KAPASİTANS VE ENDÜKTANS EBE-215, Ö.F.BAY 1

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "KAPASİTANS VE ENDÜKTANS EBE-215, Ö.F.BAY 1"

Transkript

1 KAPASİTANS VE ENDÜKTANS EBE-5, Ö.F.BAY

2 KAPASİTANS VE ENDÜKTANS Bu bölümde enerj depolayan pasf elemanlardan Kapasörler e Endükörler anıılmakadır ÖĞRENME HEDEFLERİ KAPASİTÖRLER Elekrk alanında enerj depolarlar elekrosak enerj Dere elemanı olarak model ENDÜKTÖRLER Manyek alanında enerj depolarlar Dere elemanı olarak model KAPASİTÖR VE ENDÜKTÖR BİLEŞİMLERİ Elemanların ser/paralel bleşmler EBE-5, Ö.F.BAY

3 KAPASİTÖRLER Kapasör, k leken yüzeyn, br leken olmayan delekrk madde le ayrılmasıyla oluşan br dere elemanıdır. A ε d EBE-5, Ö.F.BAY 3

4 KAPASİTÖRLER EBE-5, Ö.F.BAY 4

5 KAPASİTÖRLER İleken plakalar arasında kullanılan yalıkan malzemenn ürüne göre sınıflandırılırlar. Yalıkan malzemeler; yağ, bal mumu, polsren, seramk ya da mka emdrlmş kağı olablr. Kapasans ın brm, Farad F ır. Kapasörler sab ya da değşken olablrler EBE-5, Ö.F.BAY 5

6 Kapasans İk lekendek elekrk yükü, enerj depolayan elekrksel br alanı oluşurur EBE-5, Ö.F.BAY 6

7 Kapasans İk leken arasındak gerlm farkı yük le oranılıdır : q coulomb kanunu Bu oranı sab kapasans olarak adlandırılır. ÖRNEK V mkrofaradlık br kapasör m lk yüke sahpse Kapasör uçlarındak gerlm bulun. Q 3 * * 5 6 Kapasans Farad olarak, yük oulomb olarak alıdığında gerlm Vol cnsnden bulunur. V EBE-5, Ö.F.BAY 7

8 KAPASİTÖRLER Kapasörün akım-gerlm uç karakersklkleryle lgleneceğz. dq / d q Akım; dq d d d EBE-5, Ö.F.BAY 8

9 KAPASİTÖRLER sab kapasans çn, d d d d - dan ye negraln alalım. - olduğunu arsayarsak, EBE-5, Ö.F.BAY 9

10 EBE-5, Ö.F.BAY Kapasör Gerlm d d c dx x dx x dx x O c dx x

11 KAPASİTÖRLER Buradak,, - anından anına kadar kapasör üzernde brken yüken dolayı oluşan gerlmdr. EBE-5, Ö.F.BAY

12 EBE-5, Ö.F.BAY Enerj depolama d d p Depolanan enerj, elemana erlen güçen elde edleblr. Bu güç; J w x x d x w dx dx x d x dx dx x d x w c c c

13 Örnek-. Paralel k leken V a şarj edldğnde üzernde brken yük 6 p olduğuna göre paralel lekenlern kapasansı nedr? 6 pf Q 5 V EBE-5, Ö.F.BAY 3

14 Örnek-. Şekldek 5 µf lık br kapasör üzerndek gerlme a dalga şekl göserlmşr. Akım dalga şekln belrleynz. V 4 _ 6 8 ms < 6 ms 6 < 8ms > 8ms EBE-5, Ö.F.BAY 4

15 EBE-5, Ö.F.BAY 5 Örnek-. deamı ma d d çn ms 4 5 ; < ma çn ms 6 5 ; < ; 8 > çn ms

16 Örnek-. deamı Akım dalga şekl, aşağıda göserlmekedr. >8 ms çn dır. EBE-5, Ö.F.BAY 6

17 Örnek-3. Örnek- dek kondansaörün 6 ms anında elekrk alanındak depolanan enerjy bulunuz. w 6 ms anında; w6 ms 44 µ J EBE-5, Ö.F.BAY 7

18 Örnek-4. Aşağıdak şeklde, başlangıça şarj edlmemş 4 µf lık br kapasöre a akım dalga şekl göserlmşr. Gerlm dalga şekln belrleynz. EBE-5, Ö.F.BAY 8

19 EBE-5, Ö.F.BAY 9 Örnek-4. deamı > < < ms ms ms ms

20 Örnek-4. deamı < ms olduğunda, zaman aralığında çn denklem; x dx 6 3 mv 3 ms 4 3 ms < 4 ms 4 zaman aralığında; dx EBE-5, Ö.F.BAY

21 Örnek-4. deamı EBE-5, Ö.F.BAY

22 Çalışma Soruları Çalışma sorusu E5. Çalışma sorusu E5.3 EBE-5, Ö.F.BAY

23 ENDÜKTÖRLER Genellkle halka şeklndek leken br elden oluşan br dere elemanıdır. Endükörler bobnler pk olarak üzerne sarıldıkları nüe çekrdek ürüne göre sınıflandırılırlar. Nüe malzemes örneğn, haa ya da herhang br manyek olmayan madde, eya demr olablr. Haa ya da manyek olmayan malzemelerle yapılan endükörler, radyo, elezyon e flre derelernde genş çapa kullanılırlar. EBE-5, Ö.F.BAY 3

24 ENDÜKTÖRLER EBE-5, Ö.F.BAY 4

25 Endükans Endükans,leken üzernden akım akarsa meydana gelr. İleken üzernden akım akarken akımla oranılı olarak manyek br alan oluşur. İleken uçlarındak gerlm farkı manyek alanın değşm oranı le oranılıdır. EBE-5, Ö.F.BAY 5

26 Endükans İleken uçlarındak gerlm farkı akımın değşm oranı le oranılıdır. L d d Bu oranı sab endükans olarak adlandırılır e L le göserlr. Brm Henry H dr EBE-5, Ö.F.BAY 6

27 ENDÜKTÖRLER L L d d EBE-5, Ö.F.BAY 7

28 ENDÜKTÖRLER endükördek akımın fades; x dx L L x dx EBE-5, Ö.F.BAY 8

29 Depolanan Enerj Endüköre erlen güç, elemanda depolanan enerjy elde emek çn kullanılablr. Bu güç; p p L d d Manyek alanda depolanan enerj; d x wl L x dx dx w L L J EBE-5, Ö.F.BAY 9

30 Örnek-5. Aşağıdak şeklde mh lk br endüköre a akım dalga şekl erlmşr. Gerlm dalga şekln belrleynz. L _ < ms < 4 ms > 4 ms EBE-5, Ö.F.BAY 3

31 EBE-5, Ö.F.BAY 3 Örnek-5. deamı mv d d L ms < mv d d L ms <

32 Örnek-5. deamı >4 ms çn dır. Gerlm dalga şekl, aşağıda göserlmekedr mv - 4 ms EBE-5, Ö.F.BAY 3

33 Çalışma Soruları Çalışma sorusu E5.4 Çalışma sorusu E5.5 EBE-5, Ö.F.BAY 33

34 KAPASİTÖR e ENDÜKTÖRLERİN TEMEL KARAKTERİSTİKLERİ Br kapasör üzerndek gerlm sabse yan zamanla değşmyorsa, üzernden geçen akım sıfırdır. Bu yüzden kapasör, DA doğru akım da açık dere gb görünür. Br endükördek akım sabse, üzerndek gerlm sıfırdır. Bu yüzden endükör, DA doğru akım da kısa dere gb görünür. Kapasör üzerndek gerlmde, fzksel olarak anlık br sıçrama gerçekleşrlemez. Br endükörde akımın anlık olarak değşmes mümkün değldr. EBE-5, Ö.F.BAY 34

35 EBE-5, Ö.F.BAY 35 Kapasör e Endükör İçn İkl İlşkler Kapasör Endükör L w d d L p dx x L d d L w d d p dx x d d

36 İdeal kapasör e endükör, sadece enerj depolar. Bu elemanların modeller aşağıda erlmekedr; EBE-5, Ö.F.BAY 36

37 KAPASİTÖR e ENDÜKTÖRLERİN BİRLEŞİMİ Ser Bağlı Kapasörler Eğer kapasörler ser bağlanırsa, eşdeğer kapasansları Krchhoff un Gerlm Kanunu kullanılarak hesaplanablr. EBE-5, Ö.F.BAY 37

38 EBE-5, Ö.F.BAY 38 3 N L d N N d N d S N N S L

39 Paralel Kapasörler Paralel bağlı N ade kapasörün eşdeğer kapasansını bulmak çn Krchhoff un Akım Kanunu ndan yararlanablrz. N N P EBE-5, Ö.F.BAY 39

40 3 L N d d d d d d 3 L N P d d d d N d d L P 3 N EBE-5, Ö.F.BAY 4

41 ÖRNEK 6µ F µ F 4µ F 3µ F eq 4µ F 3 eq µ F µ F 3µ F EBE-5, Ö.F.BAY 4

42 Ser Endükörler Eğer N ade bobn ser bağlanırsa, eşdeğer endükans aşağıdak gb belrleneblr. Krchhoff un Gerlm Kanunu nu uygularsak, L 3 N EBE-5, Ö.F.BAY 4

43 d d L L L3 d d d d L N L L S d d d d L N d d N L S L L s L L L 3 L N EBE-5, Ö.F.BAY 43

44 Paralel Endükörler Şekldek N ade paralel endükör çeren derey göz önüne alalım. Krchhoff un Akım Kanunu nu kullanarak, N L L L N L P L 3 N EBE-5, Ö.F.BAY 44

45 EBE-5, Ö.F.BAY 45 j j j dx x L N j j N j j dx x L dx x L P P L N L L L L

46 Çalışma Soruları Çalışma sorusu E5.7 Çalışma sorusu E5.8 EBE-5, Ö.F.BAY 46

Elektrik Devre Temelleri 11

Elektrik Devre Temelleri 11 Elektrik Devre Temelleri 11 KAPASİTÖR VE ENDÜKTÖR Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi 6.1. Giriş Bu bölümde doğrusal iki devre elemanı olan kapasitör (capacitor)

Detaylı

1. Sunum: Kapasitans ve İndüktans. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS

1. Sunum: Kapasitans ve İndüktans. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS 1. Sunum: Kapasitans ve İndüktans Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS Kapasitans ve İndüktans Kondansatörler elektrik alanlarında, indüktörler ise manyejk alanlarında

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu Eylül Deneme Sınavı (Prof.Dr.Ventsslav Dmtrov) Konu: Elektrk Devrelernde İndüktans Soru. Şekldek gösterlen devrede lk anda K ve K anahtarları açıktır. K anahtarı kapatılıyor ve kondansatörün gerlm U ε/

Detaylı

BLM1612 DEVRE TEORİSİ

BLM1612 DEVRE TEORİSİ BLM1612 DEVRE TEORİSİ KAPASİTÖRLER ve ENDÜKTANSLAR DR. GÖRKEM SERBES Kapasitans Kapasitör, elektrik geçirgenliği ε olan dielektrik bir malzeme ile ayrılan iki iletken gövdeden oluşur ve elektrik alanda

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu TAP Fzk Olmpyat Okulu Eylül Deneme Sınavı (Prof.Dr.Ventsslav Dmtrov Konu: Elektrk Devrelernde İndüktans Soru. Şekldek gösterlen devrede lk anda K ve K anahtarları açıktır. K anahtarı kapatılıyor ve kondansatörün

Detaylı

Anlık ve Ortalama Güç

Anlık ve Ortalama Güç ALTERNATİF AK-Dere Analz Bölü-4 AC Güç Anlık Güç Oralaa güç Güç fakörü Akf, reakf güç Kpleks güç Reakf güç düzele (Kpanzasyn aksu akf güç ransfer Anlık Güç, p( (herhang br ank güç p Anlık e Oralaa Güç

Detaylı

Fizik 101: Ders 15 Ajanda

Fizik 101: Ders 15 Ajanda zk 101: Ders 15 Ajanda İk boyutta elastk çarpışma Örnekler (nükleer saçılma, blardo) Impulse ve ortalama kuvvet İk boyutta csmn elastk çarpışması Önces Sonrası m 1 v 1, m 1 v 1, KM KM V KM V KM m v, m

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

Elektrik Devre Temelleri 11

Elektrik Devre Temelleri 11 Elektrik Devre Temelleri 11 KAPASİTÖR VE ENDÜKTÖR Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi 6.1. Giriş Bu bölümde doğrusal iki devre elemanı olan kapasitör (capacitor)

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

2.7 Bezier eğrileri, B-spline eğrileri

2.7 Bezier eğrileri, B-spline eğrileri .7 Bezer eğrler, B-splne eğrler Bezer eğrler ve B-splne eğrler blgsaar grafklernde ve Blgsaar Destekl Tasarım (CAD) ugulamalarında çok kullanılmaktadır.. B-splne eğrler sadece br grup ver noktası çn tanımlanan

Detaylı

Alternatif Akım Devreleri

Alternatif Akım Devreleri Alternatif akım sürekli yönü ve şiddeti değişen bir akımdır. Alternatif akımda bazı devre elemanları (bobin, kapasitör, yarı iletken devre elemanları) doğruakım devrelerinde olduğundan farklı davranırlar.

Detaylı

EEM 307 Güç Elektroniği

EEM 307 Güç Elektroniği DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Elektrik-Elektronik Mühendisliği Bölümü Yaz Okulu GENEL SINAV SORULARI VE ÇÖZÜMLERİ EEM 307 Güç Elektroniği Tarih: 30/07/2018 Saat: 18:30-19:45 Yer: Merkezi Derslikler

Detaylı

EMO İSTANBUL ŞUBESİ TARAFINDAN HOBİ ELEKTRONİK KURSU İÇİN DERLENMİŞTİR. BOBİNLER

EMO İSTANBUL ŞUBESİ TARAFINDAN HOBİ ELEKTRONİK KURSU İÇİN DERLENMİŞTİR. BOBİNLER EMO İSTANBUL ŞUBESİ TAAFNDAN HOBİ ELEKTONİK KUSU İÇİN DELENMİŞTİ BOBİNLE Bobnler, akara, adren veya karkas olarak adlandırılan yalıkanlar üzerne plask, serak, serkağı spral, helezon, düz, peek şeklnde

Detaylı

KONDANSATÖRLER Farad(F)

KONDANSATÖRLER Farad(F) KONDANSATÖRLER Kondansatörler elektrik enerjisi depo edebilen devre elemanlarıdır. İki iletken levha arasına dielektrik adı verilen bir yalıtkan madde konulmasıyla elde edilir. Birimi Farad(F) C harfi

Detaylı

FİZİK-II DERSİ LABORATUVARI ( FL 2 4 )

FİZİK-II DERSİ LABORATUVARI ( FL 2 4 ) FİZİK-II DERSİ LABORATUVARI ( FL 2 4 ) KURAM: Kondansaörün Dolma ve Boşalması Klasik olarak bildiğiniz gibi, iki ileken paralel plaka arasına dielekrik (yalıkan) bir madde konulursa kondansaör oluşur.

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siir Üniversiesi Elekrik-Elekronik Mühendisliği Kaynak (Ders Kiabı): Fundamenals of Elecric Circuis Charles K. Alexander Mahew N.O. Sadiku McGraw Hill,

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

ELEKTRİK DEVRE TEMELLERİ

ELEKTRİK DEVRE TEMELLERİ ELEKTRİK DEVRE TEMELLERİ Öğretm üyes: Doç. Dr. S. Özoğuz Tel: 85 36 9 e-posta: [email protected] Ders saat: Pazartes,.-3. / D-4 İçndekler. Dere teors, toplu parametrel dereler, Krchhoff un gerlm e akım

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-4 Kondansatörler ve Bobinler Kondansatörler Kondansatör, elektronların kutuplanarak elektriksel yükü elektrik alanın içerisinde depolayabilme

Detaylı

BÖLÜM 7 TRANSFORMATÖRLER

BÖLÜM 7 TRANSFORMATÖRLER BÖÜ 7 TAFOATÖE ODE OU - DEİ OUAI ÇÖZÜEİ 4.. prmer. Transformatör deal olduğundan, dr. > olduğundan, transformatör gerlm alçaltıcı olarak kullanılır. > ve < dr. Buna göre I ve II yargıları doğru, III. yargı

Detaylı

DENEY 8 İKİ KAPILI DEVRE UYGULAMALARI

DENEY 8 İKİ KAPILI DEVRE UYGULAMALARI T.C. Maltepe Ünverstes Müendslk ve Doğa Blmler Fakültes Elektrk-Elektronk Müendslğ Bölümü EK 0 DERE TEORİSİ DERSİ ABORATUAR DENEY 8 İKİ KAP DERE UYGUAMAAR Haırlaanlar: B. Demr Öner Same Akdemr Erdoğan

Detaylı

SIĞA VE DİELEKTRİKLER

SIĞA VE DİELEKTRİKLER SIĞA VE DİELEKTRİKLER Birbirlerinden bir boşluk veya bir yalıtkanla ayrılmış iki eşit büyüklükte fakat zıt işaretli yük taşıyan iletkenlerin oluşturduğu yapıya kondansatör adı verilirken her bir iletken

Detaylı

uzayında vektörler olarak iç çarpımlarına eşittir. Bu iç çarpım simetrik ve hem w I T s formuna karşılık gelir. Buna p u v u v v v

uzayında vektörler olarak iç çarpımlarına eşittir. Bu iç çarpım simetrik ve hem w I T s formuna karşılık gelir. Buna p u v u v v v 1. Temel Form: Brnc temel form geometrk olarak yüzeyn çnde blndğ zayına gtmeden yüzey üzernde ölçme yamamızı sağlar. (Eğrlern znlğ, teğet ektörlern açıları, bölgelern alanları gb) S üzerndek ç çarım, br

Detaylı

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain *

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain * BİR ESAS İDEAL BÖLGESİ ÜZERİNDEKİ SONLU DOĞURULMUŞ BİR MODÜLÜN DİREK PARÇALANIŞI * Drec Decompoon of A Fnely-Generaed Module Over a Prncpal Ideal Doman * Zeynep YAPTI Fen Blmler Enüü Maemak Anablm Dalı

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon 1 Korelasyon Analz İk değşken arasında lşk olup olmadığını belrlemek çn yapılan analze korelasyon analz denr. Korelasyon; doğrusal yada doğrusal olmayan dye kye ayrılır. Korelasyon

Detaylı

BİR BOYUTLU HAREKET FİZİK I. Bir Boyutlu Hareket? 12.10.2011. Hız ve Sürat. 1 boyut (doğru) 2 boyut (düzlem) 3 boyut (hacim) 0 boyut (nokta)

BİR BOYUTLU HAREKET FİZİK I. Bir Boyutlu Hareket? 12.10.2011. Hız ve Sürat. 1 boyut (doğru) 2 boyut (düzlem) 3 boyut (hacim) 0 boyut (nokta) .0.0 r oulu Hareke? İR OYUTLU HREKET FİZİK I bou (doğru bou (düzlem 3 bou (hacm 0 bou (noka u bölümde adece br doğru bounca harekee bakacağız (br boulu. Hareke ler olablr (pozf erdeğşrme ea ger olablr

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

TRANSFORMATÖRLER BÖLÜM 7. Alıştırmalar. Transformatörler. Sınıf Çalışması

TRANSFORMATÖRLER BÖLÜM 7. Alıştırmalar. Transformatörler. Sınıf Çalışması TRAFORATÖRER BÖÜ 7 Alıştırmalar. İdeal transformatörler çn, eştlğn kullanırsak, 0 500 & 0 50. 50 A 800 400 Transformatör deal olduğundan, 400 8 800 4 A ınıf Çalışması A ampermetresnn gösterdğ değer 4A

Detaylı

Elektrik Enerjisi ve Elektriksel Güç Testlerinin Çözümleri

Elektrik Enerjisi ve Elektriksel Güç Testlerinin Çözümleri Elektrk Enerjs ve Elektrksel Güç Testlernn Çözümler Test 1 n Çözümü 1. Her brnn gerlm 1,5 volt olan 4 tane pl brbrne ser bağlı olduğundan devrenn toplam gerlm 6 volt olur. est S, uzunluğu / olan demr çubuğun

Detaylı

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I ÖRNE SE 5 - MBM Malzeme ermdnamğ I 5 ºC de ve sabt basınç altında, metan gazının su buharı le reaksynunun standart Gbbs serbest enerjs değşmn hesaplayın. Çözüm C O( ( ( G S S S g 98 98 98 98 98 98 98 Madde

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 7. BÖÜ TRAFORATÖRER ODE ORU - DEİ ORUARI ÇÖZÜERİ 4.. prmer. I I Transformatör deal olduğundan, I dr. I > olduğundan, transformatör gerlm alçaltıcı olarak kullanılır. > ve I < I dr. Buna göre I ve II yargıları

Detaylı

ELEKTRİK DEVRELERİ. Devreden geçen akım, Devreden geçen akım, ampermetresi i = 4A okur. ampermetresi ise 2A i gösterir. olur. A 1

ELEKTRİK DEVRELERİ. Devreden geçen akım, Devreden geçen akım, ampermetresi i = 4A okur. ampermetresi ise 2A i gösterir. olur. A 1 . BÖÜ EETİ DEEEİ IŞTI ÇÖZÜE EETİ DEEEİ. 8 r0 8 r0 8 r0 40 40 40 4 Devreden geçen akım, 8+ 8+ 8 4 + + 4 8 ampermetres, ampermetres se gösterr. Devreden geçen akım, 40 + 40 40 40 4 + + + + + 0 ampermetres

Detaylı

TRANSFORMATÖRLER. 4. a) Pri mer dev re ye uy gu la nan al ter na tif ge ri li min et kin de ğe ri; 1. İdeal transformatörler için,

TRANSFORMATÖRLER. 4. a) Pri mer dev re ye uy gu la nan al ter na tif ge ri li min et kin de ğe ri; 1. İdeal transformatörler için, 7. BÖÜ TRAFORATÖRER AIŞTIRAAR ÇÖZÜER TRAFORATÖRER. İdeal transformatörler çn, eştlğn kullanırsak, 0 00 & 0 0. 0 A 800 400 Transformatör deal olduğundan, 400 8 800 4A A ampermetresnn gösterdğ değer 4A A

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

VEKTÖRLER VE VEKTÖREL IŞLEMLER

VEKTÖRLER VE VEKTÖREL IŞLEMLER VEKTÖRLER VE VEKTÖREL IŞLEMLER 1 2.1 Tanımlar Skaler büyüklük: Sadece şddet bulunan büyüklükler (örn: uzunluk, zaman, kütle, hacm, enerj, yoğunluk) Br harf le sembolze edleblr. (örn: kütle: m) Şddet :

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

MAK 311 ISI GEÇİŞİ YARIYIL SONU SINAVI

MAK 311 ISI GEÇİŞİ YARIYIL SONU SINAVI MK ISI GEÇİŞİ YIYIL SONU SINVI.0.00 Sru (5p Kalınlığı m, yükseklğ 0.5 m ve genşlğ m lan metalk düzlemsel elektrkl br panel ısıtıının güü 750 W lup br tarafına ısı letm katsayısı 0.0 W/mK, kalınlığı m lan

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 FARKLI YÜZEY ÖZELLİKLERİNE SAHİP PLAKALARIN ISIL IŞINIM YAYMA ORANLARININ HESAPLANMASI BAŞKENT ÜNİVERSİTESİ

Detaylı

Manyetizma Testlerinin Çözümleri. Test 1 in Çözümü

Manyetizma Testlerinin Çözümleri. Test 1 in Çözümü 4 Manyetzma Testlernn Çözümler 1 Test 1 n Çözümü 5. Mıknatısların brbrne uyguladığı kuvvet uzaklığın kares le ters orantılıdır. Buna göre, her br mıknatısa uygulanan kuvvet şekl üzernde gösterelm. 1. G

Detaylı

Doğrusal Korelasyon ve Regresyon

Doğrusal Korelasyon ve Regresyon Doğrusal Korelasyon ve Regresyon En az k değşken arasındak lşknn ncelenmesne korelasyon denr. Kşlern boyları le ağırlıkları, gelr le gder, öğrenclern çalıştıkları süre le aldıkları not, tarlaya atılan

Detaylı

DEVRE DEĞİŞKENLERİ Bir elektrik devresinde enerji ölçülebilen bir değer değildir fakat ölçülebilen akım ve gerilim değerlerinden hesaplanır.

DEVRE DEĞİŞKENLERİ Bir elektrik devresinde enerji ölçülebilen bir değer değildir fakat ölçülebilen akım ve gerilim değerlerinden hesaplanır. DEVRE DEĞİŞKENLERİ Bir elektrik devresinde enerji ölçülebilen bir değer değildir fakat ölçülebilen akım ve gerilim değerlerinden hesaplanır. Akımın yönü okla gösterilir. Gerilimin akım gibi gösterilen

Detaylı

dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır.

dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır. BÖLÜM 3 OLASILIK HESABI 3.. Br Olayın Olasılığı Tanım 3... Br olayın brbrnden ayrık ve ortaya çıkma şansı eşt n mümkün sonucundan m tanes br A olayına uygun se, A olayının P(A) le gösterlen olasılığı P(A)

Detaylı

ELM201 ELEKTRONİK-I DERSİ LABORATUAR FÖYÜ

ELM201 ELEKTRONİK-I DERSİ LABORATUAR FÖYÜ T SAKAYA ÜNİESİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTİK-ELEKTONİK MÜHENDİSLİĞİ ELM201 ELEKTONİK- DESİ LAOATUA FÖYÜ DENEYİ YAPTAN: DENEYİN AD: DENEY NO: DENEYİ YAPANN AD ve SOYAD: SNF: OKUL NO: DENEY GUP NO: DENEY

Detaylı

Nedim Tutkun, PhD, MIEEE Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Konuralp Düzce

Nedim Tutkun, PhD, MIEEE Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Konuralp Düzce GÜÇ ELEKTRONİĞİ ÖRNEK ARASINAV SORULARI Nedim Tutkun, PhD, MIEEE [email protected] Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü 81620 Konuralp Düzce Soru-1) Şekildeki diyotlu R-L devresinde,

Detaylı

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi)

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi) JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) yeryüzünde oluşturacağı gerlm değerler hesaplanablr. Daha sonra aşağıdak formül kullanılarak görünür özdrenç hesaplanır. a K I K 2 1 1 1 1 AM BM AN

Detaylı

III - ELEKTROMAGNETİK GENELLEŞTİRME

III - ELEKTROMAGNETİK GENELLEŞTİRME 3 - EEKTROMAGNETİK GENEEŞTİRME.A ) AGRANGE ORMAİZMİ Dnamğn agrange medu le yenden frmüle edlmes, genelleşrlmş krdna ssemlernn kullanılmasına mkan anır. Yen krdnaların ye larak ble dk lmaları gerekmez.

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

DENEY 5: FREKANS MODÜLASYONU

DENEY 5: FREKANS MODÜLASYONU DENEY 5: FREKANS MODÜLASYONU AMAÇ: Malab da rekans modülasyonunun uygulanması ve nelenmes. ÖN HAZIRLIK 1. TEMEL TANIMLAR Açı modülasyonu, az ve rekans modülasyonunu kasamakadır. Taşıyıının rekansı veya

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

ELEKTRİK AKIMI. K-L noktaları arasındaki eşdeğer direnç, = = 3X olur. K-L noktaları arasındaki eşdeğer direnç, = = 4X olur.

ELEKTRİK AKIMI. K-L noktaları arasındaki eşdeğer direnç, = = 3X olur. K-L noktaları arasındaki eşdeğer direnç, = = 4X olur. . BÖÜ EETİ II IŞTI ÇÖZÜE EETİ II. k sa devre X - noktaları arasındak eşdeğer drenç, - noktaları arasındak eşdeğer drenç, 4 - noktaları arasındak eşdeğer drenç, - noktaları arasındak üç drençte paralel

Detaylı

Elektrik Akımı. Test 1 in Çözümleri. voltmetresi K-M arasına bağlı olduğu için bu noktalar arasındaki potansiyel farkını ölçer. V 1. = i R KM 1.

Elektrik Akımı. Test 1 in Çözümleri. voltmetresi K-M arasına bağlı olduğu için bu noktalar arasındaki potansiyel farkını ölçer. V 1. = i R KM 1. 5 Elektrk kımı 1 Test 1 n Çözümler 1. 4 Ω Ω voltmetre oltmetrenn ç drenc sonsuz büyük kabul edlr. Bu nedenle voltmetrenn bulunduğu koldan akım geçmez. an voltmetrenn olduğu koldak drenç dkkate alınmaz.

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

Elektrik ve Manyetizma

Elektrik ve Manyetizma 0. Sınıf Soru tabı. Ünte Elektrk ve anyetzma. onu Elektrk Akımı, Potansyel Fark ve Drenç Test Çözümler Jeneratör otor . Ünte Elektrk ve anyetzma Test n Çözümü. Üzernden t sürede q yükü geçen br letkendek

Detaylı

EEM0108 Elektrik-Elektronik Mühendisliğinde Malzeme Aktif ve Pasif Devre Elemanları. Yrd.Doç.Dr. Muhammed Fatih KULUÖZTÜRK

EEM0108 Elektrik-Elektronik Mühendisliğinde Malzeme Aktif ve Pasif Devre Elemanları. Yrd.Doç.Dr. Muhammed Fatih KULUÖZTÜRK EEM0108 Elektrik-Elektronik Mühendisliğinde Malzeme Aktif ve Pasif Devre Elemanları [email protected] MALZEMELERİN SINIFLANDIRILMASI ÖZELLİKLERİNE GÖRE Elektriksel Özellikler Manyetik Özellikler

Detaylı

1.7 KONDANSATÖRLER (KAPASİTÖR)

1.7 KONDANSATÖRLER (KAPASİTÖR) 1.7 KONDANSATÖRLER (KAPASİTÖR) Kondansatör, elektronların kutuplanarak elektriksel yükü elektrik alanın içerisinde depolayabilme özelliklerinden faydalanılarak, bir yalıtkan malzemenin iki metal tabaka

Detaylı

Elektrik Devre Temelleri

Elektrik Devre Temelleri Elektrik Devre Temelleri 3. TEMEL KANUNLAR-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi ÖRNEK 2.5 v 1 ve v 2 gerilimlerini bulun. (KGK) 1 PROBLEM 2.5 v 1 ve v 2

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

Sürekli Olasılık Dağılım (Birikimli- Kümülatif)Fonksiyonu. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Sürekli Olasılık Dağılım (Birikimli- Kümülatif)Fonksiyonu. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK Sürekl Olasılık Dağılım Brkml- KümülatFonksyonu Yrd. Doç. Dr. Tjen ÖVER ÖZÇELİK [email protected] Sürekl olasılık onksyonları X değşken - ;+ aralığında tanımlanmış br sürekl rassal değşken olsun. Aşağıdak

Detaylı

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 2. Konu ELEKTRİK AKIMI, POTANSİYEL FARK VE DİRENÇ ETKİNLİK ve TEST ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 2. Konu ELEKTRİK AKIMI, POTANSİYEL FARK VE DİRENÇ ETKİNLİK ve TEST ÇÖZÜMLERİ 10. SINIF ONU NTII. ÜNİTE: EETİ E NYETİZ. onu EETİ II, POTNSİYE F E DİENÇ ETİNİ ve TEST ÇÖZÜEİ Ünte Elektrk ve anyetzma 1.. Ünte. onu (Elektrk kımı) nın Çözümler ampul 3. Şekl yenden aşağıdak gb çzeblrz.

Detaylı

Sıklık Tabloları ve Tek Değişkenli Grafikler

Sıklık Tabloları ve Tek Değişkenli Grafikler Sıklık Tabloları ve Tek Değşkenl Grafkler Sıklık Tablosu Ver dzsnde yer alan değerlern tekrarlama sayılarını çeren tabloya sıklık tablosu denr. Sıklık Tabloları tek değşken çn marjnal tablo olarak adlandırılır.

Detaylı

Devre Teorisi Ders Notu Dr. Nurettin ACIR ve Dr. Engin Cemal MENGÜÇ

Devre Teorisi Ders Notu Dr. Nurettin ACIR ve Dr. Engin Cemal MENGÜÇ BÖLÜM I İNDÜKTANS VE KAPASİTANS Bu bölümde, tek bir bağımsız kaynak kullanılarak indüktör ve kapasitörlerin tek başına davranışları incelenecektir. İndüktörler, manyetik alanla ilişkin olaylar üzerine

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

24 Manyetizma. Test 1 in Çözümleri. Mıknatıslarda aynı kutuplar birbirini iteceğinden K ve M mıknatısları hızlanır. Cevap D dir.

24 Manyetizma. Test 1 in Çözümleri. Mıknatıslarda aynı kutuplar birbirini iteceğinden K ve M mıknatısları hızlanır. Cevap D dir. 4 Manyetzma Test n Çözümler 4.. K L M. Mıknatıslarda aynı kutuplar brbrn teceğnden K ve M mıknatısları hızlanır. Cevap C dr. Mıknatıs kaç parçaya bölünürse bölünsün ortaya çıkan yen parçalar yne k kutupludur.

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

Fiz102L TOBB ETÜ. Deney 3. Kondansatörün Şarj/Deşarj Edilmesi. P r o f. D r. S a l e h S U L T A N S O Y. D r. A h m e t N u r i A K A Y

Fiz102L TOBB ETÜ. Deney 3. Kondansatörün Şarj/Deşarj Edilmesi. P r o f. D r. S a l e h S U L T A N S O Y. D r. A h m e t N u r i A K A Y Fiz102L Deney 3 Kondansatörün Şarj/Deşarj Edilmesi P r o f. D r. T u r g u t B A Ş T U Ğ P r o f. D r. S a l e h S U L T A N S O Y Y r d. D o ç. D r. N u r d a n D. S A N K I R D r. A h m e t N u r i A

Detaylı

26 Manyetizma. Test 1 in Çözümleri. Mıknatıslarda aynı kutuplar birbirini iteceğinden K ve M mıknatısları hızlanır. Cevap D dir.

26 Manyetizma. Test 1 in Çözümleri. Mıknatıslarda aynı kutuplar birbirini iteceğinden K ve M mıknatısları hızlanır. Cevap D dir. 6 Manyetzma Test n Çözümler 4.. K L M. Mıknatıslarda aynı kutuplar brbrn teceğnden K ve M mıknatısları hızlanır. Cevap C dr. Mıknatıs kaç parçaya bölünürse bölünsün ortaya çıkan yen parçalar yne k kutupludur.

Detaylı

Elektrik Devre Temelleri 3

Elektrik Devre Temelleri 3 Elektrik Devre Temelleri 3 TEMEL KANUNLAR-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi ÖRNEK 2.5 v 1 ve v 2 gerilimlerini bulun. (KGK) PROBLEM 2.5 v 1 ve v 2 gerilimlerini

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

Makine Öğrenmesi 10. hafta

Makine Öğrenmesi 10. hafta Makne Öğrenmes 0. hafta Lagrange Optmzasonu Destek Vektör Maknes (SVM) Karesel (Quadratc) Programlama Optmzason Blmsel term olarak dlmze geçmş olsa da bazen en leme termle karşılık bulur. Matematktek en

Detaylı

2 MANYETİZMA. 7. Etki ile mıknatıslanmada mıknatısın 5. K L M F F S N S N S N

2 MANYETİZMA. 7. Etki ile mıknatıslanmada mıknatısın 5. K L M F F S N S N S N 3 Manyetzma Test Çözümler 1 Test 1'n Çözümler 3. 1 2 3 4 5 6 1. X Şekl I M 1 2 Y 3 4 Mıknatıs kutupları Şekl I dek gb se 4 ve 5 numaralı kutuplar zıt şaretl olur. Manyetk alan çzgler kutup şddet le doğru

Detaylı

DENEY-8 DC DEVREDE KONDANSATÖRÜN İNCELENMESİ

DENEY-8 DC DEVREDE KONDANSATÖRÜN İNCELENMESİ KONDANSATÖRLERİN TANIMI DENEY-8 DC DEVREDE KONDANSATÖRÜN İNCELENMESİ İki iletken paralel plaka arasına dielektrik (yalıtkan) bir madde konulursa kondansatör oluşur. Kondansatörler bu yalıtkan maddenin

Detaylı

Fizk 103 Ders 7 İş Güç Enerji Dr. Ali Övgün

Fizk 103 Ders 7 İş Güç Enerji Dr. Ali Övgün Fzk 03 Ders 7 İş Güç Enerj Dr. Al Övgün Os: AS45 Fen ve Edebyat Fakültes Tel: 039-630-897 [email protected] www.aovgun.com Enerj Nedr? Enerj kısaca ş yapablme yeteneğdr. Ayrıca enerj skaler büyüklüktür.

Detaylı

3. Telin kesit alanı, 4. lsıtılan telin diren ci, R = R o. 5. Devreden geçen proton sayısı, q = (N e. 6. X ve Y ilet ken le ri nin di renç le ri,

3. Telin kesit alanı, 4. lsıtılan telin diren ci, R = R o. 5. Devreden geçen proton sayısı, q = (N e. 6. X ve Y ilet ken le ri nin di renç le ri, . ÖÜ EETİ ODE SOU - DEİ SOUN ÇÖZÜEİ. Teln kest alanı, 400 mm 4.0 4 m. a a a a n boyu,, a n kest alanı, a.a a a a Teln drenc se, ρ., 500 4.0 6. 4 5 Ω dur. 40. Telden geçen akım, ohm kanunundan, 40 48 amper

Detaylı

İŞLEMSEL YÜKSELTEÇLER (OP-AMP)

İŞLEMSEL YÜKSELTEÇLER (OP-AMP) İŞLEMSEL YÜKSELTEÇLE (P-AMP Nçn şlemsel yükselteçler burada ncelyoruz???. İşlemsel yükselteçler çok kullanışlı elektronk dere elemanlarıdırlar. İşlemsel yükselteçlern doğrusal modeller bağımlı kaynaklar

Detaylı

1. RC Devresi Bir RC devresinde zaman sabiti, eşdeğer kapasitörün uçlarındaki Thevenin direnci ve eşdeğer kapasitörün çarpımıdır.

1. RC Devresi Bir RC devresinde zaman sabiti, eşdeğer kapasitörün uçlarındaki Thevenin direnci ve eşdeğer kapasitörün çarpımıdır. DENEY 1: RC DEVRESİ GEÇİCİ HAL DURUMU Deneyin Amaçları RC devresini geçici hal durumunu incelemek Kondansatörün geçici hal eğrilerini (şarj ve deşarj) elde etmek, Zaman sabitini kavramını gerçek devrede

Detaylı

ELEKTRİK AKIMI VE DEVRELERİ

ELEKTRİK AKIMI VE DEVRELERİ ÖÜ EETİ II E DEEEİ ODE SOU - DEİ SOUIN ÇÖZÜEİ ODE SOU - DEİ SOUIN ÇÖZÜEİ. gaz S. a a a a a a 0 sa n ye tüp ten ge çen top lam yük sa yı sı n 8.0 0 +.0 0.0 m per met re de oku nan de ğer Q nq. 0.. 60. 9

Detaylı

ÇOK FAZLI DEVRELER EBE-212, Ö.F.BAY 1

ÇOK FAZLI DEVRELER EBE-212, Ö.F.BAY 1 ÇOK FAL DERELER EBE-212, Ö.F.BAY 1 Üç Fazlı Devreler EBE-212, Ö.F.BAY 2 Eğer gerilim kaynaklarının genlikleri aynı ve aralarında 12 faz farkı var ise böyle bir kaynağa dengeli üç fazlı gerilim kaynağı

Detaylı

kadar ( i. kaynağın gölge fiyatı kadar) olmalıdır.

kadar ( i. kaynağın gölge fiyatı kadar) olmalıdır. KONU : DUAL MODELİN EKONOMİK YORUMU Br prmal-dual model lşks P : max Z cx D: mn Z bv AX b AV c X 0 V 0 bçmnde tanımlı olsun. Prmal modeln en y temel B ve buna lşkn fyat vektörü c B olsun. Z B B BB c X

Detaylı

Sistemde kullanılan baralar, klasik anlamda üç ana grupta toplanabilir :

Sistemde kullanılan baralar, klasik anlamda üç ana grupta toplanabilir : 5 9. BÖLÜM YÜK AKIŞI (GÜÇ AKIŞI) 9.. Grş İletm sstemlernn analzlernde, bara sayısı arttıkça artan karmaşıklıkları yenmek çn sstemn matematksel modellenmesnde kolaylık getrc bazı yöntemler gelştrlmştr.

Detaylı

LAMBALAR BÖLÜM X 6. X MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. K anahtarı açık iken: Z ve T lambaları yanar. X ve Y lambaları = 2 dir.

LAMBALAR BÖLÜM X 6. X MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. K anahtarı açık iken: Z ve T lambaları yanar. X ve Y lambaları = 2 dir. ÖÜ 0 ODE SOU 1 DE SOUN ÇÖÜE anahtarı açık ken: ve lambaları yanar. ve lambaları yanmaz. N 1 = dr. 1. 3 1 4 5 6 al nız lam ba sı nın yan ma sı çn 4 ve 6 no lu anah tar lar ka pa tıl ma lı dır. CE VP. U

Detaylı

DENEY 7 DC DEVRELERDE GÜÇ ÖLÇÜMÜ VE MAKSİMUM GÜÇ AKTARIMI UYGULAMALARI

DENEY 7 DC DEVRELERDE GÜÇ ÖLÇÜMÜ VE MAKSİMUM GÜÇ AKTARIMI UYGULAMALARI T.C. Maltepe Üniersitesi Mühendislik e Doğa Bilimleri Fakültesi Elektrik-Elektronik Mühendisliği Bölümü EK 01 DEVRE TEORİSİ DERSİ ABORATUVARI DENEY 7 DC DEVREERDE GÜÇ ÖÇÜMÜ VE MAKSİMUM GÜÇ AKTARIMI UYGUAMAARI

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Ffth E CHPTER MECHNICS OF MTERILS Ferdnand P. eer E. Russell Johnston, Jr. John T. DeWolf Davd F. Mazurek Lecture Notes: J. Walt Oler Texas Tech Unversty. Eksenel Yüklemede Toplam uzama-hperstatk problemler-termal

Detaylı

Önerilen süre dakika (22 puan) dakika (16 puan) dakika (38 puan) 4. 9 dakika (24 puan) Toplam (100 puan) Ġsim

Önerilen süre dakika (22 puan) dakika (16 puan) dakika (38 puan) 4. 9 dakika (24 puan) Toplam (100 puan) Ġsim Brnc Tek Saatlk Sınav 5.111 Ġsmnz aģağıya yazınız. Sınav sorularını sınav başladı komutunu duyuncaya kadar açmayınız. Sınavda notlarınız ve ktaplarınız kapalı olacaktır. 1. Problemlern her br Ģıkkını baģtan

Detaylı

PARÇALI DOĞRUSAL REGRESYON

PARÇALI DOĞRUSAL REGRESYON HAFTA 4 PARÇALI DOĞRUSAL REGRESYO Gölge değşkenn br başka kullanımını açıklamak çn varsayımsal br şrketn satış temslclerne nasıl ödeme yaptığı ele alınsın. Satış prmleryle satış hacm Arasındak varsayımsal

Detaylı

Asimetri ve Basıklık Ölçüleri Ortalamalara dayanan (Pearson) Kartillere dayanan (Bowley) Momentlere dayanan asimetri ve basıklık ölçüleri

Asimetri ve Basıklık Ölçüleri Ortalamalara dayanan (Pearson) Kartillere dayanan (Bowley) Momentlere dayanan asimetri ve basıklık ölçüleri Asmetr ve Basıklık Ölçüler Ortalamalara dayanan (Pearson) Kartllere dayanan (Bowley) omentlere dayanan asmetr ve basıklık ölçüler Yrd. Doç. Dr. Tjen ÖVER ÖZÇELİK [email protected] III. Asmetr ve Basıklık

Detaylı

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler 6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç

Detaylı

BÖLÜM 9 İKİ BOYUTLU PANEL YÖNTEMLERİ

BÖLÜM 9 İKİ BOYUTLU PANEL YÖNTEMLERİ BÖLÜM 9 İKİ BOYUTLU PAEL YÖTEMLERİ 9.. Grş 9.2. Kompleks dülemde poansyel akım problemnn negral formülasyonu 9.3. Doğrusal paneller boyunca sab ekllk dağılımı hal 9.4. Kaynak dağılımını esas alan panel

Detaylı

5.3. Tekne Yüzeylerinin Matematiksel Temsili

5.3. Tekne Yüzeylerinin Matematiksel Temsili 5.3. Tekne Yüzeylernn atematksel Temsl atematksel yüzey temslnde lk öneml çalışmalar Coons (53) tarafından gerçekleştrlmştr. Ferguson yüzeylernn gelştrlmş hal olan Coons yüzeylernde tüm sınır eğrler çn

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 5 ÖÜ EEREİ İDÜSİ DE SRU - DEİ SRURI ÇÖZÜERİ anyetk akı değşm DU = U U = 0 Wb/m olur 40cm 50cm - uçlarında oluşan ndüksyon emk sı f D DU t ( ) = 4V olur 05 Çerçevenn alanı = ab = 4050 = 000 cm = 0 m olur

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

Elektrik Akımı Test Çözümleri. Test 1'in Çözümleri 3. 4 Ω. 1. Kolay çözüm için şekli yeniden çizip harflendirelim.

Elektrik Akımı Test Çözümleri. Test 1'in Çözümleri 3. 4 Ω. 1. Kolay çözüm için şekli yeniden çizip harflendirelim. Elektrk kımı Test Çözümler Test 'n Çözümler. 4 Ω voltmetre. olay çözüm çn şekl yenden çzp harflendrelm. 0 Ω Ω Ω 5 Ω Ω oltmetrenn ç drenc sonsuz büyük kabul edlr. u nedenle voltmetrenn bulunduğu koldan

Detaylı

16. Dörtgen plak eleman

16. Dörtgen plak eleman 16. Ddörtgen pla eleman 16. Dörtgen pla eleman Kalınlığı dğer boyutlarına göre üçü ve düzlemne d yü etsnde olan düzlem taşıyıcı ssteme pla denr. Yapıların döşemeler, sıvı deposu yan duvarları ve öprü plaları

Detaylı

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ 1 Nasır Çoruh, Tarık Erfdan, 3 Satılmış Ürgün, 4 Semra Öztürk 1,,4 Kocael Ünverstes Elektrk Mühendslğ Bölümü 3 Kocael Ünverstes Svl Havacılık Yüksekokulu [email protected],

Detaylı

ITAP_Exam_20_Sept_2011 Solution

ITAP_Exam_20_Sept_2011 Solution ITAP_Exam Sept_ Soluton. Şekldek makara sstem aff kütlel makaralardan, mükemmel pten ve kütleler şeklde şaretlenen csmlerden oluşmaktadır. Sürtünmey mal ederek O makaranın eksennn vmesn bulunuz. İpn makaralara

Detaylı

Bölüm 9 FET li Yükselteçler

Bölüm 9 FET li Yükselteçler Bölüm 9 FET li Yükseleçler DENEY 9-1 Orak-Kaynaklı (CS) JFET Yükseleç DENEYİN AMACI 1. Orak kaynaklı JFET yükselecin öngerilim düzenlemesini anlamak. 2. Orak kaynaklı JFET yükselecin saik ve dinamik karakerisiklerini

Detaylı