Bölüm 3. Tanımlayıcı İstatistikler

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bölüm 3. Tanımlayıcı İstatistikler"

Transkript

1 Bölüm 3 Tanımlayıcı İstatistikler 1

2 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını sayısal olarak özetleyen değerlere tanımlayıcı istatistikler denir. Analizlerde kullanılan veri tiplerine (basit, gruplanmış, sınıflanmış) göre hesaplamalarda kullanılacak formüller değişmektedir. 2

3 Tanımlayıcı İstatistikler Yer Ölçüleri 1)Aritmetik ort. 2)Geometrik ort. 3)Harmonik ort. 4)Mod 5)Medyan 6)Kartiller Değişkenlik Ölçüleri 1) Range (Değişim Aralığı) 2) Ort. Mutlak sapma 3) Varyans 4) Standart Sapma 5) Değişkenlik(Varyasyon) Katsayısı Çarpıklık Ölçüleri 1)Pearson Asimetri Ölçüsü 2)Bowley Asimetri Ölçüsü Basıklık Ölçüleri 3

4 Yer Ölçüleri Yer ölçüsünü belirlemek amacıyla veri analizini yapacak kişi, öncelikle veri seti için hangi ölçüyü kullanması gerektiğine karar vermelidir. 4

5 Tanım Merkezi Eğilim Ölçüsü Veri setinin orta noktası veya merkezinin değeridir. 5

6 Yer Ölçüleri Hesaplama tüm verilerin kullanıldığı ölçüler -Aritmetik Ort. -Ağırlıklı Arit. Ort. -Geometrik Ort. -Harmonik Ort. Hesaplama tüm verilerin kullanılmadığı ölçüler -Mod -Medyan -Kartil 6

7 1) Aritmetik Ortalama Üzerinde inceleme yapılan veri setindeki elemanların toplanıp incelenen eleman sayısına bölünmesiyle elde edilen yer ölçüsüne aritmetik ortalama denir. Örnek: Sınav notlarının ortalaması, Yaz aylarında m 2 ye düşen ortalama yağış miktarı 7

8 Örnek Ortalaması ve x Anakütle Ortalaması, x-bar şeklinde telaffuz edilir ve örneklemin ortala masıdır. x = x n µ, mü şeklinde telaffuz edilir ve anakütle ortalamasıdır µ = x N 8

9 Bir Denge Noktası Olarak Ortalama 1, 14, 19, 31, 50 sayılarının ortalaması =23 tür. Şekil sayıları bir çizgi üzerinde yerleştirilmiş eşit küçük ağırlıklar şeklinde gösterir.1,14,19,31,50 Aritmetik ortalama denge noktasıdır

10 Eğer çizgiyi üzerinde ağırlıklar olan bir tahta olarak düşünürsek, tahtayı dengede tutmak için nün bulunduğu yerden denge noktası koymalıyız. Bu aritmetik denge noktasının özelliği; her bir sayı için x i - yü hesaplarsak pozitif ve negatif sayılar dengede kalır çünkü toplamları 0 olur. Herhangi bir veri seti için, olur. ( x ) 0 i x i x i x uzaklığı i 10

11 Basit Veriler için Aritmetik Ortalama Örneği Örnek: İzmir ilinde ilköğretim ikinci sınıfta okuyan öğrenciler üzerinde yapılan bir araştırmada rasgele 8 öğrenci seçilmiş ve ailenizde kaç çocuk vardır sorusuna aşağıdaki gibi cevap vermişlerdir. Ailelerin çocuk sayılarının ortalamasını hesaplayınız. 1,3,2,1,4,5,6,2 n = 8 i = 1,2,,8 x n x i i n 8 3

12 Gruplanmış Veriler İçin Aritmetik Ortalama x k i1 k i1 x i f i f i k i1 f i n f : frekans k: grup sayısı i = 1,2,3,.,k

13 Örnek: Bir otomobil bayisinde 80 gün boyunca yapılan inceleme sonucunda satılan arabaların adetlerine göre dağılımı yandaki tabloda verilmiştir. Buna göre bir gün içinde satılan ortalama araba sayısını hesaplayınız. x Araba (x i ) Gün (f i ) k xi fi i k fi i1 x i.f i f i =80 2,33

14 Sınıflanmış Veriler İçin Aritmetik f : frekans k : sınıf sayısı i = 1,2,3,.,k x Ortalama k i1 m m : sınıf orta noktası Sınıflanmış verilerde her bir sınıf içindeki değerlerin neler olduğu bilinmediğinden dolayı ve yalnızca her bir sınıfın frekans değerleri bilindiğinden dolayı sınıfı temsil etmek üzere sınıf orta noktaları hesaplamada kullanılır. Kullanılan formül gruplanmış veriler için kullanılan 14 formüle benzerdir. k i1 i f i f i k i1 f i n

15 Örnek: Bir sınıftaki öğrencilerin boyları hakkında bir araştırma yapılmaktadır. Bu amaçla 50 öğrencinin boyları ölçülerek kaydedilmiştir.öğrencilerin boylarının aritmetik ortalamasını hesaplayınız. x Sınıflar f i m i m i f i den az 5 153,5 767, den az 7 160,5 1123, den az , den az 9 174,5 1570, den az 8 181, den az 4 188, dan az 3 195,5 586,5 Toplam k mi fi i1 k fi i1 153,5(5) 160,5(7) ,5(3) ,98 cm.

16 Aritmetik Ortalama x x x x nx nx 0 1. Aritmetik ortalamadan sapmaların toplamı sıfırdır x x min 3. Örnek değerlerinde meydana gelen değişim çok küçük de olsa aritmetik ortalama bu değişimden etkilenir. Verilerin tümünün bir fonksiyonudur. 16

17 Aritmetik Ortalama 4. Örnek gözlemlerin tümü a gibi bir sabit ile çarpılırsa bu yeni veri setinin aritmetik ortalaması da eski veri setinin aritmetik ortalamasının a ile çarpımı kadar değişir. 5. Örnek gözlemlerin tümü a gibi bir sabit ile toplanırsa bu yeni veri setinin aritmetik ortalaması da eski veri setinin aritmetik ortalamasının a ile toplamı kadar değişir. 6. Aritmetik ortalama tüm verileri hesaplama fonksiyonu içinde kullanması nedeni ile güçlü bir istatistiktir. 7. Aritmetik ortalama verilerdeki uç değerlerden etkilenmesi ise bu istatistiğin zayıf yönünü oluşturur. 17

18 Ağırlıklı Aritmetik Ortalama Veri setindeki gözlemlerin belirli bir kritere göre ağırlıklandırılması durumunda veri setinin ortalamasının hesaplanması için kullanılan ortalamadır. x w wx i w i i 18

19 Ağırlıklı Aritmetik Ortalama Gözlemler belli bir kritere göre ağırlıklandırılmış ise ağırlıklı aritmetik ortalama kullanılır. Ağırlıklı aritmetik ortalama kullanılırken tüm gözlemlerin ağırlıkları eşit ise aritmetik ortalama ile aynı sonucu verir. 19

20 İktisadi ve İdari Bilimler Fakültesi İşletme Bölümü ndeki birinci sınıf öğrencisinin güz döneminde aldığı dersler, başarı notları, başarı notlarının katsayıları ve kredi değerleri aşağıda verilmiştir: Öğrencinin dönem not ortalamasını katsayı cinsinden hesaplayınız. 20

21 21

22 2) Geometrik Ortalama Bir veri setinde bulunan n adet elemanın çarpımının n nci dereceden kökünün alınmasıyla elde edilen yer ölçüsüdür. G n x1 x2... Geometrik ortalamanın formülüne bakıldığında hesaplama zorluğu olduğundan dolayı logaritma ifadesi kullanılır. Genellikle basit veriler için kullanışlı olup negatif sayılar için kullanışlı değildir. Log G n i 1 log n x i G x n anti log 1 n n i1 log x i 22

23 Geometrik Ortalama nın Kullanım Alanları Ortalama oranları, Değişim Oranları, Logaritmik dağılış gösteren veri setleri, için kullanışlıdır. Örnek: fiyat indeksleri, faiz formülleri.

24 Geometrik Ortalama 1. x i 0 olmalıl 2. G x 3. Uç değerlerden aritmetik ortalama kadar etkilenmez. 24

25 Örnek: Abac şirketinin yıldan-yıla olan fuel deki tüketim harcamalarının değişimi yüzde -5, 10, 20, 40, ve 60. büyüme faktörlerinin geometrik ortalamasını kullanarak harcamalardaki ortalama yıllık yüzde değişim belirlenir. Büyüme faktörleri için yüzde değişim dönüştürme ile elde edilenler;

26 G n x 5 1 x2... x n (0,95)(1,10)(1,20)(1,40)(1,60) , 229 Log G Log G n log xi i1 0, , , , , n 5 0, , G = anti log 0,27045 = 10 0, ,229

27 27 3) Harmonik Ortalama Bir veri setinde bulunan n adet elemanın çarpma işlemine göre terslerinin ortalamasının tersinin alınmasıyla elde edilen yer ölçüsüdür. Genellikle basit veriler için kullanışlıdır. n x n x x n n x x x H n x H n i i 1 1 1

28 Harmonik Ortalama nın Kullanım Alanları Zaman verileri için kullanışlıdır. Örnek: Zaman birimi başına hız, para birimi başına satın alınan birim sayısı. Belirli koşullar ve fiyat tipleri için zaman verilerinin ortalamalarının hesaplanmasında kullanılan bir yer ölçüsüdür. Zamana bağlı hız, fiyat verimlilik gibi oransal olarak ifade edilebilen verilerin ortalamasın alınmasında da kullanılabilir. NOT: ARİTMETİK ORT. > GEOMETRİK ORT. > HARMONİK ORT. 28

29 Örnek: Bir tekstil fabrikasında çalışan dört kişinin bir pantolonu ütüleme süreleri aşağıda verilmiştir. Buna göre bu fabrikada bir pantolon ortalama kaç dakikada ütülenir? İşçi 1: 10 dk. İşçi 2: 6 dk. İşçi 3: 4 dk. İşçi 4 : 5 dk. 1 i1 H n n 1 x i H ,58dk. 29

30 Örnek: A ve B gibi iki şehir arasında 100km lik bir yol vardır. Bir otomobilli yolun ilk yarısını 30 km/saat hızla gidiyor. Diğer yarısını 40 km/saat hızla gidiyor. Hız ortalaması nedir? 30

31 Bir hızlı tren gittiği mesafesinin ilk üçte birinde 300km/s, ikinci üçte birinde 450 km/s ve son üçte birinde 360 km/s hız yapmıştır. Buna göre aracın ortalama hızı ne olmuştur. 31

32 4) Mod Bir veri setinde en çok gözlenen ( en çok tekrar eden ) değere veya frekansı en fazla olan şans değişkeni değerine mod adı verilir. Veri setinin modu olmayacağı gibi birden fazla da modu olabilir. Mod genellikle kesikli şans değişkenli için oluşturulan gruplanmış verilerde aritmetik ortalama yerine kullanılabilir. 32

33 Mod Mod, büyük veri setlerinde verinin daha çok nerede toplandığını bulmak için kullanılır. Örneğin erkek kıyafetleri satan bir perakendeci, potansiyel müşterilerini belirlemek için gömlek kol uzunluğu ve gömlek yaka ölçüsüyle ilgilenebilir. 33

34 Örnekler 1) 5,40 1,10 0,42 0,73 0,48 1,10 Modu 1,10 2) ) den fazla moda sahip, 27 ve 55 Modu yok 34

35 Gruplanmış Veriler İçin Mod Basit verilerde bulunduğu gibi hesaplanır. Örnek: Bir gömlek bayisinde 80 gün boyunca yapılan inceleme sonucunda satılan gömleklerin adetlerine göre dağılımı yandaki tabloda verilmiştir. Buna göre gömlek satışları için mod değeri nedir? Gömlek bedeni(x i ) Satış adedi (f i ) En yüksek frekansa sahip olan gözlem değeri 2 olduğundan dolayı gömlek satışları için mod değeri 2 dir. 35

36 Sınıflanmış Veriler İçin Mod Sınıflanmış verilerde mod değeri hesaplanırken ilk olarak mod sınıfı belirlenir. Mod sınıfı frekansı en yüksek olan sınıftır. Mod sınıfı belirlendikten sonra bu sınıf içerisinde yer alan modun tam değeri sınıf frekansı ve kendine komşu olan sınıf frekansları dikkate alınarak hesaplanır. 36

37 Mod = 1 L mod.i 1 2 L Mod = Mod Sınıfı Aralığının Alt Sınırı 1 = Mod Sınıfı Frekansı - Kendinden Bir Önceki Sınıf Frekansı 2 = Mod Sınıfı Frekansı Kendinden Bir Sonraki Sınıf Frekansı i = Mod Sınıfının Sınıf Aralığı 37

38 Örnek: Bir sınıftaki öğrencilerin boyları hakkında bir araştırma yapılmaktadır. Bu amaçla 50 öğrencinin boyları ölçülerek kaydedilmiştir.öğrencilerin boylarının mod değerini hesaplayınız. Mod sınıfı Sınıflar f i den az den az den az den az den az den az dan az 3 Toplam 50

39 Frekansı en yüksek olan sınıf mod sınıfı olarak belirlenir. Mod sınıfı belirlendikten sonra formülde ilgili değerler yerine koyularak mod değeri hesaplanır. 1 Mod Lmod i 1 2 (14 7) ,08 cm. (14 7) (14 9)

40 5) Medyan Bir veri setini büyükten küçüğe veya küçükten büyüğe sıraladığımızda tam orta noktadan veri setini iki eşit parçaya ayıran değere medyan adı verilir. Veri setinde aşırı uçlu elemanlar olduğunda aritmetik ortalamaya göre daha güvenilirdir. Medyan, veri setindeki tüm elemanlardan etkilenmez. 40

41 Basit Veriler İçin Medyan Veri Setinin Hacmi Tek Sayı İse; n 1 2 nci gözlem değeri medyandır. Veri Setinin Hacmi Çift Sayı İse; n 2 ve n 2 1 nci gözlem değerinin aritmetik ortalaması medyandır. 41

42 Medyan bu iki noktanın arasına düşmektedir MEDYAN Tam ortadaki değer medyandır. MEDYAN

43 Gruplanmış Veriler İçin Medyan Gruplanmış verilerde medyan değeri hesaplanırken veri setinin tam orta noktasının hangi gruba ait olduğunu belirlemek için birikimli frekans sütunu oluşturulur. Sıra numarası belirlendikten sonra o sıra numarasına ait grup medyan değeri olarak ifade edilir. 43

44 Örnek: Bir gömlek bayisinin satış mağazasında bir gün içinde satılan gömleklerin dağılımı aşağıda verilmiştir. Buna göre veri seti için medyan değerini hesaplayınız. Gömlek bedeni Satış adedi Birikimli Frekans ( f ) n/2 ve (n/2)+1 nci gözlem değerlerine karşılık gelen değerler (40 ve 41 nci sıra ) 2 olduğundan dolayı medyan değeri 2 dir.

45 Frekans dağılımı aşağıdaki gibi olsaydı (n+1)/2 nci elemana (40 ncı elemana) karşılık gelen değer 8 olacağından dolayı veri setinin medyanı 3 olarak hesaplanacaktı. Gömlek bedeni Satış adedi Birikimli Frekans ( f )

46 Sınıflanmış Veriler İçin Medyan Sınıflanmış verilerde medyan değeri hesaplanırken ilk olarak medyan sınıfı belirlenir. Medyan sınıfı birikimli frekanslar dikkate alındığında toplam frekansın yarısını içinde bulunduran sınıftır. Medyan sınıfı belirlendikten sonra medyan sınıfından bir önceki sınıfın birikimli frekansı ve medyan sınıfı frekansı dikkate alınarak hesaplanır. 46

47 Medyan L f i 2 f med f l. med i L med : Medyan sınıfının alt sınırı f l : Medyan sınıfından bir önceki sınıfın birikimli frekansı f med : Medyan sınıfının frekansı 47

48 Örnek: Bir sınıftaki öğrencilerin boyları hakkında bir araştırma yapılmaktadır. Bu amaçla 50 öğrencinin boyları ölçülerek kaydedilmiştir.öğrencilerin boylarının mod değerini hesaplayınız. Medyan sınıfı Sınıflar f i f i den az den az den az den az den az den az dan az 3 50 Toplam 50

49 Toplam 50 adet gözlem olduğundan dolayı, birikimli frekans sütununda 50/2 =25 nci gözlemin bulunduğu sınıf medyan sınıfı olarak belirlenir. fi fl Medyan L 2. i med f med ,5cm 14

50 Merkezi Ölçüm Ortalama Medyan Mod Tanım x x n Orta değer En sık tekrar eden veri değeri Nasıl Kullanılıyor En Bilinen ortalama Sıklıkla Kullanılır Ara sıra kullanılır Varlığı Her değer Dikkate Alınırmı? Her zaman vardır. Evet Evet Her zaman vardır. Olmayabilir ya da birden fazla olabilir. Hayır Hayır Uç Değerlerden Etkilenirmi? Hayır Hayır Avantajları ve Dezavantajları Birçok istatistiksel metodla iyi çalışır. Birkaç uç değer varsa genellikle iyi bir tercihtir Nominal düzeyde veriler için uygundur Veriler mod etrafında simetrik oldukları zaman, mod, medyan ve artimetik ortalama birbirlerine eşit olur. Eğer örneklem aynı anakütleden çekilmişse, aritmetik ortalama diğer ölçülere göre daha güvenilirdir 50

51 Bir veri setini büyükten küçüğe veya küçükten büyüğe sıraladığımızda dört eşit parçaya ayıran üç değere kartiller adı verilir. 6) Kartiller İlk % 25 lik kısmı içinde bulunduran 1. Kartil (Q 1 ), % 50 lik kısmı içinde bulunduran 2. Kartil (Q 2 ), % 75 lik kısmı içinde bulunduran 3. Kartil (Q 2 ), olarak adlandırılır. %25 %25 %25 %25 %50 lik kısmı içinde bulunduran 2. Kartil (Q 2 ) aynı zamanda veri setinin medyanıdır. Q 1 Q 2 Q 3 51

52 Basit Veriler İçin Kartiller 1.Kartil Q 1 3.Kartil Q 3 n 1 4 nci gözlem değeri, 3( n 1) 4 nci gözlem değeri, 52

53 Örnek: İstatistik I dersini alan 10 öğrencinin vize notları aşağıdaki gibi sıralanmıştır. Buna göre vize notları için Q 1 ve Q 3 değerlerini hesaplayınız. 30,42,56,61,68,79,82,88,90,98 (n+1)/4 ncü verinin sıra numarası (10+1)/4 = 2,75 dir. Q 1 = ,75.(56-42) = 52,5, 3(n+1)/4 ncü verinin sıra numarası 3(10+1)/4 = 8,25 dir. Q 3 = ,25.(90-88) = 88,5 dir. 53

54 Veri seti aşağıdaki gibi verilseydi, 30,42,56,61,68,79,82,88,90,98 (n+1)/4 ncü verinin sıra numarası (9+1)/4 = 2,5 dir. Q 1 = , 5.(56-42) = 49, 3(n+1)/4 ncü verinin sıra numarası 3(9+1)/4 = 7,5 dir. Q 3 = , 5.(88-82) = 85, olarak hesaplanacaktı.

55 Gruplanmış Veriler İçin Kartiller Gruplanmış verilerde kartiller hesaplanırken veri setinin ilk çeyrek ve son çeyrek kısmını tam olarak ifade etmek amacıyla birikimli frekans sütünü oluşturulur. Gruplanmış verilerde örnek hacminin tek veya çift olduğuna bakılmaksızın n/4 ncü eleman 1.Kartil (Q 1 ), 3n/4 ncü eleman ise 3.Kartil (Q 3 ), olarak ifade edilir. 55

56 Örnek: Bir gömlek bayisinin bedenlerine göre satış adetleri aşağıda verilmiştir. Buna göre veri seti için Q 1 ve Q 3 nedir? Gömlek bedeni Satış adedi Birikimli Frekans ( f ) n/4 ncü ( 20 nci ) sıra numarasına karşılık gelen gözlem 2 olduğundan; 1.kartil 2, 3n/4 ncü ( 20 nci ) sıra numarasına karşılık gelen gözlem 3 olduğundan; 3.kartil 3 dür.

57 Sınıflanmış Veriler İçin Kartiller Sınıflanmış verilerde kartiller hesaplanırken ilk olarak birikimli frekans sütunu oluşturularak kartil sınıfları belirlenir. Kartil sınıfları belirlenirken gruplanmış verilerde olduğu gibi n/4 ve (3n)/4 ncü sıralardaki elemanların hangi sınıflara ait iseler o sınıflar kartil sınıfları olur. Kartil sınıfları belirlendikten sonra bu sınıflardan bir önceki sınıfın birikimli frekansı ve mevcut sınıf frekansı dikkate alınarak kartil değerleri hesaplanır. 57

58 58 i f f f L Medyan Q Q l i Q i f f f L Q Q l i Q i f f f L Q Q l i Q Kartil 3. Kartil 2. Kartil

59 Örnek: Bir sınıftaki öğrencilerin 7 boyları hakkında bir araştırma yapılmaktadır. Bu amaçla 50 öğrencinin boyları ölçülerek kaydedilmiştir.öğrencilerin boylarının birinci ve üçüncü kartillerini hesaplayınız. Sınıflar f i f i den az den az 7 12 Q 1 sınıfı den az den az 9 35 Q 3 sınıfı den az den az dan az 3 50 Toplam 50 fi fl Q 4 1 LQ. i 1 f Q1 12, ,58cm 6 59

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU Örnek: Aşağıda 100 yetişkine ilişkin kolesterol değerlerini sınıflandırılarak aritmetik ortalamasını bulunuz (sınıf aralığını 20 alınız). 2 x A fb C 229.5 n 40 20 100 221.5 3 Örnek:.

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 3.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median)

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median) KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 MERKEZİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR Bir örneklemde mevcut olan tüm veriler hesaba katılır. ANALİTİK OLMAYAN MERKEZİ EĞİLİM ÖLÇÜLERİ Bir örneklemdeki verilerin bir

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU FREKANS DAĞILIMLARINI TANIMLAYICI ÖLÇÜLER Düzenlenmiş verilerin yorumlanması ve daha ileri düzeydeki işlemler için verilerin bütününe ait tanımlayıcı ve özetleyici ölçülere ihtiyaç

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir

Detaylı

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik

Detaylı

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI DOÇ. DR. NİHAL ERGİNEL TANIMLAR VE VERİ SINIFLAMASI Olasılık, ilgilenilen olay/olayların meydana gelme olabilirliğinin ölçülmesidir.

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU

Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU 1 Verilerin Derlenmesi ve Sunulması Anakütleden alınan örnek yardımıyla elde edilen veriler derlendikten sonra çizelgeler ve grafikler halinde bir diğer analize hazır

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

Bölüm 2. Frekans Dağılışları VERİLERİN DERLENMESİ VE SUNUMU. Frekans Tanımı. Verilerin Derlenmesi ve Sunulması

Bölüm 2. Frekans Dağılışları VERİLERİN DERLENMESİ VE SUNUMU. Frekans Tanımı. Verilerin Derlenmesi ve Sunulması Verilerin Derlenmesi ve Sunulması Bölüm VERİLERİN DERLENMESİ VE SUNUMU Anakütleden alınan örnek yardımıyla elde edilen veriler derlendikten sonra çizelgeler ve grafikler halinde bir diğer analize hazır

Detaylı

Merkezi Eğilim Ölçüleri

Merkezi Eğilim Ölçüleri Merkezi Eğilim Ölçüleri 1) Parametrik merkezi eğilim ölçüleri Serinin bütün birimlerinden etkilenen merkezi eğilim ölçüleridir. 1) Aritmetik ortalama 2) Geometrik ortalama (G) 3) Harmonik ortalama (H)

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011 Temel Ġstatistik Tanımlayıcı Ġstatistik Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri Y.Doç.Dr. Ġbrahim Turan Mart 2011 Yer / Konum Ölçüleri 1- Aritmetik Ortalama (Mean): Deneklerin aldıkları değerlerin

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Bir sonuç çıkarmak ya da çözüme ulaşabilmek için gözlem, deney, araştırma gibi yöntemlerle toplanan bilgiye veri adı verilir. Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin

Detaylı

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI Tarih/Saat/Yer: 24.06.16/11:00-12:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN IİSTATIİSTIİK Mustafa Sezer PEHLI VAN İstatistik nedir? İstatistik, veri anlamına gelir, İstatistik, sayılarla uğraşan bir bilim dalıdır, İstatistik, eksik bilgiler kullanarak doğru sonuçlara ulaştıran

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

İSTATİSTİK ÖRNEK SORULARI

İSTATİSTİK ÖRNEK SORULARI 1. Aşağıda gruplandırılmış seri verilmiştir. (n) 0-10 den az 5 10-20 den az 6 20-30 den az 9 30-40 den az 11 40-50 den az 4 50-60 den az 3 TOPLAM 38 İSTATİSTİK ÖRNEK SORULARI a) Mod değerini bulunuz? (15

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

MATE211 BİYOİSTATİSTİK

MATE211 BİYOİSTATİSTİK MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: 180 230 190 186 220 191

Detaylı

ÖĞRENCİNİN ADI SOYADI:. NO:

ÖĞRENCİNİN ADI SOYADI:. NO: ÖĞRENCİNİN ADI SOYADI:. NO: İMZA: 2011-2012 ÖĞRETİM YILI TIP 1. SINIF TEMEL BİYOİSTATİSTİK DERSİ ARA SINAVI (04.11.2011) Biyoistatistik ve Tıp Bilişimi Anabilim Dalı Başarılar Temel Biyoistatistik dersi

Detaylı

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ (DUYARSIZ ORTALAMALAR)

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ (DUYARSIZ ORTALAMALAR) SAÜ 5. BÖLÜM İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ (DUYARSIZ ORTALAMALAR) PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 1. HASSAS OLMAYAN ORTALAMALAR 1.1. Mod (Tepe Noktası) 1.1.1.1. Basit Serilerde Mod 1.1.1.2.

Detaylı

Ölçme Sonuçları Üzerinde İstatistiksel İşlemler

Ölçme Sonuçları Üzerinde İstatistiksel İşlemler Ölçme Sonuçları Üzerinde İstatistiksel İşlemler Bir grup birey veya nesnenin belli bir özelliğe sahip olup olmadığı ya da belli bir özelliğe ne derece sahip olduğunu belirlemek amacı ile ölçme işlemi yapılır.

Detaylı

Test İstatistikleri AHMET SALİH ŞİMŞEK

Test İstatistikleri AHMET SALİH ŞİMŞEK Test İstatistikleri AHMET SALİH ŞİMŞEK İçindekiler Test İstatistikleri Merkezi Eğilim Tepe Değer (Mod) Ortanca (Medyan) Aritmetik Ortalama Merkezi Dağılım Dizi Genişliği (Ranj) Standart Sapma Varyans Çarpıklık

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Amacı : YGS de başarılı olmak isteyen bir öğrencinin, istatistiksel yöntemler çerçevesinde, sınavda çıkan soru sayısını,

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Yazarlar Yrd.Doç.Dr.Nizamettin Erbaş Yrd.Doç.Dr.Tuğba Altıntaş Dr.Yeliz Sevimli Saitoğlu A. Zehra Çelenli Başaran Azize Sağır

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

ÖLÇME VE DEĞERLENDĠRME (3)

ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME SONUÇLARI ÜZERĠNDE ĠSTATĠSTĠKSEL ĠġLEMLER VERĠLERĠN DÜZENLENMESĠ -Herhangi bir test uygulamasından önce verilerin düzenlenmesi için önce bütün puanların büyüklüklerine

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir.

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir. GRAFİK VE İSTATİSTİK Grafikler,verileri görsel hale getirerek,veriler üzerinde daha kolay işlem yapılmasına ve elde edilen sonuçları değerlendirerek üzerinde tahmin yapılmasına olanak sağlar. Grafik üzerindeki

Detaylı

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir.

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. BİYOİSTATİSTİK Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. Veri Analiz Bilgi El ile ya da birtakım bilgisayar programları

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 2 AÇIKLAYICI (BETİMLEYİCİ) İSTATİSTİK Yrd. Doç. Dr. Fatih TOSUNOĞLU 1-Açıklayıcı (Betimleyici) İstatistik İnceleme sonucu elde edilen ham verilerin istatistiksel

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI İSTATİSTİK STATISTICS (+) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI KONU BAŞLIKLARI :. İSTATİSTİĞE GİRİŞ. VERİLERİN DÜZENLENMESİ. MERKEZİ EĞİLİM ÖLÇÜLERİ.

Detaylı

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 7. HAFTA Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 23.11.2015 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

17/01/2015. PowerPoint Template. Dr. S.Nihat ŞAD LOGO. İnönü University. Company Logo

17/01/2015. PowerPoint Template. Dr. S.Nihat ŞAD LOGO. İnönü University.  Company Logo PowerPoint Template LOGO Dr. S.Nihat ŞAD İnönü University www.thmemgallery.com Company Logo 1 Contents www.thmemgallery.com geliştirme süreci Birey hakkında bilgi toplama yolları lerin sınıflandırılması

Detaylı

Beklenti Anketi ne İlişkin Yöntemsel Açıklama

Beklenti Anketi ne İlişkin Yöntemsel Açıklama Beklenti Anketi ne İlişkin Yöntemsel Açıklama İstatistik Genel Müdürlüğü Reel Sektör Verileri Müdürlüğü İçindekiler I- Amaç... 3 II- Kapsam... 3 III- Yöntem... 3 IV- Tanımlar ve Hesaplamalar... 3 V- Yayımlama...

Detaylı

ATATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR

ATATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR TATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR Ders Adı : İstatistiğe Giriş Sınav Türü : Bütünleme WWW.NETSORULAR.COM Sınavlarınızda Başarılar Dileriz... İstatistiğe Giriş A Bu testte 20 soru

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

BÖLÜM 9 NORMAL DAĞILIM

BÖLÜM 9 NORMAL DAĞILIM 1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen

Detaylı

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 7. HAFTA Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 14.04.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

İSTATİSTİĞE GİRİŞ ÜNİTE 2 İSTATİSTİK VERİLERİ VERİ TÜRLERİ

İSTATİSTİĞE GİRİŞ ÜNİTE 2 İSTATİSTİK VERİLERİ VERİ TÜRLERİ İSTATİSTİĞE GİRİŞ ÜNİTE 1 TEMEL KAVRAMLAR İSTATİSTİĞİN TANIMI İstatistik; herhangi bir konuyla ilgili verilerin toplanması, düzenlenmesi, özetlenmesi, sunulması, uygun yöntemlerle analizi ve bu analizlerle

Detaylı

İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM

İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM I. İSTATİSTİK KAVRAMI ve TANIMI... 1 A. İSTATİSTİK KAVRAMI... 1 B. İSTATİSTİĞİN TANIMI... 2 C. İSTATİSTİĞİN TARİHÇESİ... 2 D. GÜNÜMÜZDE İSTATİSTİK VE ÖNEMİ...

Detaylı

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel

Detaylı

İSTATİSTİKSEL KALİTE KONTROLDE KULLANILAN TEMEL İSTATİSTİKSEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ)

İSTATİSTİKSEL KALİTE KONTROLDE KULLANILAN TEMEL İSTATİSTİKSEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ) İTATİTİKEL KALİTE KOTROLDE KULLAILA TEMEL İTATİTİKEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ) Kalite Mühendisliği kapsamında İstatistik Proses Kontrolde (İPK) kullanılan temel istatistik ölçüler ve

Detaylı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı İSTATİSTİK İstatistik, belirli amaçlar için veri toplama, toplanan verileri tasnif etme, çözümleme ve yorumlama bilimidir Yrd. Doç. Dr. Hamit AYDIN İstatistik Nedir? Latince de durum anlamına gelen status

Detaylı

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir.

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. VERİ ANALİZİ GİRİŞ Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. Bilimsel Bilgi: Kaynağı ve elde edilme süreçleri belli olan bilgidir. Sosyal İlişkiler Görgül Bulgular İşlevsel

Detaylı

3/6/2014. Küresel Isınma. Öğrenme Amaçlarımız. Küresel Isınma. Aritmetik Ortalama. Veri Özetleme ve Gösterme

3/6/2014. Küresel Isınma. Öğrenme Amaçlarımız. Küresel Isınma. Aritmetik Ortalama. Veri Özetleme ve Gösterme Küresel Isınma Küresel Yer-Okyanus Sıcaklık Endeksi Yıllık Ortalama 5 Yıllık Kayan Ortalama Veri Özetleme ve Sunum (Grafiksel Teknikler) Sıcaklık Değişikliği ( o C) Yrd. Doç. Dr. Ümit Deniz Uluşar Bilgisayar

Detaylı

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 7. HAFTA Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 23.02.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

5. SUNUM. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

5. SUNUM. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 5. SUNUM Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 08.09.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( ) İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir.

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir. BÖLÜM 1: FREKANS DAĞILIMLARI 1.1. Giriş İstatistik, rasgelelik içeren olaylar, süreçler, sistemler hakkında modeller kurmada, gözlemlere dayanarak bu modellerin geçerliliğini sınamada ve bu modellerden

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

İSTATİSTİK I KISA ÖZET KOLAYAOF

İSTATİSTİK I KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. İSTATİSTİK I KISA ÖZET KOLAYAOF 2 Kolayaof.com

Detaylı

İSTATİSTİĞE GİRİŞ FINAL

İSTATİSTİĞE GİRİŞ FINAL İSTATİSTİĞE GİRİŞ İSTATİSTİĞE GİRİŞ FINAL İSTATİSTİĞE GİRİŞ A İSTATİSTİĞE GİRİŞ DİKKAT! Bu testte 25 soru bulunmaktadır. Cevaplarınızı, cevap kâğıdınızın İstatistiğe Giriş testi için ayrılan kısmına işaretleyiniz.

Detaylı

İSTATİSTİK EXCEL UYGULAMA

İSTATİSTİK EXCEL UYGULAMA İSTATİSTİK EXCEL UYGULAMA EXCEL UYGULAMA Bu bölümde Excel ile ilgili temel bilgiler sunulacak ve daha sonra İstatistiksel Uygulamalar hakkında bilgi verilecektir. İşlenecek Konular: Merkezi eğilim Ölçüleri

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr.

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr. Zaman Serileri-1 If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere

Detaylı

Ölçme ve Değerlendirme

Ölçme ve Değerlendirme Ölçme ve Değerlendirme Z Puanı T Puanı Yrd. Doç. Dr. Yetkin Utku KAMUK Standart Puan Herhangi bir ölçüm sonucunda elde edilen ve farklı birimlere sahip ham puanların, standart bir dağılım haline dönüştürülmesi

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler Rastgele Değişkenlerin Dağılımları Mühendislikte İstatistik Yöntemler Ayrık Rastgele Değişkenler ve Olasılık Dağılımları Yapılan çalışmalarda elde edilen verilerin dağılışı ve dağılış fonksiyonu her seferinde

Detaylı

ATATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR

ATATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR TATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR Ders Adı : İstatistiğe Giriş Sınav Türü : Final WWW.NETSORULAR.COM Sınavlarınızda Başarılar Dileriz... İSTATİSTİĞE GİRİŞ DİKKAT! Bu testte 25 soru

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı