sh. -9 Ekim 00 SÜREKLİ BİR KİRİŞTE MAKSİMUM MOMENTLERİN GENETİK ALGORİTMALAR İLE BELİRLENMESİ (THE DETERMINATION OF MAXIMUM

Detaylı

ONARILABĐLĐR ELEMANLARA ÖNLEYĐCĐ BAKIMIN ETKĐSĐ VE OPTĐMĐZASYONU*

ONARILABĐLĐR ELEMANLARA ÖNLEYĐCĐ BAKIMIN ETKĐSĐ VE OPTĐMĐZASYONU* makale Ayşe KAHVEĐOĞLU * Yrd. Doç. Dr., Anadolu Üniversitesi ONAILABĐLĐ ELEMANLAA ÖNLEYĐĐ BAKIMIN EKĐSĐ VE OĐMĐZASYONU* GĐĐŞ Bakım faaliyetinin temel amacı, olabilecek muhtemel arızaların önlenmesi veya

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

ÜÇ BOYUTLU KARAYOLU GÜZÂRGAH OPTİMİZASYONUNDA KARAR DESTEK SİSTEMİ OLARAK GENETİK ALGORİTMALARIN KULLANIMI

ÜÇ BOYUTLU KARAYOLU GÜZÂRGAH OPTİMİZASYONUNDA KARAR DESTEK SİSTEMİ OLARAK GENETİK ALGORİTMALARIN KULLANIMI TMMOB Harita ve Kadastro Mühendisleri Odası 11. Türkiye Harita Bilimsel ve Teknik Kurultayı 2 6 Nisan 2007, Ankara ÜÇ BOYUTLU KARAYOLU GÜZÂRGAH OPTİMİZASYONUNDA KARAR DESTEK SİSTEMİ OLARAK GENETİK ALGORİTMALARIN

Detaylı

İLERİ ALGORİTMA ANALİZİ GENETİK ALGORİTMA

İLERİ ALGORİTMA ANALİZİ GENETİK ALGORİTMA İLERİ ALGORİTMA ANALİZİ 1. Giriş GENETİK ALGORİTMA Geniş çözüm uzaylarının klasik yöntemlerle taranması hesaplama zamanını artırmaktadır. Genetik algoritma ile kabul edilebilir doğrulukta kısa sürede bir

Detaylı

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1 Bilgisayar Mühendisliği Bilgisayar Mühendisliğine Giriş 1 Mühendislik Nedir? Mühendislik, bilim ve matematiğin yararlı cihaz ve sistemlerin üretimine uygulanmasıdır. Örn: Elektrik mühendisleri, elektronik

Detaylı

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ ÖRNEKLEME TEORİSİ 1 Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik. Peki popülasyonun istatistiksel

Detaylı

GÜNEŞ ENERJİSİ VE RÜZGÂR ENERJİSİ DÂHİL OLAN HİBRİT GÜÇ SİSTEMİNDE FARKLI ALGORİTMALAR İLE EKONOMİK YÜK DAĞITIMININ İNCELENMESİ

GÜNEŞ ENERJİSİ VE RÜZGÂR ENERJİSİ DÂHİL OLAN HİBRİT GÜÇ SİSTEMİNDE FARKLI ALGORİTMALAR İLE EKONOMİK YÜK DAĞITIMININ İNCELENMESİ 3. İzmir Rüzgâr Sempozyumu // 8-10 Ekim 2015 // İzmir 29 GÜNEŞ ENERJİSİ VE RÜZGÂR ENERJİSİ DÂHİL OLAN HİBRİT GÜÇ SİSTEMİNDE FARKLI ALGORİTMALAR İLE EKONOMİK YÜK DAĞITIMININ İNCELENMESİ Gül Kurt 1, Deniz

Detaylı

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYILARIN ÜRETİLMESİ Rastgele değişimler yapay tablolardan veya parametreleri verilen teorik dağılım fonksiyonlarından elde edilir.

Detaylı

ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX

ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX XI İÇİNDEKİLER ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX 1. GİRİŞ... 1 2. PLANLAMANIN TARİHÇESİ... 7 2.1 Literatürdeki Planlayıcılar ve Kullandıkları Problem... Gösterimi

Detaylı

Moleküler Biyoloji ve Genetik Bölümü Boğaziçi Üniversitesi

Moleküler Biyoloji ve Genetik Bölümü Boğaziçi Üniversitesi BİYOLOJİDEKİ TEKNOLOJİK GELİŞMELER VE ÖNCELİKLERİMİZ Dr. Aslı Tolun Moleküler Biyoloji ve Genetik Bölümü Boğaziçi Üniversitesi KLONLAMA / KOPYALAMA Tanım Yöntem Amaç: Kopya birey yaratma Kök hücre oluşturma

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 4 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

EĞİTİMDE VERİMLİLİĞİ ARTIRAN DERS PROGRAMLARININ HAZIRLANMASI İÇİN GENETİK ALGORİTMA KULLANIMI

EĞİTİMDE VERİMLİLİĞİ ARTIRAN DERS PROGRAMLARININ HAZIRLANMASI İÇİN GENETİK ALGORİTMA KULLANIMI EĞİTİMDE VERİMLİLİĞİ ARTIRAN DERS PROGRAMLARININ HAZIRLANMASI İÇİN GENETİK ALGORİTMA KULLANIMI Fatma Daban Dr. Ersin Özdemir Mustafa Kemal Üniversitesi Özet Eğitim kurumları, kaynaklarını belirli zaman

Detaylı

Gezgin Satıcı Probleminin Karınca Kolonisi ve Genetik Algoritmalarla Eniyilemesi ve Karşılaştırılması

Gezgin Satıcı Probleminin Karınca Kolonisi ve Genetik Algoritmalarla Eniyilemesi ve Karşılaştırılması Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi Suleyman Demirel University Journal of Natural andappliedscience 18(1), 8-13, 2014 Gezgin Satıcı Probleminin Karınca Kolonisi ve Genetik Algoritmalarla

Detaylı

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var :

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var : Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir

Detaylı

ayxmaz/biyoloji 2. DNA aşağıdaki sonuçlardan hangisi ile üretilir Kalıp DNA yukarıdaki ana DNAdan yeni DNA molekülleri hangi sonulca üretilir A B C D

ayxmaz/biyoloji 2. DNA aşağıdaki sonuçlardan hangisi ile üretilir Kalıp DNA yukarıdaki ana DNAdan yeni DNA molekülleri hangi sonulca üretilir A B C D 1. DNA replikasyonu.. için gereklidir A) sadece mitoz B) sadece mayoz C) mitoz ve mayoz D) sadece gamet oluşumu E) sadece protein sentezi 2. DNA aşağıdaki sonuçlardan hangisi ile üretilir Kalıp DNA yukarıdaki

Detaylı

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu th International Adanced Technologies Symposium (IATS ), -8 May 20, Elazığ, Turkey Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu Ö. Soykasap e K. B. Sugözü Afyon

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

GERÇEL SAYI KODLAMALI GENETĠK ALGORĠTMALARIN OPTĠMĠZASYONDA KULLANIMI. YÜKSEK LĠSANS TEZĠ Uzay Müh. Ahmet ÖZTÜRK. Anabilim Dalı : UZAY MÜHENDĠSLĠĞĠ

GERÇEL SAYI KODLAMALI GENETĠK ALGORĠTMALARIN OPTĠMĠZASYONDA KULLANIMI. YÜKSEK LĠSANS TEZĠ Uzay Müh. Ahmet ÖZTÜRK. Anabilim Dalı : UZAY MÜHENDĠSLĠĞĠ ĠSTANBUL TEKNĠK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ GERÇEL SAYI KODLAMALI GENETĠK ALGORĠTMALARIN OPTĠMĠZASYONDA KULLANIMI YÜKSEK LĠSANS TEZĠ Uzay Müh. Ahmet ÖZTÜRK Anabilim Dalı : UZAY MÜHENDĠSLĠĞĠ Programı

Detaylı

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları Markov Zinciri Monte Carlo Yaklaşımı ve Aktüeryal Uygulamaları ŞİRZAT ÇETİNKAYA Aktüer Sistem Araştırma Geliştirme Bölümü AKTÜERLER DERNEĞİ 2.0.20080 2008 - İSTANBUL Sunum Planı. Giriş 2. Bayesci Metodun

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Resim ÖZGEÇMİŞ 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Telefon : 386 280 45 50 Mail : kskula@ahievran.edu.tr

Detaylı

DİZGE TABANLI BİLEŞEN DENEMELERİNİN TASARIMINDA BEKLENEN DİZGE YAŞAM SÜRESİNİN MODELLENMESİ 1

DİZGE TABANLI BİLEŞEN DENEMELERİNİN TASARIMINDA BEKLENEN DİZGE YAŞAM SÜRESİNİN MODELLENMESİ 1 DİZGE TABANLI BİLEŞEN DENEMELERİNİN TASARIMINDA BEKLENEN DİZGE YAŞAM SÜRESİNİN MODELLENMESİ 1 Emre YAMANGİL Orhan FEYZİOĞLU Süleyman ÖZEKİCİ Galatasaray Üniversitesi Galatasaray Üniversitesi Koç Üniversitesi

Detaylı

ADIM ADIM YGS LYS. 91. Adım KALITIM -17 GENETİK VARYASYON MUTASYON MODİFİKASYON ADAPTASYON - REKOMBİNASYON

ADIM ADIM YGS LYS. 91. Adım KALITIM -17 GENETİK VARYASYON MUTASYON MODİFİKASYON ADAPTASYON - REKOMBİNASYON ADIM ADIM YGS LYS 91. Adım KALITIM -17 GENETİK VARYASYON MUTASYON MODİFİKASYON ADAPTASYON - REKOMBİNASYON GENETİK VARYASYON Aynı türün bireyleri arasındaki farklılığa VARYASYON denir. Varyasyonların hepsi

Detaylı

Yaklaşık Düşünme Teorisi

Yaklaşık Düşünme Teorisi Yaklaşık Düşünme Teorisi Zadeh tarafından 1979 yılında öne sürülmüştür. Kesin bilinmeyen veya belirsiz bilgiye dayalı işlemlerde etkili sonuçlar vermektedir. Genellikle bir f fonksiyonu ile x ve y değişkeni

Detaylı

Esnek Hesaplamaya Giriş

Esnek Hesaplamaya Giriş Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan

Detaylı

Genetik Algoritmalar. Prof.Dr.Adem KALINLI

Genetik Algoritmalar. Prof.Dr.Adem KALINLI Genetik Algoritmalar Erciyes Üniversitesi Ekim 2012 Sunum İçeriği Giriş Evrimsel Hesaplama Genetik Algoritmalar Maliyet fonksiyonu Bilgi temsil mekanizması Başlangıç popülasyonu oluşturma Uygunluk veya

Detaylı

DOĞAL GAZ & ENERJİ YÖNETİMİ BİLDİRİLER KİTABI

DOĞAL GAZ & ENERJİ YÖNETİMİ BİLDİRİLER KİTABI TMMOB MAKİNA MÜHENDİSLERİ ODASI İİ DOĞAL GAZ & ENERJİ YÖNETİMİ KONGRE ve SERGİSİ BİLDİRİLER KİTABI GAZİANTEP EYLÜL 2001 TMMOB MAKİNA MÜHENDİSLERİ ODASİ Sümer Sok. 36/1-A Uemirtepc /ANKARA Tel : 0(312)231

Detaylı

Hardy Weinberg Kanunu

Hardy Weinberg Kanunu Hardy Weinberg Kanunu Neden populasyonlarla çalışıyoruz? Popülasyonları analiz edebilmenin ilk yolu, genleri sayabilmekten geçer. Bu sayım, çok basit bir matematiksel işleme dayanır: genleri sayıp, tüm

Detaylı

Genetik Algoritmalarla akış tipi çizelgelemede üreme yöntemi optimizasyonu

Genetik Algoritmalarla akış tipi çizelgelemede üreme yöntemi optimizasyonu itüdergisi/d mühendislik Cilt:1 Sayı:1 Ağustos 2002 Genetik Algoritmalarla akış tipi çizelgelemede üreme yöntemi optimizasyonu Orhan ENGİN *, Alpaslan FIĞLALI İTÜ İşletme Fakültesi, Endüstri Mühendisliği

Detaylı

Dairesel Anten Dizilerinin Genetik Algoritma ile Tasarımı. Design of Circular Array Antennas using Genetic Algorithm

Dairesel Anten Dizilerinin Genetik Algoritma ile Tasarımı. Design of Circular Array Antennas using Genetic Algorithm Dairesel Anten Dizilerinin Genetik Algoritma ile Tasarımı Design of Circular Array Antennas using Genetic Algorithm Banu ÖZEN 1, Erkan AFACAN 2 1 Orman Genel Müdürlüğü banuozen@gmail.com 2 Elektrik-Elektronik

Detaylı

TABAKALI RASTGELE ÖRNEKLEMEDE ÖRNEKLEM BÜYÜKLÜKLERİNİN GENETİK ALGORİTMA İLE BELİRLENMESİ

TABAKALI RASTGELE ÖRNEKLEMEDE ÖRNEKLEM BÜYÜKLÜKLERİNİN GENETİK ALGORİTMA İLE BELİRLENMESİ TABAKALI RASTGELE ÖRNEKLEMEDE ÖRNEKLEM BÜYÜKLÜKLERİNİN GENETİK ALGORİTMA İLE BELİRLENMESİ DETERMINATION OF SAMPLE SIZES IN STRATIFIED RANDOM SAMPLING WITH GENETIC ALGORITHM DERYA TURFAN DOÇ. DR. ÖZGÜR

Detaylı

Mutasyon: DNA dizisinde meydana gelen kalıcı değişiklik. Polimorfizm: iki veya daha fazla farklı fenotipin aynı tür popülasyonunda bulunmasıdır.

Mutasyon: DNA dizisinde meydana gelen kalıcı değişiklik. Polimorfizm: iki veya daha fazla farklı fenotipin aynı tür popülasyonunda bulunmasıdır. Allel: Bir genin seçenekli biçimi Wild Tip: Normal allel. Bireylerin çoğunda bulunan Mutasyon: DNA dizisinde meydana gelen kalıcı değişiklik Polimorfizm: iki veya daha fazla farklı fenotipin aynı tür popülasyonunda

Detaylı

This information (23) on X-linked genetic disorders is in Turkish X bağlantılı Genetik Hastalıklar (İngilizce'si X-linked Genetic Disorders)

This information (23) on X-linked genetic disorders is in Turkish X bağlantılı Genetik Hastalıklar (İngilizce'si X-linked Genetic Disorders) This information (23) on X-linked genetic disorders is in Turkish X bağlantılı Genetik Hastalıklar (İngilizce'si X-linked Genetic Disorders) Genetik (genetic) hastalıklara bir veya daha fazla hatalı gen

Detaylı

BBO Algoritmasının Optimizasyon Başarımının İncelenmesi Optimization Performance Investigation of BBO Algorithm

BBO Algoritmasının Optimizasyon Başarımının İncelenmesi Optimization Performance Investigation of BBO Algorithm BBO Algoritmasının Optimizasyon Başarımının İncelenmesi Optimization Performance Investigation of BBO Algorithm Tufan İNAÇ 1, Cihan KARAKUZU 2 1 Bilgisayar Mühendisliği Anabilim Dalı Bilecik Şeyh Edebali

Detaylı

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI İlaç Tasarımında Yeni Yazılımların Geliştirilmesi: Elektron Konformasyonel-Genetik Algoritma Metodu ile Triaminotriazin Bileşiklerinde Farmakofor Belirlenmesi ve Nicel Biyoaktivite Hesabı; ERCİYES ÜNİVERSİTESİ

Detaylı

ADIM ADIM YGS LYS Adım EVRİM

ADIM ADIM YGS LYS Adım EVRİM ADIM ADIM YGS LYS 191. Adım EVRİM EVRİM İLE İLGİLİ GÖRÜŞLER Evrim, geçmiş ile gelecekteki canlıların ve olayların yorumlanmasını sağlayarak, bugün dünyada yaşayan canlılar arasındaki akrabalık derecesini

Detaylı

Değişken Çaprazlama ve Mutasyon Faktörleri Kullanılmış Genetik Algoritma ile Kafes Yapıların Optimizasyonu

Değişken Çaprazlama ve Mutasyon Faktörleri Kullanılmış Genetik Algoritma ile Kafes Yapıların Optimizasyonu Değişken Çaprazlama ve Mutasyon Faktörleri Kullanılmış Genetik Algoritma ile Kafes Yapıların Optimizasyonu Hilmi COŞKUN İskenderun Teknik Üniversitesi, İnşaat Mühendisliği Bölümü, İskenderun, HATAY Tel:

Detaylı

Weight Optimization of a Dry Transformer by Genetic Algorithm and Validation by Finite Element Method

Weight Optimization of a Dry Transformer by Genetic Algorithm and Validation by Finite Element Method KSÜ Mühendislik Bilimleri Dergisi, (), 9 3 KSU Journal of Engineering Sciences, (), 9 Genetik Algoritma ile Kuru Bir Trafonun Ağırlık Optimizasyonu ve Sonlu Elemanlar Metodu ile Analizi Mehmed ÇELEBĐ Atatürk

Detaylı

ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SANAL ARTIRILMIŞ VE AKILLI TEKNOLOJİLER (SAAT) LABORATUVARI SAAT Laboratuvarı Koordinatör: Yrd. Doç. Dr. Gazi Erkan BOSTANCI SAAT

Detaylı

4 th International Advanced Technologies Symposium September 28 30, 2005 Konya / Türkiye DÜZ DİŞLİ HIZ KUTUSUNUN GENETİK ALGORİTMA İLE ENİYİLENMESİ

4 th International Advanced Technologies Symposium September 28 30, 2005 Konya / Türkiye DÜZ DİŞLİ HIZ KUTUSUNUN GENETİK ALGORİTMA İLE ENİYİLENMESİ 4 th International Advanced Technologies Symposium September 8 3, 5 Konya / Türkiye DÜZ DİŞLİ HIZ KUTUSUNUN GENETİK ALGORİTMA İLE ENİYİLENMESİ Metin ZEYVELİ Cevdet GÖLOĞLU Kürşad DÜNDAR ) Gazi Üniversitesi

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ EĞİTİM ÖĞRETİM YILI DERS KATALOĞU

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ EĞİTİM ÖĞRETİM YILI DERS KATALOĞU T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ - EĞİTİM ÖĞRETİM YILI DERS KATALOĞU Ders Kodu Bim Kodu Ders Adı Türkçe Ders Adı İngilizce Dersin Dönemi T Snf Açıl.Dönem P

Detaylı

Bağlantı ve Kromozom Haritaları

Bağlantı ve Kromozom Haritaları Bağlantı ve Kromozom Haritaları Prof. Dr. Sacide PEHLİVAN 3. Mart. 2017 Bir kişide DNA nın şifrelediği özelliklerin tümü kalıtsal özelliklerdir. DNA üzerinde nükleotitlerden yapılı en küçük ifade edilebilir

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

GERÇEK ZAMAN KISITLARI ALTINDA SEYRÜSEFER

GERÇEK ZAMAN KISITLARI ALTINDA SEYRÜSEFER GERÇEK ZAMAN KISITLARI ALTINDA SEYRÜSEFER Ferhat Uçan (a), (b) (a), 41470,Gebze, Kocaeli, ferhat.ucan@bte.tubitak.gov.tr (b) du.tr ÖZ seklik t k Problemin en uygun çözümü, tüm a birlikte eniyileyen zordur.

Detaylı

KAHKAHA TANIMA İÇİN RASSAL ORMANLAR

KAHKAHA TANIMA İÇİN RASSAL ORMANLAR KAHKAHA TANIMA İÇİN RASSAL ORMANLAR Heysem Kaya, A. Mehdi Erçetin, A. Ali Salah, S. Fikret Gürgen Bilgisayar Mühendisliği Bölümü Boğaziçi Üniversitesi / Istanbul Akademik Bilişim'14, Mersin, 05.02.2014

Detaylı

FBEB-512 C++ ile Nesne Tabanlı Programlama Güz 2009 (1. Hafta) (Yrd. Doç. Dr. Deniz Dal)

FBEB-512 C++ ile Nesne Tabanlı Programlama Güz 2009 (1. Hafta) (Yrd. Doç. Dr. Deniz Dal) FBEB-512 C++ ile Nesne Tabanlı Programlama Güz 2009 (1. Hafta) (Yrd. Doç. Dr. Deniz Dal) Algoritma Geliştirme ve Akış Diyagramları BİLGİSAYARLA PROBLEM ÇÖZÜMÜ AŞAMALARI Analiz Algoritma Geliştirilmesi

Detaylı

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER Parametrik Olmayan İstatistik Prof. Dr. Cenk ÖZLER Not: Beklenen Frekansı 5 in altında olan gruplar varsa, bu gruplar bir önceki veya bir sonraki grupla birleştirilir. Hipotezler χ 2 Dağılışa Uyum Testi

Detaylı

BASKIN GEN SEÇİMİ OPERATÖRÜNE DAYALI GENETİK ALGORİTMA MODELİ

BASKIN GEN SEÇİMİ OPERATÖRÜNE DAYALI GENETİK ALGORİTMA MODELİ Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 26, No 4, 869-875, 20 Vol 26, No 4, 869-875, 20 BASKIN GEN SEÇİMİ OPERATÖRÜNE DAYALI GENETİK ALGORİTMA MODELİ Adem KALINLI, Özgür AKSU

Detaylı

TEMEL BİLGİSAYAR BİLİMLERİ. Programcılık, problem çözme ve algoritma oluşturma

TEMEL BİLGİSAYAR BİLİMLERİ. Programcılık, problem çözme ve algoritma oluşturma TEMEL BİLGİSAYAR BİLİMLERİ Programcılık, problem çözme ve algoritma oluşturma Programcılık, program çözme ve algoritma Program: Bilgisayara bir işlemi yaptırmak için yazılan komutlar dizisinin bütünü veya

Detaylı

C PROGRAMLAMA YRD.DOÇ.DR. BUKET DOĞAN PROGRAM - ALGORİTMA AKIŞ ŞEMASI

C PROGRAMLAMA YRD.DOÇ.DR. BUKET DOĞAN PROGRAM - ALGORİTMA AKIŞ ŞEMASI C PROGRAMLAMA DİLİ YRD.DOÇ.DR. BUKET DOĞAN 1 PROGRAM - ALGORİTMA AKIŞ ŞEMASI Program : Belirli bir problemi çözmek için bir bilgisayar dili kullanılarak yazılmış deyimler dizisi. Algoritma bir sorunun

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS YAPAY ZEKA BG-421 4/2 2+1+0 2+.5 4 Dersin Dili : TÜRKÇE Dersin Seviyesi : LİSANS

Detaylı

Binary Search. (Yarılama) Bölüm Dizide Bir Öğe Arama

Binary Search. (Yarılama) Bölüm Dizide Bir Öğe Arama Bölüm 39 Binary Search (Yarılama) 39.1 Dizide Bir Öğe Arama İkil aramayı (yarılama yöntemi) sıralı veri kümelerinde sık sık kullanırız. Örneğin, sözlükte bir sözcüğü ararken, sözlüğün bütün sayfalarını

Detaylı

DURAĞAN ZAMAN SERİLERİNDE UYGUN ARMA MODELİNİN GENETİK ALGORİTMALAR İLE BULUNMASI VE İMKB VERİLERİ ÜZERİNE BİR UYGULAMA

DURAĞAN ZAMAN SERİLERİNDE UYGUN ARMA MODELİNİN GENETİK ALGORİTMALAR İLE BULUNMASI VE İMKB VERİLERİ ÜZERİNE BİR UYGULAMA DURAĞAN ZAMAN SERİLERİNDE UYGUN ARMA MODELİNİN GENETİK ALGORİTMALAR İLE BULUNMASI VE İMKB VERİLERİ ÜZERİNE BİR UYGULAMA Ar. Gör. Mehmet Hakan SATMAN * Özet Genetik ve doğal, seçilim ilkesini büyük ölçüde

Detaylı

Self Organising Migrating Algorithm

Self Organising Migrating Algorithm OPTİMİZASYON TEKNİKLERİ Self Organising Migrating Algorithm Kendini Organize Eden Göç/Geçiş Algoritması MELİH HİLMİ ULUDAĞ Fırat Üniversitesi Teknoloji Fakültesi Yazılım Mühendisliği Bölümü İletişim: www.melihhilmiuludag.com

Detaylı

Algoritmalara Giriş 6.046J/18.401J

Algoritmalara Giriş 6.046J/18.401J Algoritmalara Giriş 6.046J/18.401J Ders 17 En kısa yollar I En kısa yolların özellikleri Dijkstra algoritması Doğruluk Çözümleme Enine arama Prof. Erik Demaine November 14, 005 Copyright 001-5 by Erik

Detaylı

X ve Y boş olmayan iki küme olsun. İki küme arasında tanımlanmış olan bir bulanık ilişki R, X x Y nin bir bulanık alt kümesidir.

X ve Y boş olmayan iki küme olsun. İki küme arasında tanımlanmış olan bir bulanık ilişki R, X x Y nin bir bulanık alt kümesidir. Bulanık İlişkiler X ve Y boş olmayan iki küme olsun. İki küme arasında tanımlanmış olan bir bulanık ilişki R, X x Y nin bir bulanık alt kümesidir. R F(X x Y) Eğer X = Y ise R bir ikilik (binary) bulanık

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ

YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ YAPAY BAĞIŞIKLIK SİSTEMİ Arş. Gör. Burcu ÇARKLI YAVUZ İnsanoğlu doğadaki müthiş uyumu yıllar önce keşfetmiş ve doğal sistemlerin işleyişini günümüz karmaşık problemlerinin çözümünde uygulayarak, karmaşık

Detaylı

Sigma 2006/2 Araştırma Makalesi / Research Article THE SIMULATION AND OPTIMIZATION OF LIFT CONTROL SYSTEMS WITH GENETIC ALGORITHMS

Sigma 2006/2 Araştırma Makalesi / Research Article THE SIMULATION AND OPTIMIZATION OF LIFT CONTROL SYSTEMS WITH GENETIC ALGORITHMS Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Sigma 2006/2 Araştırma Makalesi / Research Article THE SIMULATION AND OPTIMIZATION OF LIFT CONTROL SYSTEMS WITH GENETIC

Detaylı

YÜKSEK LİSANS TEZİ. Nezihe KÜÇÜK

YÜKSEK LİSANS TEZİ. Nezihe KÜÇÜK İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ EVİRİCİLERİN HARMONİK ELİMİNASYONUNDA OPTİMUM ANAHTARLAMA AÇILARININ GENETİK ALGORİTMALAR İLE ELDE EDİLMESİ YÜKSEK LİSANS TEZİ Nezihe KÜÇÜK Anabilim

Detaylı