Merkezi Eğilim Ölçüleri

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Merkezi Eğilim Ölçüleri"

Transkript

1 Merkezi Eğilim Ölçüleri 1) Parametrik merkezi eğilim ölçüleri Serinin bütün birimlerinden etkilenen merkezi eğilim ölçüleridir. 1) Aritmetik ortalama 2) Geometrik ortalama (G) 3) Harmonik ortalama (H) 2) Parametrik olmayan merkezi eğilim ölçüleri Serinin bütün birimlerinden etkilenmeyen merkezi eğilim ölçüleridir. 1) Tepe değeri (Mod) (X mod ) 2) Ortanca (Medyan) (X med )

2 Aritmetik ortalama Xort = Σ Xi/n = X1+X2+.+Xn / n Beş işletmeye ait sağmal hayvan sayısı (baş) Σ Xi= =20 = Σ Xi/n =20/5= 4

3 Burada: x : Örnek aritmetik ortalaması : Anakitle aritmetik ortalaması n N x i : Örnek büyüklüğü (i= n) : Anakitle büyüklüğü (i= n) : i nci deneğe ait veri

4 Excel de Aritmetik Ortalama

5 Sınıf genişliği topla Sınıf değeri Frekans çarpım /50=25.8 Gerçekte=25.6

6 Ağırlıklı aritmetik ortalama Xort w = (Σ xi wi) / (Σ wi) İşletme no: Verim (kg/da) Ekim alanı (da) Toplam üretim (Σ xi*wi)= = Σ wi=30 Xort w = /30= kg/da ritmetik ortalaması Σ Xi/n =( )/30=22080/30= 4416 kg/da

7 Geometrik Ortalama G = n x1.x2 xn Ln G = 1/n (lnx1 + lnx2+ +lnxn) n: Gözlem sayısı x: Gözlem

8 İşletme no Arazi genişliği (da) G = n x1.x2 xn = 5 5x10x4x3x8 = = lng= 1/5 (ln5+ln10+ln4+ln3+ln8) = 1/5 ( )= ( / 5)= anti Ln=e( )=G= aritmetik ortalaması Σ Xi/n =( )/5=28/5= 5.6 da

9 Harmonik Ortalama 1/H = 1/n *Σ 1/xi İşletme no Arazi genişliği (da) /H = 1/5*(1/5+1/10+1/4+1/3+1/8)=1/5*1.0083= /H= H=4.9585

10 Mod Veri setindeki en çok tekrar eden gözlem, o veri setinin mod udur. Mod, veri setinin hakim değerini gösterir. Modu bulabilmek için, basit gruplandırma yapılır. Frekansı en fazla olan grup, mod değeridir. Bazı veri setlerinde, birden fazla mod bulunabilir. Eğer iki mod varsa, veri seti bimodaldir. Mod, veri setindeki çok büyük veya çok küçük değerlerden etkilenmez.

11 Mod MOD kaçtır?

12

13 Sınıf genişliği Gruplandırılmış verilerde Mod hesabı Sınıf Uçları xmod = L1 + (Δ1/ Δ1+ Δ2). C Sınıf değeri Frekans xmod =12.5+(2/2+6)*10= L 1 : Mod sınıfının alt ucu Δ 1 : Mod sınıfı frekansıyla, bir önceki sınıfın frekansı arasındaki fark Δ 2 : Mod sınıfı frekansıyla, bir sonraki sınıfın frekansı arasındaki fark c : Mod sınıfının büyüklüğü

14

15 Medyan Küçükten büyüğe sıralanmış bir veri setinde, ortada yer alan değer, medyandır. Medyan, veri setini ortadan ikiye böler. Verilerin %50 si medyanın altında, %50 si ise üstünde kalır. Medyan, veri setinin X (n+1/2) nci değeridir. Veri sayısı tek ise, medyanı bulmak kolaydır. Zira ortada tek bir değer vardır. Ancak veri sayısı çift olduğunda, ortada iki değer yer alacağından, bunların ortalaması olarak medyan bulunur.

16

17

18 Gruplandırılmış Verilerde Medyan X medyan = L1 + [(n/2 Σf m-1 )/ f m ]. c L 1 : Medyan sınıfının alt ucu Sınıf genişliği Sınıf Uçları Sınıf değeri Frekans En az ek. F n : Gözlem sayısı f m : Medyan sınıfının frekansı Σf m-1 : Medyan sınıfından bir önceki sınıfın den az eklemeli frekansı c : Medyan sınıfının büyüklüğü X medyan = [(50/2 12)/ 14]. 10=21.785=22 Bulunan bu değerin anlamı nedir?

19 Kartiller (Dörtte Birler) Küçükten büyüğe sıralanmış veri setinin %25 lik parçalarına denk gelen verilerdir. Üç adet dörtte bir bulunur. Birinci kartil (alt kartil= Q 1 ); İkinci kartil (orta kartil = Q 2 =Medyan); Üçüncü kartil (üst kartil = Q 3 ).

20 x 1 Q 1 Q 2 Q 3 x n Verilerin %25 i, alt kartil değerinin; %50 si orta kartil değerinin; %75 i ise üst kartil değerinin altında kalır. Verilerin %75 i, alt kartil değerinin; %50 si orta kartil değerinin; %25 i ise üst kartil değerinin üzerinde kalır. Verilerin %50 si alt ve üst kartil değerleri arasında yer alır.

21 Q1 =X (n+1/4) =X13 Q2 = X 2*(n+1/4) =(X25+ X26 ) Q3 = X 3*(n+1/4) =X Bulunan bu değerin anlamı nedir? Verilerimizin %75 si 35 nin altında, %75 i 15 nun üstündedir. Verilerimizin %50 si, 15 ile 35 arasında bulunmaktadır. Verilerin %50 si 22 den büyük yada küçüktür.

22 Kutu Grafik Kutu grafikle, kartiller, en küçük ve en büyük değerler aynı anda görülebilmektedir. Böylece veri setinin yayılımı, toplanma merkezi ve simetisi hakkında çok çabuk fikir sahibi olunabilir.

23 Bir şirketteki erkek çalışanların maaşlarından, Q 1 = 350, Q 3 = 900, x medyan = 500, x min = 200, x max = 1200 TL olduğu tespit edilmiştir. Şimdi bu parametreleri kullanarak, kutu grafiği çizelim Maaş (TL)

24 Kutu Grafik Erkek çalışanların maaşlarının yarısı, 350 TL ile 900 TL arasında yer almaktadır. Medyan çizgisi, kutunun sol kenarına yakın olduğundan, sağa çarpık olduğunu, bir başka ifadeyle, maaşların sağ tarafta toplandığını göstermektedir.

25 5.8. Onda Birler Sıralanmış bir veri setini 10 eşit parçaya ayıran gözlemlerin belirlenmesi, onda birler yardımıyla yapılır. Böylece veri setindeki gözlemlerin %10, %20,., %90 lık bölümünün, hangi değerin üzerinde veya altında kaldığı belirlenir. Bir veri setinde 9 adet onda bir vardır. Formülü: D1 = X (n+1/10) D2 = X 2(n+1/10).D9 = X 9(n+1)/10 x: gözlem n: gözlem sayısı

26 b) Verilerin %80 i hangi gözlemin altında yer alır? Eğer 8. onda biri bulduğumuz taktirde, verilerin %80 ı o gözlemin altında kalacaktır. D7 = X 8(50+1/10) = X 40.8 = 0.8(X40) + 0.2(X41) = 0.8 (40) (40) =40 Verilerimizin, %70 ı 40sayısının altında kalacaktır

27 Yüzde Birler Sıralanmış bir veri setini 100 eşit parçaya ayıran gözlemlerin bulunmasında, yüzde birlerden yararlanılır. Onda birlerin daha duyarlı şeklidir. Formülü: x: Gözlem n= Gözlem sayısı P 1 = X (n+1/100) P 99 = X 99(n+1/100) P 35 = X 35(n+1/100)

28 Gruplandırılmış Verilerde Kartiller (Q3 ü hesaplayalım) Q k = L 1 + [(kn/4) (ΣfQ k -1)] / fq k ]. c k: Kartil sayısı L 1 : Sınıf genişliği Sınıf Uçları Sınıf değeri Frekans Q k = [(3*50/4) (34)] / 8 ]. 10=36.9= En az ek. F Bulunan bu değerin anlamı nedir? Kartil sınıfının alt ucu N: gözlem sayısı f Qk : Kartil sınıfının frekansı Σ f Qk- 1 : Kartil sınıfından bir önceki sınıfın den az eklemeli frekansı c: Kartil sınıfının büyüklüğü

29 Q k = L 1 + [(kn/4) (ΣfQ k -1)] / fq k ]. c D k = L 1 + [(kn/10) (ΣfD k -1)] / fd k ]. c P k = L 1 + [(kn/100) (ΣfP k -1)] / fp k ]. c

30 Düzeltilmiş Aritmetik Ortalama Aritmetik ortalamanın önemli sakıncalarından biri olarak, uç değerlerden etkilenmesini göstermiştik. Uç değerler ayıklandığı taktirde, bu sakınca giderilmiş olacaktır. Uç değerleri ayıklamak için, 3 yöntemden yararlanılmaktadır 1. Kartiller 2. Kartil Aralığı 3. Yüzdebirler

31 Kartilleri Kullanarak Düzeltilmiş Aritmetik Ortalama Sıralanmış bir veri setinde, 1. kartilden küçük ve 3. kartilden büyük değerleri çıkarıp, geride kalan verilerle, düzeltilmiş aritmetik ortalama hesaplayabiliriz. Böylece, uç değerler ayıklanmış ve aritmetik ortalama üzerindeki etkileri giderilmiş olacaktır. Sıralanmış veri setimiz Önce mevcut haliyle aritmetik ortalama hesaplanır: X ort = 95 / 11 = 8.64

32 Şimdi 1. ve 3. kartili belirleyelim: Q 1 = X n+1/4 = X 11+1/4 = X 3 = 6 Q 3 = X 3(n+1)/4 = X 3(11+1)/4 = X 9 = 8 1. kartil olan 6 dan küçük ve 3. kartil olan 8 den büyük verileri çıkardıktan sonra veri setimiz: Uç değerleri uzaklaştırdığımıza göre, artık düzeltilmiş aritmetik ortalamayı hesaplayabiliriz. X ort = 50 / 7 = 7.14 X ort = 95 / 11 = 8.64

33 Örnek 5-25 Bu örnekte de, bir önceki veri setini kullanarak, alt ve üst uçtaki yüzde 10 luk dilimleri çıkaralım. Bunun için %10 unu ve %90 ı bulmamız gerekecek P 10 = X 10(n+1)/100 = X 1.2 = 5 5(0.1)+5(0.9)=1+4=5 P 90 = X 90(n+1)/100 = X 10.8 = 17(0.1)+18(0.9)= =17.9 Buna göre 5 ten küçük ve 17 9 den büyük veriler elenecektir. 5 ten küçük veri yoktur den büyük tek veri 18 dir. Tek uç değer 18 dir.

34 Buna göre düzeltilmiş aritmetik ortalama: X ort = 77 / 10 = 7.7

35 Ödev n=25 Örnek hacmi 25 olan veri seti hazırlayarak; 1) Aritmetik ortalamasını hesaplayın, 2) Geometrik ortalamasını hesaplayın, 3) Harmonik ortalamasını hesaplayın, 4) Mod ve medyan değerlerini hesaplayın, 5) Verileri Gruplandırılmış veriler şekline dönüştürerek aynı işlemleri tekrarlayın.

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 3.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU Örnek: Aşağıda 100 yetişkine ilişkin kolesterol değerlerini sınıflandırılarak aritmetik ortalamasını bulunuz (sınıf aralığını 20 alınız). 2 x A fb C 229.5 n 40 20 100 221.5 3 Örnek:.

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar TEMEL İSTATİSTİK BİLGİSİ İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar İstatistiksel Verileri Tasnif Etme Verileri daha anlamlı hale getirmek amacıyla

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011 Temel Ġstatistik Tanımlayıcı Ġstatistik Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri Y.Doç.Dr. Ġbrahim Turan Mart 2011 Yer / Konum Ölçüleri 1- Aritmetik Ortalama (Mean): Deneklerin aldıkları değerlerin

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ (DUYARSIZ ORTALAMALAR)

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ (DUYARSIZ ORTALAMALAR) SAÜ 5. BÖLÜM İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ (DUYARSIZ ORTALAMALAR) PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 1. HASSAS OLMAYAN ORTALAMALAR 1.1. Mod (Tepe Noktası) 1.1.1.1. Basit Serilerde Mod 1.1.1.2.

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU FREKANS DAĞILIMLARINI TANIMLAYICI ÖLÇÜLER Düzenlenmiş verilerin yorumlanması ve daha ileri düzeydeki işlemler için verilerin bütününe ait tanımlayıcı ve özetleyici ölçülere ihtiyaç

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir.

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. BİYOİSTATİSTİK Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. Veri Analiz Bilgi El ile ya da birtakım bilgisayar programları

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median)

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median) KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 MERKEZİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR Bir örneklemde mevcut olan tüm veriler hesaba katılır. ANALİTİK OLMAYAN MERKEZİ EĞİLİM ÖLÇÜLERİ Bir örneklemdeki verilerin bir

Detaylı

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir.

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir. GRAFİK VE İSTATİSTİK Grafikler,verileri görsel hale getirerek,veriler üzerinde daha kolay işlem yapılmasına ve elde edilen sonuçları değerlendirerek üzerinde tahmin yapılmasına olanak sağlar. Grafik üzerindeki

Detaylı

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI DOÇ. DR. NİHAL ERGİNEL TANIMLAR VE VERİ SINIFLAMASI Olasılık, ilgilenilen olay/olayların meydana gelme olabilirliğinin ölçülmesidir.

Detaylı

İSTATİSTİK EXCEL UYGULAMA

İSTATİSTİK EXCEL UYGULAMA İSTATİSTİK EXCEL UYGULAMA EXCEL UYGULAMA Bu bölümde Excel ile ilgili temel bilgiler sunulacak ve daha sonra İstatistiksel Uygulamalar hakkında bilgi verilecektir. İşlenecek Konular: Merkezi eğilim Ölçüleri

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

5. SUNUM. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

5. SUNUM. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 5. SUNUM Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 08.09.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI Tarih/Saat/Yer: 24.06.16/11:00-12:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Test İstatistikleri AHMET SALİH ŞİMŞEK

Test İstatistikleri AHMET SALİH ŞİMŞEK Test İstatistikleri AHMET SALİH ŞİMŞEK İçindekiler Test İstatistikleri Merkezi Eğilim Tepe Değer (Mod) Ortanca (Medyan) Aritmetik Ortalama Merkezi Dağılım Dizi Genişliği (Ranj) Standart Sapma Varyans Çarpıklık

Detaylı

İSTATİSTİK ÖRNEK SORULARI

İSTATİSTİK ÖRNEK SORULARI 1. Aşağıda gruplandırılmış seri verilmiştir. (n) 0-10 den az 5 10-20 den az 6 20-30 den az 9 30-40 den az 11 40-50 den az 4 50-60 den az 3 TOPLAM 38 İSTATİSTİK ÖRNEK SORULARI a) Mod değerini bulunuz? (15

Detaylı

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Bir sonuç çıkarmak ya da çözüme ulaşabilmek için gözlem, deney, araştırma gibi yöntemlerle toplanan bilgiye veri adı verilir. Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin

Detaylı

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 7. HAFTA Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 14.04.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Amacı : YGS de başarılı olmak isteyen bir öğrencinin, istatistiksel yöntemler çerçevesinde, sınavda çıkan soru sayısını,

Detaylı

ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI

ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI 1. TEMEL KAVRAMLAR 2. ÖLÇMEDE HATA (GÜVENİRLİK GEÇERLİK) 3. İSTATİSTİK 1. TEMEL KAVRAMLAR Ölçme, Ölçüm, Ölçme Kuralı, Ölçüt, Değerlendirme. Ölçme Türleri: Doğrudan,

Detaylı

MOD MEDYAN ARİTMETİK ORTALAMA MERKEZİ EĞİLİM ÖLÇÜLERİ

MOD MEDYAN ARİTMETİK ORTALAMA MERKEZİ EĞİLİM ÖLÇÜLERİ MOD MEDYAN ARİTMETİK ORTALAMA MERKEZİ EĞİLİM ÖLÇÜLERİ MOD MOD. İzmirli müzik grubu [MOD] [ORTANCA] [MEDYAN] [ARİTMETİK ORTALAMA] MEDYAN, ORTANCA median [MOD] [ORTANCA] [MEDYAN] [ARİTMETİK ORTALAMA] MEDYAN,

Detaylı

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 7. HAFTA Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 23.02.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir?

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir? İSTATİSTİK SORU VE CEVAPLARI 1)Tabloda 500 kişinin sahip oldukları akıllı telefon markalarını gösteren bilgiler verilmiştir.bu tabloda ki bilgileri yansıtan daire grafiği aşağıdakilerden hangisidir? TELEFON

Detaylı

ÖLÇME VE DEĞERLENDĠRME (3)

ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME SONUÇLARI ÜZERĠNDE ĠSTATĠSTĠKSEL ĠġLEMLER VERĠLERĠN DÜZENLENMESĠ -Herhangi bir test uygulamasından önce verilerin düzenlenmesi için önce bütün puanların büyüklüklerine

Detaylı

Hatalar Bilgisi veistatistik Dersi Çalışma Soruları Arasınav(Harita Müh. Bölümü-2015)

Hatalar Bilgisi veistatistik Dersi Çalışma Soruları Arasınav(Harita Müh. Bölümü-2015) Hatalar Bilgisi veistatistik Dersi Çalışma Soruları Arasınav(Harita Müh. Bölümü-2015) S-1) Ölçmelerdeki hata kaynakları S-2) Hata türlerini belirtiniz ve kısaca açıklayınız. S-3) Bir doğrultu 9 kez ölçülmüş,

Detaylı

Veri nedir? Bir öğrenci kümesine uygulanan bir sınavdan elde edilen puanların herhangi bir işlem yapılmamış haline ham veri denir (ham puanlar) denir.

Veri nedir? Bir öğrenci kümesine uygulanan bir sınavdan elde edilen puanların herhangi bir işlem yapılmamış haline ham veri denir (ham puanlar) denir. Dr. Sedat Şen 1 Veri nedir? Bir öğrenci kümesine uygulanan bir sınavdan elde edilen puanların herhangi bir işlem yapılmamış haline ham veri denir (ham puanlar) denir. Değer nedir? Bir veriyi (puanlar dizisini)

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

MS Excel. Excel Microsoft Office in bir parçasını oluşturur. Office 2007, Office 2010, Office 2013, Office 2016

MS Excel. Excel Microsoft Office in bir parçasını oluşturur. Office 2007, Office 2010, Office 2013, Office 2016 MS Excel Elektronik tablolama veya hesaplama programı olarak da adlandırılan Excel, girilen veriler üzerinde hesap yapabilme, tablolar içinde verilerle grafik oluşturma, verileri karşılaştırıp sonuç üretebilme

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

MATE211 BİYOİSTATİSTİK

MATE211 BİYOİSTATİSTİK MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: 180 230 190 186 220 191

Detaylı

ATATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR

ATATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR TATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR Ders Adı : İstatistiğe Giriş Sınav Türü : Bütünleme WWW.NETSORULAR.COM Sınavlarınızda Başarılar Dileriz... İstatistiğe Giriş A Bu testte 20 soru

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

3/16/2017 UYGULAMALAR YAĞIŞ

3/16/2017 UYGULAMALAR YAĞIŞ UYGULAMALAR YAĞIŞ 1 PLÜVYOGRAF KAYITLARININ DEĞERLENDİRİLMESİ Plüvyograflı bir yağış istasyonunda 12 Mart 1993 günü kaydedilen, 6 saat süreli yağışın plüvyograf kaydı (toplam yağış eğrisi) şekilde gösterilmiştir.

Detaylı

KANTİTATİF TEKNİKLER - Temel İstatistik -

KANTİTATİF TEKNİKLER - Temel İstatistik - KANTİTATİF TEKNİKLER - Temel İstatistik - 1 İstatistik Nedir? Belirli bir amaçla verilerin toplanması, düzenlenmesi, analiz edilerek yorumlanmasını sağlayan yöntemler topluluğudur. 2 İstatistik Kullanım

Detaylı

BİYOİSTATİSTİK MERKEZİ EĞİLİM ÖLÇÜLERİ

BİYOİSTATİSTİK MERKEZİ EĞİLİM ÖLÇÜLERİ BİYOİSTATİSTİK MERKEZİ EĞİLİM ÖLÇÜLERİ B Doç. Dr. Mahmut AKBOLAT *Bir veri setinin merkez noktasını gösteren, serinin normal değerinin bir göstergesi olan ve veriyi tek bir değerle ifade eden değerlere

Detaylı

İSTATİSTİĞE GİRİŞ ÜNİTE 2 İSTATİSTİK VERİLERİ VERİ TÜRLERİ

İSTATİSTİĞE GİRİŞ ÜNİTE 2 İSTATİSTİK VERİLERİ VERİ TÜRLERİ İSTATİSTİĞE GİRİŞ ÜNİTE 1 TEMEL KAVRAMLAR İSTATİSTİĞİN TANIMI İstatistik; herhangi bir konuyla ilgili verilerin toplanması, düzenlenmesi, özetlenmesi, sunulması, uygun yöntemlerle analizi ve bu analizlerle

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

Z Diyagram Di er Grafik Türleri SORULAR...42

Z Diyagram Di er Grafik Türleri SORULAR...42 Ç N D E K L E R BÖLÜM I 1. STAT ST K KAVRAMI 1-20 1.1. STAT ST K KEL MES N N ANLAMI...3 1.2. STAT ST K KEL MES N N KÖKÜ...5 1.3. STAT ST N TANIMI...5 1.4. STAT ST N KONUSU...5 1.5. BÜYÜK SAYILAR KANUNU...6

Detaylı

BİLGİSAYAR PROGRAMLAMA

BİLGİSAYAR PROGRAMLAMA BİLGİSAYAR PROGRAMLAMA Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642 Excel - Hücreler Excel de hücrelere hangi değerler girilebilir? Metin Rakam Tarih ve Saat Formül 1 HÜCRE SEÇİMİ Matematikteki

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

Excel Formüller ve Fonksiyonlar. Yusuf MANSUROĞLU Mühendislik Hizmetleri Müdür Yardımcısı 11.02.2015

Excel Formüller ve Fonksiyonlar. Yusuf MANSUROĞLU Mühendislik Hizmetleri Müdür Yardımcısı 11.02.2015 Excel Formüller ve Fonksiyonlar Yusuf MANSUROĞLU Mühendislik Hizmetleri Müdür Yardımcısı 11.02.2015 Excel de Yapabileceklerimiz Temel aritmetik işlemler (4 işlem) Mantıksal karşılaştırma işlemleri (>,>=,

Detaylı

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi 2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel

Detaylı

İSTATİSTİKSEL KALİTE KONTROLDE KULLANILAN TEMEL İSTATİSTİKSEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ)

İSTATİSTİKSEL KALİTE KONTROLDE KULLANILAN TEMEL İSTATİSTİKSEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ) İTATİTİKEL KALİTE KOTROLDE KULLAILA TEMEL İTATİTİKEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ) Kalite Mühendisliği kapsamında İstatistik Proses Kontrolde (İPK) kullanılan temel istatistik ölçüler ve

Detaylı

Ölçme Sonuçları Üzerinde İstatistiksel İşlemler

Ölçme Sonuçları Üzerinde İstatistiksel İşlemler Ölçme Sonuçları Üzerinde İstatistiksel İşlemler Bir grup birey veya nesnenin belli bir özelliğe sahip olup olmadığı ya da belli bir özelliğe ne derece sahip olduğunu belirlemek amacı ile ölçme işlemi yapılır.

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

[!] Sütun, çizgi ve daire grafikleri gerçek yaşamdan seçilmiş örnek etkinliklerle hatırlatılır.

[!] Sütun, çizgi ve daire grafikleri gerçek yaşamdan seçilmiş örnek etkinliklerle hatırlatılır. : OLASILIK VE 2. BÖLÜM: PERMÜTASYON, KOMBİNASYON, OLASILIK VE ISTATISTIK 1. Verilen bir gerçek yaşam durumuna uygun serpilme grafiği ve kutu grafiği çizer ve bu grafikler üzerinden çıkarımlarda bulunur.

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

17/01/2015. PowerPoint Template. Dr. S.Nihat ŞAD LOGO. İnönü University. Company Logo

17/01/2015. PowerPoint Template. Dr. S.Nihat ŞAD LOGO. İnönü University.  Company Logo PowerPoint Template LOGO Dr. S.Nihat ŞAD İnönü University www.thmemgallery.com Company Logo 1 Contents www.thmemgallery.com geliştirme süreci Birey hakkında bilgi toplama yolları lerin sınıflandırılması

Detaylı

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN IİSTATIİSTIİK Mustafa Sezer PEHLI VAN İstatistik nedir? İstatistik, veri anlamına gelir, İstatistik, sayılarla uğraşan bir bilim dalıdır, İstatistik, eksik bilgiler kullanarak doğru sonuçlara ulaştıran

Detaylı

3/6/2014. Küresel Isınma. Öğrenme Amaçlarımız. Küresel Isınma. Aritmetik Ortalama. Veri Özetleme ve Gösterme

3/6/2014. Küresel Isınma. Öğrenme Amaçlarımız. Küresel Isınma. Aritmetik Ortalama. Veri Özetleme ve Gösterme Küresel Isınma Küresel Yer-Okyanus Sıcaklık Endeksi Yıllık Ortalama 5 Yıllık Kayan Ortalama Veri Özetleme ve Sunum (Grafiksel Teknikler) Sıcaklık Değişikliği ( o C) Yrd. Doç. Dr. Ümit Deniz Uluşar Bilgisayar

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri Deneyin Amacı: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini hesaplamak ve ölçmek, rezonans eğrilerini çizmek.

Detaylı

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır.

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır. 3. Bölüm Güç Elektroniğinde Temel Kavramlar ve Devre Türleri Doç. Dr. Ersan KABALC AEK-207 GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ Güç Elektroniğine Giriş Güç elektroniği elektrik mühendisliğinde enerji ve

Detaylı

MS Excel. Excel Microsoft Office in bir parçasını oluşturur. Office 2007, Office 2010, Office 2013, Office 2016

MS Excel. Excel Microsoft Office in bir parçasını oluşturur. Office 2007, Office 2010, Office 2013, Office 2016 MS Excel Elektronik tablolama veya hesaplama programı olarak da adlandırılan Excel, girilen veriler üzerinde hesap yapabilme, tablolar içinde verilerle grafik oluşturma, verileri karşılaştırıp sonuç üretebilme

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

MODÜLER ARİTMETİK Test -4

MODÜLER ARİTMETİK Test -4 MODÜLER ARİTMETİK Test -4 1. A doğal sayısının 7 ye bölümündeki kalan 4, B doğal sayısının 7 ye bölümündeki kalan 5 tir. Buna göre, A toplamının 7 ye bölümündeki kalan 3B A) 0 B) 1 C) D) 3 E) 4 5. I. 1

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

SU DALGALARINDA GİRİŞİM

SU DALGALARINDA GİRİŞİM SU DALGALARINDA GİRİŞİM Yukarıda iki kaynağın oluşturduğu dairesel su dalgalarının meydana getirdiği girişim deseni gösterilmiştir Burada kesikli çizgiler dalga çukurlarını, düz çizgiler dalga tepelerini

Detaylı

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik

Detaylı

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( ) İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : SOSYAL BİLİMLERDE İSTATİSTİK Ders No : 000100 Teorik : Pratik : 0 Kredi : ECTS : Ders Bilgileri Ders Türü Öğretim Dili Öğretim

Detaylı

Çarpım fonksiyonu, seçilen hücredeki rakamların veya belirtilen hücre aralığının çarpımını alır.

Çarpım fonksiyonu, seçilen hücredeki rakamların veya belirtilen hücre aralığının çarpımını alır. Excel Fonksiyonları =TOPLA() Fonksiyonu Topla fonksiyonu seçilen hücrelerdeki rakamların veya belirtilen rakam dizisinin toplamını alır. Topla fonksiyonunu kullanmadan + operatörü ile formül yazarak toplama

Detaylı

TEST VE MADDE ANALİZLERİ

TEST VE MADDE ANALİZLERİ TEST VE MADDE ANALİZLERİ Madde güçlüğü Madde ayırt ediciliği Madde varyansı ve madde standart sapması Madde güvenirliği Çeldiricilerin işlerliği Test Analizleri Merkezi Eğilim(Yığılma Ölçüleri) Merkezi

Detaylı

Şekil 8.1: Cismin yatay ve dikey ivmesi

Şekil 8.1: Cismin yatay ve dikey ivmesi Deney No : M7 Deneyin Adı : EĞİK ATIŞ Deneyin Amacı : 1. Topun ilk hızını belirlemek 2. Ölçülen menzille hesaplanan menzili karşılaştırmak 3. Bir düzlem üzerinde uygulanan eğik atışta açıyla menzil ve

Detaylı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı İSTATİSTİK İstatistik, belirli amaçlar için veri toplama, toplanan verileri tasnif etme, çözümleme ve yorumlama bilimidir Yrd. Doç. Dr. Hamit AYDIN İstatistik Nedir? Latince de durum anlamına gelen status

Detaylı

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Deneyin Amacı DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Seri ve paralel RLC devrelerinde rezonans durumunun gözlenmesi, rezonans eğrisinin elde edilmesi ve devrenin karakteristik parametrelerinin ölçülmesi

Detaylı

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel

Detaylı

EĞİK ATIŞ Ankara 2008

EĞİK ATIŞ Ankara 2008 EĞİK ATIŞ Ankara 8 EĞİK ATIŞ: AMAÇ: 1. Topun ilk hızını belirlemek. Ölçülen menzille hesaplanan menzili karşılaştırmak 3. Bir düzlem üzerinde uygulanan eğik atışda açıyla menzil ve tepenoktası arasındaki

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME Öğrenci başarısının veya başarısızlığının kaynağında; öğrenci, öğretmen, çevre ve program vardır. Eğitimde değerlendirme yapılırken bu kaynaklar dikkate alınmaz. Eğitimciler,

Detaylı

Tekrarlanabilirlik. Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık, Doğrusallık. Sapma

Tekrarlanabilirlik. Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık, Doğrusallık. Sapma ÖLÇÜM SİSTEMİ ANALİZİ (MEASUREMENT SYSTEM ANALYSIS - MSA) Ölçüm Sistemi Varyansının Türleri Ölçüm sistemi hataları beş grupta ele alınır. Sapma Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık,

Detaylı

DENEY 6: SERİ/PARALEL RC DEVRELERİN AC ANALİZİ

DENEY 6: SERİ/PARALEL RC DEVRELERİN AC ANALİZİ A. DENEYİN AMACI : Seri ve paralel RC devrelerinin ac analizini yapmak. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. Sinyal Üreteci, 2. Osiloskop, 3. Değişik değerlerde direnç ve kondansatörler. C. DENEY İLE

Detaylı