YÜKSEKLİK PKOBLEMÎ. Doç. Dr, Hüseyin DEMÎREL İDMMA İstanbul

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "YÜKSEKLİK PKOBLEMÎ. Doç. Dr, Hüseyin DEMÎREL İDMMA İstanbul"

Transkript

1 YÜKSEKLİK PKOBLEMÎ Doç. Dr, Hüseyin DEMÎREL İDMMA İstanbul 1. G İ R İ Ş Bir nivo yüzeyi olan geoid başlangıç olmak üzere değişik yollardan gidilerek bir noktanın nivelman yükseklikleri belirlense, sonuçların eşit olmadığı görülür. Başka bir deyişle, nivelman sonuçları yola bağlıdır. Bu bağlılık, nivo yüzeylerinin paralel olmamasından kaynaklanmaktadır. Yükseklikleri açık ve kesin anlamda tanımlamak için, yalnız yükseklik farklarını ölçmek yeterli değildir, nivelman yolları boyunca ağırlık değerleri de ölçülmelidir. Problemin çözümü, yükseklikleri potansiyel değerlerden dönüştürmekle ya da ölçülen yükseklik farklarına bir düzeltme getirmekle gerçekleşir. Böylece nivelman sonuçları, nivo yüzeylerinin paralel olmamasından ileri gelen yola bağlılık etkisinden arınmış olur. Kuramsal yüksekliklerden geopotansiyel kotlar ya da onlardan belli bir oranda sapan dinamik yükseklikler, düzeltmelerinin büyüklüğü bir yana, gerçek anlamda yükseklik ifade etmediklerinden teknik yükseklikler olarak kullanılmaya elverişli değildirler. Ortometrik yüksekliklere getirilecek düzetlmeler de teknik nivelman sonuçları, nın düzeltilmesini zorunlu kılacak denli büyüktür. (K. Ramsayer, 1954). Uygulamada ağırlık değerlerini de ölçmek gerekirse, çalışma, lar güçlenir ve ekonomik olmaz. Teknik nivelman sonuçlarına düzeltme getirmek zorunluluğunu ortadan kaldırmak amacıyla küçük düzeltmeli yükseklik sistemleri aranmış ve sonuçta pratik yüksekliklerin bir dizisi geliştirilmiştir. (Baranov, Bodemüller, Ledersteger, Ramsayer yükseklikleri, v.b.) (K. Ramsayer, 1954, H. Bodemüller, 1963). Araştırmalar, bu sistemlerin küçük ya da belli bir topografik yapıya uyan bölgelerde iyi sonuçlar verdiklerini, ama büyük ve dağlık ülkeler için uygun düşme- 61

2 diklerini göstermektedir. Bu yüksekliklerden herhangi biri, bugüne değin bir ülkede pratik amaçlarla kullanılmış değildir. Bir ülke için en küçük düzeltmeli bir yükseklik sistemi, genel olarak verilememektedir (K. Ledersteger, 1952). Bu yüzden her ülke, kendine ve topoğrafik yapısına uyan bir sistemi, kuramsal yükseklikler yanında pratik yükseklikler olarak seçmelidir. (M. Kneissl, 1955). M.S. Molodenski tarafmdan 1945 de tanımlanan normal yükseklikler, teori ve uygulamanın tüm geerksinimlerini karşılayacak niteliktedir (E. Schneider, 1960). Değişik yükseklik sistemlerini karşılaştırmak amacıyla bazı nivelman poligonlarında yapılan incelemelerde, normal yüksekliklere ilişkin düzeltmeler, diğerlerine oranla genellikle küçük çıkmaktadır. (K. Ledersteger, 1953, H. Bodemüller, 1963). Bu yükseklikler doğu bloku ülkelerinde, batıda Fransa'da kullanılmaktadır. H. Wolf (1974), normal yüksekliklerin önemine değinmekte ve onları Batı Almanya için önermektedir. Başka çalışmalarda da bu yüksekliklerin kuramsal ve pratik önemi vurgulanmaktadır (J. Vykutil, 1964; H. Moritz, 1967; E. Groten, 1974). Bu çalışmada, yükseklik sistemleri tanıtılmakta ve nivelman sonuçlarından en az sapan ya da uygulama için en elverişli olan sistemin belirlenmesine katkıda bulunmak amacıyla, sayısal karşılaştırma sonuçlan verilmektedir. 2. YÜKSEKLİK SİSTEMLERİ Yeryüzündeki bir noktanın yüksekliğinden, o nokta ile bir başiangıç yüzeyi (genellikle geoid) arasındaki ilişki (düşey uzaklık) anlaşılır. Bu ilişki fiziksel, geometrik anlamda ya da başka görüşlere uygun biçimde tanımlanabilir. Geopotansîye! kotlar Noktaların ya da noktalardan geçen nivo yüzeylerinin geoide göre durumlarını gösteren, geoid ile bu yüzeyler arasında kgalxmetre biriminde ifade edilen potansiyel farklar = geopotansiyel kotlar ya da bunlardan belli bir oranda sapan dinamik yükseklikler 62

3 fiziksel anlamda büyüklüklerdi.r Bir i noktasının geopotansiyel kotu c, için eşitliği geçerlidir (şekil 1). Burada W o ' geoidin potansiyeli, Wİ' İ noktasından geçen nivo yüzeyinin potansiyeli, dw, birbirine çok yakın iki nivo yüzeyi arasındaki potansiyel fark, dh, diferansiyel anlamda yükseklik farkı ve g de bu yükseklik farkına karşılık yeryüzünde ölçülebilen ağırlık değeridir. Geopotansiyel kot, ölçülen yükseklik farkları ve ağırlık değerleri yardımıyla bir varsayıma gerek olmadan doğruya yakın bir incelikle elde edilebilmektedir. (m km ~ kgal x metre ya da 0.1 mm). Deneylerle saptanan uzaklık sınırlarına uymak koşuluyla yüksekliği istenen noktalarda, yükseklik profilinin önemli kırılma noktalarında ve nivelman geçkisinin yön değiştirdiği yerlerde ağırlıkları ölçmek yeterli olmaktadır (K. Ramsayer, 1963; J. J. Levallois, 1964; C. Bernatzky, 1963). Nivelmanla bulunan Ah yükseklik farkını sınırlayan noktalarda ölçülen ağırlık değerlerinin ortalaması ğ ile göste. rilirse, geopotansiyel kotların hesabı için (1) den çıkar, ğ kgai, A h metre biriminde alınır. c> nin hesabı için ölçüme ortalama deniz yüzeyinden (mareograf istasyonundan) başlamalıdır. 63

4 Nivo yüzeylerinden her biri geopotansiyel kotların bir tek sayısal değeriyle bellidir. Geoidin geopotansiyel kotu sıfıra eşittir. Geopotansiyel kotların 1 kgal (= 1000 Gal) e bölündüğü düşünülürse metre biriminde sayısal değeri değişmeyen bir büyüklük elde edilir. Geopotansiyel kotları metre biriminde düşünmek onların fiziksel niteliğini değiştirmez. Dinamik yükseklikler ve dinamik düzeltme Geopotansiyel kotlar, istenildiği gibi seçilebilen sabit bir g o ağırlık değerine, Helmert'in önerisine uygun olarak 50g enlemindeki normal ağırlık değerine (g o = &. 50 = kgal) bölünürse, başka yükseklik sistemleriyle de karşılaştırılabilen büyüklükte ve metre biriminde dinamik yükseklikler (H d,i) çıkar : g o «0.98 kgal olduğundan geopotansiyel kotlar, dinamik yüksekliklerden «% 2 oranında daha küçüktür. Geopotansiyel kotlar ve dinamik yükseklikler bilimsel araştırmalar ve büyük ağ dengelemeleri için uygun sistemlerdir. (3) ^itliğinde o> yerine (1) deki eşiti yazılır ve integral ifadesinde g = g d + g g o özdeşliği dikkate alınırsa, nivelman sonuçlarını bir düzeltme terimiyle dinamik yüksekliklere dönüştürmeye

5 çıkar. (4) bağıntısı, (5) de i noktasının geoidle çakışması durumiina karşılıktır. (4) ya da (5) deki ikinci terime dinamik yol düzeltmesi = DK (ü) denir : (4) de eşitliğin sağındaki ilk terim, i noktasının nivelman yüksekliğine (hi), (5) deki i ve î noktaları arasındaki nivelman yükseklikleri farkına (hj. h>) eşittir. Ortometrik yükseklikler ve ortometrik düzeltme i noktasından geçen çekül eğrisinin geoidi, deldiği i' noktası ile i arasında kalan boyuna ortometrik yükseklik (H o,ı) denir. Bu, yükseklik kavramının geometrik anlamda bir tanımıdır. Çekül eğrisinin i i' parçası boyunca nivelman yapıldığı düşünülür ve bu yolun tüm noktalarındaki g' ağırlık değerlerinin ortalaması g m, > ile gösterilirse, i noktasının geopotansiyel d için (1) eşitliği biçiminde genişletilebilir. Buradan i noktasının çıkar. ortometrik yüksekliği Nivelman sonuçlarına getirilecek düzeltmeler ile ortometrik yükseklikleri elde etmek için (7) deki ilk integralde g = g o + (g-g o ) ve sonucunda g m, = g o + (g mı İ g o) özdeşlikleri yazılmalı, sonra terimlerden her biri g o ile bölünmelidir. Buna göre, (7) den

6 çıkar. (9) eşitliği ikinci bir j noktası için de yazılır. H o, j H o, farkı oluşturulursa. çıkar. (9) eşitliği, 3 noktasının geoidle çakıştığı duruma karşılıktır. Başka bir deyişle, (9), (10) eşitliğinin özel halidir. (10) un sağındaki ikinci terim dinamik yol düzeltmesidir (6). Son iki terime, i ve j noktalarındaki düşey dinamik düzeltmeler = VDK (i), VDK (j) adı verilir. Buna göre, dîr. i ve j noktalan arasındaki nivelman sonucunu ortometrik yükseklikler farkına dönüştüren toplam düzeltmeye ortometrik düzeltme OK (ij) denir : _OK (ij) = DK (ij) + VDK (j) VDK (j). (12) ( } ve (10) da eşitliğin sağında bulunan ilk terimler yerine i noktasının nivelman yüksekliği ya da i ve j noktalarının nivelman yükseklikleri farkı yazılabilir. Ortometrik düzeltmenin seçilen g o ağırlık değerine bağlı olmadığı gösterilebilir. (4) ile (9) un karşılaştırılmasından ortometrik yüksekliklerle dinamik yükseklikler arasında bir bağıntı, Çekül eğrilerinin yeryüzü ile geoid arasında kalan noktalarında ağırlıkları ölçmek ya da g m ortalama değerlerini ölçümle belirlemek olanaksız olduğundan gerçek ortometrik (geoide göre) yükseklikler hesaplanamamakta, ancak yeryüzü ile geoid arasında, çekül eğrileri boyunca ağırlık değerlerinin dağılımına (ya da kütle yoğunluğuna) ilişkin bir varsayımla ytfklaşık ortometrik (kuasi geoide göre) yük. seklikler elde edilebilmektedir. 66

7 67

8 m

9 dir (W.A. Heiskanen ve H. Moritz, 1867, s. 169). Max yoğunluk hatası 5 = 0.6 g / cm 3 ve yükseklik H = 2500 m için (19) dan G = 63 mgal ve bunun da yüksekliğe etkisi (18) den 5H = 16 cm çıkar. Bu sayısal sonuçlar, hem Helmert yüksekliklerinin hem de ortometrik yüksekliklere" onlardan daha iyi yaklaşan Niethammer yüksekliklerinin, ortalama G değerlerinin hesabında yapılan varsayım hatalarından (özellikle yüksek dağlık bölgelerde) önemli ölçüde etkilendiğini göstermektedir. Çekül eğrilerinin geoidle yeryüzü arasında kalan parçaları, için seçilen ortalama ağırlık değerlerine bağlı olarak, yüksekliklerin değişik sistemleri geliştirilmiştir. Bu sistemlerin başlıcaları ve ortalama Gy değerleri :

10 70

11 Normcsi Yükseklikler (H n, r = n) (J. VykutH, 1964) : Bu yükseklikler, M.S. Molodenski tarafından 1945 senesinde tanımlanmıştır. Sonradan bu yüksekliklere, Rusya'da normal yükseklikler adı verilmiştir. Benzer biçimde tanımlanan Q to=dinamik yükseklikleri, J. Vignal, 1952 de Fransa için önermiştir, i noktasından geçen çekül eğrisine ilişkin G n,i' elipsoid yüzeyindeki normal ağırlık değeri uygulamada i nin yarı yükseklik noktasına boşlukta indirgenerek bulunur : W.A. Heiskanen ve H. Moritz (1967) de G n için kesin eşitlik verilmektedir. Nivelman yükseklikleri farkını normal yükseklikler farkına dönüştüren düzeltmeye, OK (ii) n yerine normal düzeltme = NKT(iJ) adı verilmektedir. Teorik ve pratik önemi nedeniyle bu yükseklik sistemine ileride yine dönülecektir yıllarına dek yeryüzünde ağırlık değerlerinin ölçülmesine olanak sağlıyan kullanılışta aletler yoktu. Bu yüzden birçok ülkede potansiyel farklar, gerçek ağırlıklar yerine normal ağırlık değerleriyle hesaplanmıştır. Uluslararası ağırlık formülüne göre, elipsoid yüzeyinde ağırlık değeri (Y O,İ) yaklaşık olarak (26) ile verilmiştir. Bir yeryüzü noktasında normal ağırlık değeri, *i - *o,i " H ± meal (27} (Hı' metre biriminde) dir. i noktasının normal potansiyel kotu (no, (1) den 71

12 çıkar. Normal potansiyel kot sabit bir g o ağırlık değerine (örneğin g o = yj ) bölünürse, normal dinamik yükseklik (H nd), bulunur. n> çekül eğrisini yarılayan noktadaki normal ağırlık değerine bölünürse sferoidik normal ortometrik yükseklik (H s ), elde edilir. Nivelman sonuçlan sferoidik yüksekliklere ya da farklarına dönüştürülmek istenirse, (10) da g yerine y. 9m yerine y m yazmalıdır. Sferoidik yükseklikler, eskiden bir çok ülkede ve ülkemizde pratik amaçlarla kullanılmıştır. Bu sistemde düzeltmelerin hesabı için ağırlık ölçüleri gerekli değildir. Komşu nivelman noktalan arasında düzeltmeler küçüktür. Bu yararlarına karşın, yalnız normal ağırlık değerlerine bağlı olmaları nedeniyle modem geodezinin gereksinimlerine yeterli olmaktan uzaktırlar. 72

13 73

14 eşitiiğiyle hesaplanabilir (Jordan / Eggert / Kneissl, Band V, 1969, s. 797). Aq>, aralarındaki yükseklik farkı Ah olan noktaların enlemleri arasındaki fark, cp, bu noktaların enlemlerinin, h da nivelman yüksekliklerinin ortalaması anlamındadır. K 2 teriminin hesabında geçen y m ' Ah yükseklik farklarını sınırlayan noktaların enlemlerinin ve yüksekliklerinin ortalamasına karşılık normal ağırlık değeridir. Büyük alanlı ülkeler, normal ağırlık değerleri ve, yükseklikler bakımından birkaç bölgeye ayrılabilir ve bölgelerden her biri için y m değerleri hesaplanabilir, (g y), Ah yükseklik farkını sınırlayan noktalardaki anomalilerin ortalamasıdır. K 2 terimi genellikle küçüktür. (34) eşitliği, i noktası için de yazılır, normal yükseklikler farkı oluşturulursa, y mıi = y mıj «y m ile sferoidik yükseklikler farkını normal yükseklikler farkına dönüştüren bağıntı, elde edilir. Normal ağırlık alanının çekül eğrileri boyunca fiziksel yeryüzünden (aşağıya doğru) normal yüksekliklere eşit uzaklıktaki noktaların geometrik yeri olarak tanımlanan, genellikle geoidden birkaç dm sapan ve geoide benzeyen kuasi geoid, bir nivo yüzeyi değildir, geoidin aksine fiziksel önemi yoktur. Kuasi geoidin bir noktasının elipsoidden oian uzaklığına (Ç) yükseklik anomalisi denir. Buna göre elipsoid yüksekliği (He) H e= H n~*,., (41) dir. Normal potansiyeli gerçek potansiyele eşit olan noktaların belirlediği yüzeye, Finlandiyalı ölçmecî R.A. Hirvonen'in önerisiyle tellüroid adı verilmiştir. Biçimi yeryüzüne benzer. Bir noktanın normal yüksekliği, başka bir anlamda, o noktaya karşılık tellüroid noktasının elipsoidden olan uzaklığına eşittir. Yükseklik anomalisi Ç, fiziksel yeryüzünün tellüroidden olan uzaklığı anlamında da kabul edilebilir. 74

15 Geoidin elipsoide uzaklığı N ile gösterilirse ortometrik yükseklik H o ile N in toplamı elipsoid yüksekliğine eşittir. Buna göre, H e S J H n s N + H Q ve (42) «n ~»o = N - ç dir. Orta yükseklikte dağlık bölgelerde bu fark bir kaç cm, en çok 2 m büyüklüğündedir. Modern geodezide uydu yöntemiyle yeryüzündeki noktaların konumları, x, y, z uzay koordinatlar sisteminde belirlenmektedir. Elipsoid yükseklikleri (H=), bilinen koordinatlar yardımıyla bir varsayıma gerek olmadan heşaplanabilmektedir (H. Moritz, 1967). Böylece elde edilen elipsoid yüksekliklerini nivelman sonuçlarından dönüştürülenler ile karşılaştırabilmek için, ikinciler varsayım hatalarından arınmış olmalıdır. (42) den H o ve N yardımıyla bulunacak elipsoid yükseklikleri, ortometrik yükseklik için öngörülen varsayım hatalarını giderici bir düzeltme N e getirilmedikçe hatasız görülemez (H. VVolf, 1974). Normal çekül eğrileri boyunca ortalama y m değerleri ve geopotansiyel kotlar yardımıyla normal yükseklikler, hatasız sayılabilecek bir doğrulukla heşaplanabilmektedir. Yeryüzünün yeterli sayıdaki noktalarında ağırlık anomalileri biliniyorsa, yükseklik anomalisi (Ç), Stokes denkiemiyle birkaç dm doğrulukla, bir varsayım öngörülmeksizin hesaplanabilir (K. Müller, 1960). Nivelman ölçülerinden başka yeryüzünde ölçülen öteki büyüklüklerin (doğrultular, uzaklıklar, astronomik ölçüler, ağırlık ölçüleri) geoide indirgenmesi genellikle zor ve hatalıdır. Bu hatalar, geoidin yukarısındaki kütleler için yoğunluk değerlerinin bir kabule dayanmasından kaynaklanmaktadır. Bu yüzden Molodenski tarafından geliştirilen yöntemde, yeryüzünde ölçülen büyüklüklerin geoide indirgenmesinden vazgeçilmiş, çekül sapması bileşenleri ve yükseklik anomalisi için fiziksel yeryüzü temel alınmıştır. Yardımcı yüzey olarak kuasi geoid, bir geodezik ağın yeryüzünde ölçülen elemanlarının elipsoid yüzeyine yeterli bir doğrulukla indirgenmesi olanağını sağlar. 75

16 Molodenski tarafından tanımlanan kuasi geoid, açık denizlerde ve kıyılarda geoid ile çakışır. 4. SAYISAL UYGULAMA ' t" Batı Almanya nivelman ağından seçilen şekil : 3 deki 2 poligon için ölçülen yükseklik farkları, hesaplanan geopotansiel kot-farkları ve nivelman yol uzaklıkları : Ah (m) Ac (kgal m) s (km) p=100/s ve CpQ-y~ KGal m ile bulunan dengelenmiş geopotansiyel Kotlar(c)çizelge 1 de görülmektedir. 76

17 77

18 78

19 Dengelenmiş geopotansiyel kotlardan dönüştürülmüş dinamik yükseklikler, Helmert yükseklikleri, normal yükseklikler, Baranov yükseklikleri Bodemüller yükseklikleri (Hy,ı) Çizelge 1 de, yükseklik farkları "3 _^1 VM çizelge 2 de ve nivelmanla bulunan denge- Ah lenmiş ölçü farkları olduğuna göre AH Ah sapmaları (Dinamik yol düzeltmeleri ya da y lere ilişkin ortometrik düzeltmeler) çizelge 3 de verilmiştir.

20 Dinamik yükseklikler sisteminde sapmaların en küçük çıkmasının nedeni örnekteki ağırlıkların g o = yo 50 değerine çok yakın büyüklükler olmasındandır. Genel olarak dinamik düzeltmeler ortometrik düzeltmelerden büyüktür. Karşılaştırılan metrik sistemler arasında nivelman sonuçlarından en az sapmanın normal yükseklikler olduğu çizelge 3 den görülmektedir. Ac geopotansiyel kot farkları yerine herhangi bir sistemde dinamik ya da ortometrik düzeltme getirilmiş nivelman ölçüleri dengelenebilir. Koşullu ölçüler dengelenmesinde kapalı nivelman poligonlarından her biri için teorik kapanma hatası dir. 5. SONUÇ Geopotansiyel kotlar ya da onlardan belli bir oranda sapan dinamik yükseklikler bilimsel incelemeler, büyük ağ dengelemeleri ve uluslararası bağlantılar için gereklidir. Aynı zamanda geometrik anlamda yüksekliklere kolayca geçiş olanağı sağlarlar. Bir varsayıma gerek olmadan doğruya yakın bir incelikle hesaplanabilirler. 80

21 Ortometrik yükseklikler, yeryüzü ile geoid arasında kalan çekül eğrileri için, ortalama ağırlık değerlerinin hesabında yapılan varsayımlardan kaynaklanan hatalarla yüklüdür. Onlar yardımıyla elipsoid yüksekliklerini hesaplamak uygun değildir. Ortometrik yükseklikler teorisine dayanan ve uygulamanın gereksinimlerini karşılamak amacıyla geliştirilen başka sistemler de istenileni karşılamaktan uzaktır. Normal yükseklikler, teori ve uygulamanın amaçlarına uygundüşmektedir. Bir varsayım öngörülmeksizin hesaplanabilmektedir. Normal yüksekliklerden, ortometrik yüksekliklere ve dinamik yüksekliklere kolayca geçilebilmektedir. Sferoidik yükseklikler, bir düzeltme terimi eklenerek normal yüksekliklere ve onlar yardımıyla öteki sistemlere dönüştürülebilmektedir. Normal yükseklikler sisteminde, nivelman sonuçlarına getirilen düzeltmeler küçüktür. Özellikle yüksek, dağlık bölgeleri olan ülkemiz için en uygun sistemdir. Ortometrik yüksekliklerin hesabında yapılan varsayım hatalarının büyüklüğü karşısında, normal yüksekliklerin ortometrik yüksekliklerden olan sapmaları önemli değildir. Normal yüksekliklerden dönüştürülen elipsoid yükseklikleri modern geodezinin uydu yöntemiyle, varsayım hatalarından arınmış bağlantı olanağı sağlar. K A Y N A K Ç A Bematzky, C. (1963) : Zur Frage der gravimetrischen Punktabstande auf Mvellementslinien zur Erforschung vertikaler Erdkrustenbewegungen, Vermessungstechnik, Heffc 8, s Bodemüller, H. (1963) : Höhen von Helmert, Vignal und mittlere Höhen, Geodatisches Institut der Technichen Hoehschule Darmstadt. Groten, E. (1974) : Zur Cenauigkeit im Südhessischen Teil des Deutschen Haupthöhennetzes. Zfv, Heft 10, s Heiskanen, W.A. ve Moritz, H. (1967) : Physical Geodesy. W.H. Freeman and Company, San Francisco and London. Jordan / Eggert / Kneissl (1969) : Handbuch der Vermessungskunde, Band V. J. B. Metzlersche Verlagsbuchhandlung Stuttgart. Kneissl, M. (1955) : Die Bildung eines einheitlichen europaischen Nivellementsnetzes. Zfv. Nr. 9, s Ledersteger, K. (1952) : Die Minimâlsysteme der metrischen Reduktion. ' 2. Bericht, vorgelegt der Studienkommission «Nivellement und Schwere» im September

JEOİD ve JEOİD BELİRLEME

JEOİD ve JEOİD BELİRLEME JEOİD ve JEOİD BELİRLEME İÇİNDEKİLER GİRİŞ JEODEZİDE YÜKSEKLİK SİSTEMLERİ Jeopotansiyel Yükseklikler (C) Dinamik Yükseklikler (H D ) Normal Yükseklik (H N ) Elipsoidal Yükseklik Ortometrik Yükseklik Atmosferik

Detaylı

Ölçme Bilgisi Jeofizik Mühendisliği Bölümü

Ölçme Bilgisi Jeofizik Mühendisliği Bölümü Ölçme Bilgisi Jeofizik Mühendisliği Bölümü Yrd. Doç. Dr. H. Ebru ÇOLAK ecolak@ktu.edu.tr Karadeniz Teknik Üniversitesi, GISLab Trabzon www.gislab.ktu.edu.tr/kadro/ecolak DÜŞEY MESAFELERİN YÜKSEKLİKLERİN

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

KÜRESEL VE ELİPSOİDAL KOORDİNATLARIN KARŞİLAŞTİRİLMASİ

KÜRESEL VE ELİPSOİDAL KOORDİNATLARIN KARŞİLAŞTİRİLMASİ KÜRESEL VE ELİPSOİDAL KOORDİNATLARIN KARŞİLAŞTİRİLMASİ Doç. Dr. İsmail Hakkı GÜNEŞ İstanbul Teknik Üniversitesi ÖZET Küresel ve Elipsoidal koordinatların.karşılaştırılması amacı ile bir noktasında astronomik

Detaylı

YÜKSEKLİK ÖLÇÜMÜ. Ölçme Bilgisi Ders Notları

YÜKSEKLİK ÖLÇÜMÜ. Ölçme Bilgisi Ders Notları YÜKSEKLİK ÖLÇÜMÜ Yeryüzündeki herhangi bir noktanın sakin deniz yüzeyi üzerinde (geoitten itibaren) çekül doğrultusundaki en kısa mesafesine yükseklik denir. Yükseklik ölçümü; belirli noktalar arasındaki

Detaylı

Gözlemlerin Referans Elipsoid Yüzüne İndirgenmesi

Gözlemlerin Referans Elipsoid Yüzüne İndirgenmesi JEODEZİ 6 1 Gözlemlerin Referans Elipsoid Yüzüne İndirgenmesi Jeodezik gözlemler, hesaplamalarda kullanılmadan önce, referans elipsoidin yüzeyine indirgenir. Bu işlem, arazide yapılan gözlemler l jeoidin

Detaylı

T] = (a- A) cotgş (6) şeklindedir. (1) ve (6) formüllerinin bir araya getirilmesi ile (a A) = (X L) sincp (7) Laplace denklemi elde edilir.

T] = (a- A) cotgş (6) şeklindedir. (1) ve (6) formüllerinin bir araya getirilmesi ile (a A) = (X L) sincp (7) Laplace denklemi elde edilir. * = 2 + rf (3) \ cos AQ, r\ % sin A o (4) \ cos A o + IQ sin A o = % (5) bağıntılarıda yazılabilir. (1) eşitliğine göre elde edilen r\ doğu-batı bileşeni astronomik ve leşenleri elde edilmiş oldu. MZ A

Detaylı

TOPOĞRAFYA Yüksekliklerin Ölçülmesi Nivelman Yöntemleri

TOPOĞRAFYA Yüksekliklerin Ölçülmesi Nivelman Yöntemleri TOPOĞRAFYA Yüksekliklerin Ölçülmesi Nivelman Yöntemleri Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

TOPOĞRAFYA Yüksekliklerin Ölçülmesi Nivelman Yöntemleri

TOPOĞRAFYA Yüksekliklerin Ölçülmesi Nivelman Yöntemleri TOPOĞRAFYA Yüksekliklerin Ölçülmesi Nivelman Yöntemleri Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

ÖLÇME BİLGİSİ DÜŞEY MESAFELERİN (YÜKSEKLİKLERİN) ÖLÇÜLMESİ NİVELMAN ALETLERİ. Doç. Dr. Alper Serdar ANLI. 8. Hafta

ÖLÇME BİLGİSİ DÜŞEY MESAFELERİN (YÜKSEKLİKLERİN) ÖLÇÜLMESİ NİVELMAN ALETLERİ. Doç. Dr. Alper Serdar ANLI. 8. Hafta ÖLÇME BİLGİSİ DÜŞEY MESAFELERİN (YÜKSEKLİKLERİN) ÖLÇÜLMESİ NİVELMAN ALETLERİ Doç. Dr. Alper Serdar ANLI 8. Hafta DÜŞEY MESAFELERİN (YÜKSEKLİKLERİN) ÖLÇÜLMESİ Noktaların yükseklikleri düşey ölçmelerle belirlenir.

Detaylı

TOPOĞRAFYA Temel Ödevler / Poligonasyon

TOPOĞRAFYA Temel Ödevler / Poligonasyon TOPOĞRAFYA Temel Ödevler / Poligonasyon Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

Hakan AKÇIN* SUNU Ali ihsan ŞEKERTEKİN

Hakan AKÇIN* SUNU Ali ihsan ŞEKERTEKİN AÇIK İŞLETME MADENCİLİĞİ UYGULAMALARINDA GNSS ÖLÇÜLERİNDEN YÜKSEKLİK FARKLARININ GEOMETRİK NİVELMAN ÖLÇMELERİNDEN YÜKSEKLİK FARKLARI YERİNE KULLANIMI ÜZERİNE DENEYSEL BİR ARAŞTIRMA Hakan AKÇIN* SUNU Ali

Detaylı

Âna nirengi doğrultuları için p = 1 m 2 o Ara nirengi doğrultuları için p a =------------ m\

Âna nirengi doğrultuları için p = 1 m 2 o Ara nirengi doğrultuları için p a =------------ m\ 4. ÖLÇÜLERİN AĞIRLIKLARININ SAPTANMASI Ana, ara ve tamamlayıcı nirengi doğrultularının herbiri gruplar halinde ele alınarak bunların ortalama hatalarının öncül (a priori) değerleri, üçgen kapanmalarından

Detaylı

02.04.2012. Düşey mesafelerin (Yüksekliklerin) Ölçülmesi. Düşey Mesafelerin (Yüksekliklerin) Ölçülmesi. Düşey Mesafelerin (Yüksekliklerin) Ölçülmesi

02.04.2012. Düşey mesafelerin (Yüksekliklerin) Ölçülmesi. Düşey Mesafelerin (Yüksekliklerin) Ölçülmesi. Düşey Mesafelerin (Yüksekliklerin) Ölçülmesi Düşey mesafelerin (Yüksekliklerin) Ölçülmesi Noktalar arasındaki düşey mesafelerin ölçülmesine yükseklik ölçmesi ya da nivelman denir. Yükseklik: Ölçülmek istenen nokta ile sıfır yüzeyi olarak kabul edilen

Detaylı

Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre

Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre Jeodezi 7 1 Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre Elipsoid yüzeyinin küçük parçalarında oluşan küçük üçgenlerin (kenarları 50-60 km den küçük) hesaplanmasında klasik jeodezide

Detaylı

İKİ BOYUTLU AĞLARDA AĞIRLIK SEÇİMİNİN DENGELEME SONUÇLARINA ETKİSİ VE GPS KOORDİNATLARI İLE KARŞILAŞTIRILMASI

İKİ BOYUTLU AĞLARDA AĞIRLIK SEÇİMİNİN DENGELEME SONUÇLARINA ETKİSİ VE GPS KOORDİNATLARI İLE KARŞILAŞTIRILMASI SELÇUK TEKNİK ONLİNE DERGİSİ / ISSN 1302 6178 Volume 1, Number: 3 2001 İKİ BOYUTLU AĞLARDA AĞIRLIK SEÇİMİNİN DENGELEME SONUÇLARINA ETKİSİ VE GPS KOORDİNATLARI İLE KARŞILAŞTIRILMASI Doç Dr. Cevat İNAL S.Ü.

Detaylı

ELEKTRO-OPTİK UZUNLUK ÖLÇMELERİNDE DÜZELTMELER VE İNDİRGEMELER

ELEKTRO-OPTİK UZUNLUK ÖLÇMELERİNDE DÜZELTMELER VE İNDİRGEMELER ELEKTRO-OPTİK UZUNLUK ÖLÇMELERİNDE DÜZELTMELER VE İNDİRGEMELER *ErdalKOÇAK Summary Medium and short range distances are generally measured hy electro-opîical method insurvey sîudies. The aîmospheric correctioııs

Detaylı

Jeodezide Yaklaşım Yöntemleri: Enterpolasyon ve Kollokasyon

Jeodezide Yaklaşım Yöntemleri: Enterpolasyon ve Kollokasyon Jeodezide Yöntemleri: ve Lisansüstü Ders Notları Yrd. Doç. Dr. Aydın ÜSTÜN Selçuk Üniversitesi Fen Bilimleri Enstitüsü e-posta: austun@selcuk.edu.tr Konya, 2007 A. Üstün yöntemleri 1 / 28 Bir soruyu ya

Detaylı

DERS 3 ÖLÇÜ HATALARI Kaynak: İ.ASRİ

DERS 3 ÖLÇÜ HATALARI Kaynak: İ.ASRİ Ölçme Bilgisi DERS 3 ÖLÇÜ HATALARI Kaynak: İ.ASRİ Çizim Hassasiyeti Haritaların çiziminde veya haritadan bilgi almada ne kadar itina gösterilirse gösterilsin kaçınılmayacak bir hata vardır. Buna çizim

Detaylı

Yıldız Teknik Üniversitesi İnşaat Fakültesi Harita Mühendisliği Bölümü TOPOGRAFYA (HRT3351) Yrd. Doç. Dr. Ercenk ATA

Yıldız Teknik Üniversitesi İnşaat Fakültesi Harita Mühendisliği Bölümü TOPOGRAFYA (HRT3351) Yrd. Doç. Dr. Ercenk ATA Yıldız Teknik Üniversitesi İnşaat Fakültesi Harita Mühendisliği Bölümü 4. HAFTA KOORDİNAT SİSTEMLERİ VE HARİTA PROJEKSİYONLARI Coğrafi Koordinat Sistemi Yeryüzü üzerindeki bir noktanın konumunun enlem

Detaylı

ÖLÇME BİLGİSİ TANIM KAPSAM ÖLÇME ÇEŞİTLERİ BASİT ÖLÇME ALETLERİ

ÖLÇME BİLGİSİ TANIM KAPSAM ÖLÇME ÇEŞİTLERİ BASİT ÖLÇME ALETLERİ ÖLÇME BİLGİSİ TANIM KAPSAM ÖLÇME ÇEŞİTLERİ BASİT ÖLÇME ALETLERİ Doç. Dr. Alper Serdar ANLI 1.Hafta Ölçme Bilgisi Dersi 2013 Bahar Dönemi Ders Programı HAFTA KONU 1.Hafta 2.Hafta 3.Hafta 4.Hafta 5.Hafta

Detaylı

Yükseklik Ölçme (Nivelman) Prof.Dr.Mustafa KARAŞAHİN

Yükseklik Ölçme (Nivelman) Prof.Dr.Mustafa KARAŞAHİN Yükseklik Ölçme (Nivelman) Prof.Dr.Mustafa KARAŞAHİN Yükseklik Ölçümü Arazide, yerleri belli olan noktaların deviz seviyesine göre yüksekliklerinin belirlenmesi işlemidir. Noktalar arasındaki yükseklik

Detaylı

DENGELEME HESABI-I DERS NOTLARI

DENGELEME HESABI-I DERS NOTLARI DENGELEME HESABI-I DERS NOTLARI Ağırlık ve Ters Ağırlık (Kofaktör) Prof. Dr. Mualla YALÇINKAYA Yrd. Doç. Dr. Emine TANIR KAYIKÇI Karadeniz Teknik Üniversitesi, Harita Mühendisliği Bölümü Trabzon, 016 AĞIRLIK

Detaylı

MEVCUT GPS/NİVELMAN VERİ KÜMESİNİN JEOİT MODELLEME AÇISINDAN DEĞERLENDİRİLMESİ

MEVCUT GPS/NİVELMAN VERİ KÜMESİNİN JEOİT MODELLEME AÇISINDAN DEĞERLENDİRİLMESİ MEVCUT GPS/NİVELMAN VERİ KÜMESİNİN JEOİT MODELLEME AÇISINDAN DEĞERLENDİRİLMESİ Mustafa İNAM, Mehmet SİMAV, Ali TÜRKEZER, Serdar AKYOL, Ahmet DİRENÇ, A.İhsan KURT, Mustafa KURT Harita Genel Komutanlığı,

Detaylı

TOPOĞRAFYA Kesitlerin Çıkarılması, Alan Hesapları, Hacim Hesapları

TOPOĞRAFYA Kesitlerin Çıkarılması, Alan Hesapları, Hacim Hesapları TOPOĞRAFYA Kesitlerin Çıkarılması, Alan Hesapları, Hacim Hesapları Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

ARAZİ ÖLÇMELERİ. Koordinat sistemleri. Kartezyen koordinat sistemi

ARAZİ ÖLÇMELERİ. Koordinat sistemleri. Kartezyen koordinat sistemi Koordinat sistemleri Coğrafik objelerin haritaya aktarılması, objelerin detaylarına ait koordinatların düzleme aktarılması ile oluşur. Koordinat sistemleri kendi içlerinde kartezyen koordinat sistemi,

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

ELİPSOİD DİK KOORDİNATLARDAN JEÛDEZİK KOORDİNATLARA DÖNÜŞÜM

ELİPSOİD DİK KOORDİNATLARDAN JEÛDEZİK KOORDİNATLARA DÖNÜŞÜM ELİPSOİD DİK KOORDİNATLARDAN JEÛDEZİK KOORDİNATLARA DÖNÜŞÜM Doç. Dr. M. Tamer Ünal İDMMA İstanbul 1. GİRİŞ Başlangıç noktasının, hesap yüzeyi olarak alınan elipsoidin şekil merkezinde (0) olduğu, z ekseninin

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Uygulamada Gauss-Kruger Projeksiyonu

Uygulamada Gauss-Kruger Projeksiyonu JEODEZİ12 1 Uygulamada Gauss-Kruger Projeksiyonu Gauss-Kruger Projeksiyonunda uzunluk deformasyonu, noktanın X ekseni olarak alınan ve uzunluğu unluğu koruyan koordinat başlangıç meridyenine uzaklığının

Detaylı

ULAŞIM YOLLARINA AİT TANIMLAR

ULAŞIM YOLLARINA AİT TANIMLAR ULAŞIM YOLLARINA AİT TANIMLAR Geçki: Karayolu, demiryolu gibi ulaştıma yapılarının, yuvarlanma yüzeylerinin ortasından geçtiği varsayılan eksen çizgisinin harita ya da arazideki izdüşümüdür. Topografik

Detaylı

DENGELEME HESABI-I DERS NOTLARI

DENGELEME HESABI-I DERS NOTLARI DENGELEME HESABI-I DERS NOTLARI Dengeleme Hesabı Adımları, En Küçük Kareler İlkesine Giriş, Korelasyon Prof. Dr. Mualla YALÇINKAYA Yrd. Doç. Dr. Emine TANIR KAYIKÇI Karadeniz Teknik Üniversitesi, Harita

Detaylı

Gruplanmış serilerde standart sapma hesabı

Gruplanmış serilerde standart sapma hesabı Gruplanmış serilerde standart sapma hesabı Örnek: Verilen gruplanmış serinin standart sapmasını bulunuz? Sınıflar f i X X X m i f i. m i m i - (m i - ) f i.(m i - ) 0 den az 3 4 den az 7 4 6 dan az 4 6

Detaylı

ARAZİ ÖLÇMELERİ. Koordinat sistemleri. Kartezyen koordinat sistemi

ARAZİ ÖLÇMELERİ. Koordinat sistemleri. Kartezyen koordinat sistemi Koordinat sistemleri Coğrafik objelerin haritaya aktarılması, objelerin detaylarına ait koordinatların düzleme aktarılması ile oluşur. Koordinat sistemleri kendi içlerinde kartezyen koordinat sistemi,

Detaylı

PDF created with FinePrint pdffactory trial version Düşey mesafelerin (Yüksekliklerin) Ölçülmesi

PDF created with FinePrint pdffactory trial version  Düşey mesafelerin (Yüksekliklerin) Ölçülmesi Düşey mesafelerin (Yüksekliklerin) Noktalar arasındaki düşey mesafelerin ölçülmesine yükseklik ölçmesi ya da nivelman denir. Yükseklik: Ölçülmek istenen nokta ile sıfır yüzeyi olarak kabul edilen deniz

Detaylı

Uzay Geriden Kestirme

Uzay Geriden Kestirme Uzay Geriden Kestirme (Eğik Uzunluklarla veya Düşey Açılarla Üçboyutlu Konum Belirleme ) Sebahattin BEKTAŞ* GİRİŞ Konum belirleme problemi günümüzde de jeodezinin en önemli problemi olmaya devam etmektedir.

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

Harita Projeksiyonları ve Koordinat Sistemleri. Doç. Dr. Senem KOZAMAN

Harita Projeksiyonları ve Koordinat Sistemleri. Doç. Dr. Senem KOZAMAN Harita Projeksiyonları ve Koordinat Sistemleri Doç. Dr. Senem KOZAMAN Yeryüzü şekilleri ve ayrıntılarının düz bir yüzey üzerinde, belli bir ölçek ve semboller kullanarak, bir referans sisteme göre ifade

Detaylı

İnşaat Mühendisliğine Giriş İNŞ-101. Yrd.Doç.Dr. Özgür Lütfi Ertuğrul

İnşaat Mühendisliğine Giriş İNŞ-101. Yrd.Doç.Dr. Özgür Lütfi Ertuğrul İnşaat Mühendisliğine Giriş İNŞ-101 Yrd.Doç.Dr. Özgür Lütfi Ertuğrul Ölçme Bilgisine Giriş Haritaların ve Ölçme Bilgisinin Kullanım Alanları Ölçmeler sonucunda üretilen haritalar ve planlar pek çok mühendislik

Detaylı

ÖLÇME BİLGİSİ. PDF created with FinePrint pdffactory trial version http://www.fineprint.com. Tanım

ÖLÇME BİLGİSİ. PDF created with FinePrint pdffactory trial version http://www.fineprint.com. Tanım ÖLÇME BİLGİSİ Dersin Amacı Öğretim Üyeleri Ders Programı Sınav Sistemi Ders Devam YRD. DOÇ. DR. HAKAN BÜYÜKCANGAZ ÖĞR.GÖR.DR. ERKAN YASLIOĞLU Ders Programı 1. Ölçme Bilgisi tanım, kapsamı, tarihçesi. 2.

Detaylı

TOPOĞRAFYA. Ölçme Bilgisinin Konusu

TOPOĞRAFYA. Ölçme Bilgisinin Konusu TOPOĞRAFYA Topoğrafya, bir arazi yüzeyinin tabii veya suni ayrıntılarının meydana getirdiği şekil. Bu şeklin kâğıt üzerinde harita ve tablo şeklinde gösterilmesiyle ilgili ölçme, hesap ve çizim işlerinin

Detaylı

MÜHENDİSLİK ÖLÇMELERİ UYGULAMASI (HRT4362) 8. Yarıyıl

MÜHENDİSLİK ÖLÇMELERİ UYGULAMASI (HRT4362) 8. Yarıyıl İnşaat Fakültesi Harita Mühendisliği Bölümü Ölçme Tekniği Anabilim Dalı MÜHENDİSLİK ÖLÇMELERİ UYGULAMASI (HRT4362) 8. Yarıyıl D U L K Kredi 2 0 2 3 ECTS 2 0 2 3 UYGULAMA-1 ELEKTRONİK ALETLERİN KALİBRASYONU

Detaylı

YÜKSEKLİK ÖLÇMELERİ DERSİ GEOMETRİK NİVELMAN

YÜKSEKLİK ÖLÇMELERİ DERSİ GEOMETRİK NİVELMAN YÜKSEKLİK ÖLÇMELERİ DERSİ GEOMETRİK NİVELMAN Yrd. Doç. Dr. Ayhan CEYLAN Yrd. Doç. Dr. İsmail ŞANLIOĞLU 9.3. Nivelman Ağları ve Nivelman Röper Noktası Haritası yapılacak olan arazi üzerinde veya projenin

Detaylı

ÖLÇME UYGULAMASI YÖNERGESİ YILDIZ TEKNİK ÜNİVERSİTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI. Ders Koordinatörü: Prof.Dr.

ÖLÇME UYGULAMASI YÖNERGESİ YILDIZ TEKNİK ÜNİVERSİTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI. Ders Koordinatörü: Prof.Dr. YILDIZ TEKNİK ÜNİVERSİTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI ÖLÇME UYGULAMASI YÖNERGESİ Ders Koordinatörü: Prof.Dr. Engin GÜLAL 2015-2016 Güz Yarıyılı GRUP BİLGİLERİ Grup No Kapasite

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır. Bu anlamda, anakütleden çekilen

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

ÖLÇME BİLGİSİ. Sunu 1- Yatay Ölçme. Yrd. Doç. Dr. Muhittin İNAN & Arş. Gör. Hüseyin YURTSEVEN

ÖLÇME BİLGİSİ. Sunu 1- Yatay Ölçme. Yrd. Doç. Dr. Muhittin İNAN & Arş. Gör. Hüseyin YURTSEVEN ÖÇME BİGİİ unu - atay Ölçme rd. Doç. Dr. Muhittin İNAN & Arş. Gör. Hüseyin URTEVEN COĞRAFİ BİGİ İTEMİNİ OUŞTURABİMEK İÇİN BİGİ TOPAMA ÖNTEMERİ ATA ÖÇMEER (,) ATA AÇIAR VE MEAFEERİN ÖÇÜMEİ ERE ÖÇMEER DÜŞE

Detaylı

JEODEZİK ÖLÇMELER DERSİ. Yrd. Doç. Dr. Hakan AKÇIN Yrd. Doç. Dr. Hüseyin KEMALDERE

JEODEZİK ÖLÇMELER DERSİ. Yrd. Doç. Dr. Hakan AKÇIN Yrd. Doç. Dr. Hüseyin KEMALDERE JEODEZİK ÖLÇMELER DERSİ Yrd. Doç. Dr. Hakan AKÇIN Yrd. Doç. Dr. Hüseyin KEMALDERE REFERANS (KOORDİNAT) SİSTEMLERİ VE DATUM 1. Hafta Ders Notları REFERANS (KOORDİNAT) SİSTEMLERİ VE DATUM Referans (Koordinat)

Detaylı

İNŞAAT TEKNOLOJİSİ ÖNLİSANS EĞİTİMİNDE HARİTACILIĞIN YERİ. Orhan KURT 1

İNŞAAT TEKNOLOJİSİ ÖNLİSANS EĞİTİMİNDE HARİTACILIĞIN YERİ. Orhan KURT 1 İNŞAAT TEKNOLOJİSİ ÖNLİSANS EĞİTİMİNDE HARİTACILIĞIN YERİ Orhan KURT 1 1 Kocaeli Üniversitesi, Mühendislik Fakültesi, Harita Mühendisliği Bölümü, Kocaeli, orhnkrt@gmail.com Özet Bir inşaat teknikeri haritacılık

Detaylı

ULAŞIM YOLLARINA İLİŞKİN TANIMLAR 1. GEÇKİ( GÜZERGAH) Karayolu, demiryolu gibi ulaşım yollarının yuvarlanma yüzeylerinin ortasından geçtiği

ULAŞIM YOLLARINA İLİŞKİN TANIMLAR 1. GEÇKİ( GÜZERGAH) Karayolu, demiryolu gibi ulaşım yollarının yuvarlanma yüzeylerinin ortasından geçtiği ULAŞIM YOLLARINA İLİŞKİN TANIMLAR 1. GEÇKİ( GÜZERGAH) Karayolu, demiryolu gibi ulaşım yollarının yuvarlanma yüzeylerinin ortasından geçtiği varsayılan eksen çizgilerinin topoğrafik harita ya da arazi üzerindeki

Detaylı

YERSEL YÖNTEMLERLE ÖLÇÜLEN JEODEZİK AĞLARIN ÜÇ BOYUTLU DENGELENMESİ

YERSEL YÖNTEMLERLE ÖLÇÜLEN JEODEZİK AĞLARIN ÜÇ BOYUTLU DENGELENMESİ 23 YERSEL YÖNTEMLERLE ÖLÇÜLEN JEODEZİK AĞLARIN ÜÇ BOYUTLU DENGELENMESİ Veysel ATASOY İ, GİRİŞ Jeodezinin günümüzdeki tanımı, üç boyutlu ve zaman değişkenli bir uzayda yerin çekim alanını da kapsamak koşuluyla

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

NİRENGİ ÂĞLARININ DEĞERLENDİRİLMESİ. Ergün ÖZTÜRK ÖZET

NİRENGİ ÂĞLARININ DEĞERLENDİRİLMESİ. Ergün ÖZTÜRK ÖZET NİRENGİ ÂĞLARININ DEĞERLENDİRİLMESİ ÖZET Ergün ÖZTÜRK Büyük ölçekli jeodezik çalışmaların tek bir birim sistemde hesaplanan nirengi ağlarına dayandırılmasında sayısız yararlar bulunmaktadır* Bu amaçla

Detaylı

olmak üzere 4 ayrı kütükte toplanan günlük GPS ölçüleri, baz vektörlerinin hesabı için bilgisayara aktarılmıştır (Ersoy.97).

olmak üzere 4 ayrı kütükte toplanan günlük GPS ölçüleri, baz vektörlerinin hesabı için bilgisayara aktarılmıştır (Ersoy.97). 1-) GPS Ölçülerinin Yapılması Ölçülerin yapılacağı tarihlerde kısa bir süre gözlem yapılarak uydu efemerisi güncelleştirilmiştir. Bunun sonunda ölçü yapılacak bölgenin yaklaşık koordinatlarına göre, bir

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

ÖLÇME UYGULAMASI YÖNERGESİ YILDIZ TEKNİK ÜNİVERSİTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI. Ders Koordinatörü: Prof.Dr.

ÖLÇME UYGULAMASI YÖNERGESİ YILDIZ TEKNİK ÜNİVERSİTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI. Ders Koordinatörü: Prof.Dr. YILDIZ TEKNİK ÜNİVERSİTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI ÖLÇME UYGULAMASI YÖNERGESİ Ders Koordinatörü: Prof.Dr. Engin GÜLAL 2016-2017 Güz Yarıyılı GRUP BİLGİLERİ Grup No Kapasite

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

Harita Projeksiyonları

Harita Projeksiyonları Harita Projeksiyonları Bölüm Prof.Dr. İ. Öztuğ BİLDİRİCİ Amaç ve Kapsam Harita projeksiyonlarının amacı, yeryüzü için tanımlanmış bir referans yüzeyi üzerinde belli bir koordinat sistemine göre tanımlı

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 2- HATA VE HATA KAYNAKLARI Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ Bir denklemin veya problemin çözümünde kullanılan sayısal yöntem belli bir giriş verisini işleme tabi tutarak sayısal

Detaylı

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir.

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. İSTATİSTİKSEL TAHMİNLEME Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. 1 ŞEKİL: Evren uzay-örneklem uzay İstatistiksel tahmin

Detaylı

Ölçme Bilgisi DERS 9-10. Hacim Hesapları. Kaynak: İ.ASRİ (Gümüşhane Ü) T. FİKRET HORZUM( AÜ )

Ölçme Bilgisi DERS 9-10. Hacim Hesapları. Kaynak: İ.ASRİ (Gümüşhane Ü) T. FİKRET HORZUM( AÜ ) Ölçme Bilgisi DERS 9-10 Hacim Hesapları Kaynak: İ.ASRİ (Gümüşhane Ü) T. FİKRET HORZUM( AÜ ) Büyük inşaatlarda, yol ve kanal çalışmalarında kazılacak toprak miktarının hesaplanması, maden işletmelerinde

Detaylı

Ölçme Bilgisi ve Kadastro Anabilim Dalı

Ölçme Bilgisi ve Kadastro Anabilim Dalı ÖLÇME BİLGİSİ Ölçme Bilgisi ve Kadastro Anabilim Dalı Ders Kodu:264 Yrd.Doç.Dr. Muhittin İNAN Anabilim Dalımız "İstanbul Yüksek Orman Mektebi" nin 1934 yılında Ankara Yüksek Ziraat Enstitüsüne bir fakülte

Detaylı

YÜKSEKLİKLERİN ÖLÇÜLMESİ - NİVELMAN GENEL

YÜKSEKLİKLERİN ÖLÇÜLMESİ - NİVELMAN GENEL YÜKSEKLİKLERİN ÖLÇÜLMESİ - NİVELMAN GENEL Yeryüzü noktalarının, karaların altında da devam ettiği varsayılan durgun durumdaki denizlerin ortalama yüzeyinden (karşılaştırma yüzeyi) olan düşey uzaklığına

Detaylı

Ölçme Bilgisi DERS 7-8. Yatay Kontrol Noktaları Ve Yükseklik ölçmeleri. Kaynak: İ.ASRİ (Gümüşhane Ü) T. FİKRET HORZUM( AÜ )

Ölçme Bilgisi DERS 7-8. Yatay Kontrol Noktaları Ve Yükseklik ölçmeleri. Kaynak: İ.ASRİ (Gümüşhane Ü) T. FİKRET HORZUM( AÜ ) Ölçme Bilgisi DERS 7-8 Yatay Kontrol Noktaları Ve Yükseklik ölçmeleri Kaynak: İ.ASRİ (Gümüşhane Ü) T. FİKRET HORZUM( AÜ ) Bir alanın üzerindeki detaylarla birlikte harita veya planının yapılabilmesi için

Detaylı

ARAZİ ÇALIŞMASI -1 DERSİ ELEKTRONİK ALETLERİN KONTROL VE KALİBRASYONU UYGULAMALARI

ARAZİ ÇALIŞMASI -1 DERSİ ELEKTRONİK ALETLERİN KONTROL VE KALİBRASYONU UYGULAMALARI ARAZİ ÇALIŞMASI -1 DERSİ ELEKTRONİK ALETLERİN KONTROL VE KALİBRASYONU UYGULAMALARI HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI JEODEZİK METROLOJİ LABORATUVARI İstanbul, 2018 1.ELEKTRONİK TAKEOMETRELERİN

Detaylı

ÜLKE NİRENGİ AĞLARININ YERLEŞTİRME TC YÖNELTİMİNE UYDULARIN KATKISI

ÜLKE NİRENGİ AĞLARININ YERLEŞTİRME TC YÖNELTİMİNE UYDULARIN KATKISI ÜLKE NİRENGİ AĞLARININ YERLEŞTİRME TC YÖNELTİMİNE UYDULARIN KATKISI Doç. Dr. M. Tamer ÜNAL Yıldız Üniversitesi ÖZET Geodezik bilgileri elde edebilmenin ilk koşulu koordinatları bilinen nirengi dediğimiz

Detaylı

ARAZİ ÇALIŞMASI YÖNERGESİ

ARAZİ ÇALIŞMASI YÖNERGESİ YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT FAKÜLTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ARAZİ ÇALIŞMASI YÖNERGESİ HAZIRLAYANLAR Prof. Dr. METİN SOYCAN Prof. Dr. UĞUR DOĞAN Doç. Dr. TÜRKAY GÖKGÖZ Doç. Dr. ATINÇ PIRTI Y.

Detaylı

Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 9. Alıştırma Toleransları. Yrd. Doç. Dr. Garip GENÇ. [ ES (es) = EBÖ AÖ ]

Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 9. Alıştırma Toleransları. Yrd. Doç. Dr. Garip GENÇ. [ ES (es) = EBÖ AÖ ] TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Toleransın Tanımı ve Önemi Elde edilen ölçü ve şekil, çizim üzerinde belirtilen değerden biraz büyük veya biraz küçük olabilir. İşte bu iki sınır arasındaki

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

GPS VE NİVELMAN ÖLÇÜLERİ İLE ÇEKÜL SAPMASI BİLEŞENLERİNİN HESAPLANMASI ÜZERİNE BİR ÇALIŞMA

GPS VE NİVELMAN ÖLÇÜLERİ İLE ÇEKÜL SAPMASI BİLEŞENLERİNİN HESAPLANMASI ÜZERİNE BİR ÇALIŞMA TMMOB Harita ve Kadastro Mühendisleri Odası 12. Türkiye Harita Bilimsel ve Teknik Kurultayı 11 15 Mayıs 2009, Ankara GPS VE NİVELMAN ÖLÇÜLERİ İLE ÇEKÜL SAPMASI BİLEŞENLERİNİN HESAPLANMASI ÜZERİNE BİR ÇALIŞMA

Detaylı

SORGULU HESAP CETVELLERİ İLE TAKEOMETRİK ÖLÇÜLERİN KIYMETLENDİRİLMESİ

SORGULU HESAP CETVELLERİ İLE TAKEOMETRİK ÖLÇÜLERİN KIYMETLENDİRİLMESİ SORGULU HESAP CETVELLERİ İLE TAKEOMETRİK ÖLÇÜLERİN KIYMETLENDİRİLMESİ Beşir T Ü R K KÂN (Ankara) Arazinin topoğrafik durumunu göstermek üzere yapılan alımların takeometrik kıymetlendirilmesi genellikle

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki

Detaylı

KESİTLERİN ÇIKARILMASI

KESİTLERİN ÇIKARILMASI KESİTLERİN ÇIKARILMASI Karayolu, demiryolu, kanal, yüksek gerilim hattı gibi inşaat işlerinde projelerin hazırlanması, toprak hacminin bulunması amacı ile boyuna ve enine kesitlere ihtiyaç vardır. Boyuna

Detaylı

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 )

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 ) 4. SUNUM 1 Gözlem ya da deneme sonucu elde edilmiş sonuçların, rastlantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HİPOTEZ TESTLERİ denir. Sonuçların rastlantıya bağlı

Detaylı

ÖLÇME UYGULAMASI YÖNERGESİ YILDIZ TEKNİK ÜNİVERSİTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI. Ders Koordinatörü: Prof.Dr.

ÖLÇME UYGULAMASI YÖNERGESİ YILDIZ TEKNİK ÜNİVERSİTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI. Ders Koordinatörü: Prof.Dr. YILDIZ TEKNİK ÜNİVERSİTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI ÖLÇME UYGULAMASI YÖNERGESİ Ders Koordinatörü: Prof.Dr. Engin GÜLAL 2017-2018 Güz Yarıyılı GRUP BİLGİLERİ Grup No Kapasite

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir.

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir. .. Diferensiyel Denklemler y f (x) de F ( x, y, y, y,...) 0 veya y f ( x, y, y,...) x ve y değişkenlerinin kendileri ve türevlerini içinde bulunduran denklemlerdir. (Türevler; "Bağımlı değişkenin değişiminin

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

Geometrik nivelmanda önemli hata kaynakları Nivelmanda oluşabilecek model hataları iki bölümde incelenebilir. Bunlar: Aletsel (Nivo ve Mira) Hatalar Çevresel Koşullardan Kaynaklanan Hatalar 1. Aletsel

Detaylı

METEOROLOJİ. IV. HAFTA: Hava basıncı

METEOROLOJİ. IV. HAFTA: Hava basıncı METEOROLOJİ IV. HAFTA: Hava basıncı HAVA BASINCI Tüm cisimlerin olduğu gibi havanın da bir ağırlığı vardır. Bunu ilk ortaya atan Aristo, deneyleriyle ilk ispatlayan Galileo olmuştur. Havanın sahip olduğu

Detaylı

ÖLÇME UYGULAMASI YÖNERGESİ YILDIZ TEKNİK ÜNİVERSİTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI. Ders Koordinatörü: Prof.Dr.

ÖLÇME UYGULAMASI YÖNERGESİ YILDIZ TEKNİK ÜNİVERSİTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI. Ders Koordinatörü: Prof.Dr. YILDIZ TEKNİK ÜNİVERSİTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI ÖLÇME UYGULAMASI YÖNERGESİ Ders Koordinatörü: Prof.Dr. Engin GÜLAL 2018-2019 Güz Yarıyılı GRUP BİLGİLERİ Grup No Kapasite

Detaylı

ÖLÇME UYGULAMASI YÖNERGESİ YILDIZ TEKNİK ÜNİVERSİTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI

ÖLÇME UYGULAMASI YÖNERGESİ YILDIZ TEKNİK ÜNİVERSİTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI YILDIZ TEKNİK ÜNİVERSİTESİ HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI ÖLÇME UYGULAMASI YÖNERGESİ Ders Koordinatörler: Doç.Dr.Engin GÜLAL Doç.Dr.Atınç PIRTI 2014-2015 Güz Yarıyılı GRUP BİLGİLERİ

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

Büyük Ölçekli Harita ve Harita Bilgileri Üretim Yönetmeliği

Büyük Ölçekli Harita ve Harita Bilgileri Üretim Yönetmeliği 7. POLİGON 7.1. GENEL BİLGİ Bir bölgenin harita veya planının yapılabilmesi için, yeryüzünde konumu sabit ve koordinatları bilinen noktala ihtiyaç vardır. Bu noktalar, genel olarak nirengi noktaları ve

Detaylı

MÜHENDİSLİK ÖLÇMELERİ UYGULAMASI (HRT4362) 8. Yarıyıl

MÜHENDİSLİK ÖLÇMELERİ UYGULAMASI (HRT4362) 8. Yarıyıl İnşaat Fakültesi Harita Mühendisliği Bölümü Ölçme Tekniği Anabilim alı MÜHENİSLİK ÖLÇMELERİ UYGULAMASI (HRT436) 8. Yarıyıl U L K Kredi 3 ECTS 3 UYGULAMA-5 ELEKTRONİK ALETLERİN KALİBRASYONU Prof.r.Engin

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

ARAZİ ÇALIŞMASI -1 DERSİ ELEKTRONİK ALETLERİN KONTROL VE KALİBRASYONU UYGULAMALARI

ARAZİ ÇALIŞMASI -1 DERSİ ELEKTRONİK ALETLERİN KONTROL VE KALİBRASYONU UYGULAMALARI ARAZİ ÇALIŞMASI -1 DERSİ ELEKTRONİK ALETLERİN KONTROL VE KALİBRASYONU UYGULAMALARI HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI JEODEZİK METROLOJİ LABORATUVARI İstanbul, 016 1.ELEKTRONİK TAKEOMETRELERİN

Detaylı

SÜREKLİ OLASILIK DAĞILIMI

SÜREKLİ OLASILIK DAĞILIMI SÜREKLİ OLASILIK DAĞILIMI Normal Olasılık Dağılımı Akülerin dayanma süresi, araçların belli bir zamanda aldığı yol, bir koşuya katılanların bitirme süresi gibi sayılamayacak kadar çok değer alabilen sürekli

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

HARİTA BİLGİSİ. Produced by M. EKER 1

HARİTA BİLGİSİ. Produced by M. EKER 1 HARİTA BİLGİSİ Produced by M. EKER 1 ÖLÇÜ BİRİMLERİ Uzunluk, Alan ve AçıA Ölçü Birimleri Herhangi bir objenin ölçülmesinden, aynı nitelikteki objeden birim olarak belirlenen bir büyüklükle kle kıyaslanmask

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Yrd. Doç. Dr. Beytullah EREN Çevre Mühendisliği Bölümü BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Atatürk Barajı (Şanlıurfa) BATMIŞ YÜZEYLERE ETKİYEN KUVVETLER

Detaylı

GRAVİTE ve MANYETİK PROSPEKSİYON

GRAVİTE ve MANYETİK PROSPEKSİYON GRAVİTE ve MANYETİK PROSPEKSİYON 31 Kasım 005 Yrd.Doç.Dr.Turgay İŞSEVEN GRAVİTE PROSPEKSİYON : a) Gravite Alanı b) Manyetik Alan Gravite Prospeksiyon da kullanılan temel ilkeler Newton kanunlarıdır. Isaac

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması.

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. ATALET MOMENTİ Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. UYGULAMALAR Şekilde gösterilen çark büyük bir kesiciye bağlıdır. Çarkın kütlesi, kesici bıçağa

Detaylı