İskelet Kası Fizyolojisi. Prof. Dr. Muzaffer ÇOLAKOĞLU



Benzer belgeler
KAS FİZYOLOJİSİ. Yrd. Doç.Dr. Aslı AYKAÇ YDU Tıp Fakültesi Biyofizik AD

3- Kayan Filament Teorisi

skelet sistemi tek ba ına vücudu hareket ettiremez. Herhangi bir hareket için gerekli kuvvet kaslar tarafından sa lanır. Kas dokusu vücutta oldukça

KAS DOKU HİSTOLOJİSİ

İnsan vücudunda üç tip kas vardır: İskelet kası Kalp Kası Düz Kas

Prof. Dr. Taner Dağcı

KAS DOKUSU. Prof.Dr. Ümit TÜRKOĞLU

KAS FİZYOLOJİSİ ve EMG

KAS FİZYOLOJİSİ. Yrd.Doç.Dr. Önder AYTEKİN

SİNİR KAS İLETİSİ - ÇİZGİLİ KASDA KASILMA

KAS VE HAREKET FİZYOLOJİSİ

KAS DOKUSU. Kontraksiyon özelliği gelişmiş hücrelerden oluşur Kas hücresi : Fibra muskularis = Kas teli = Kas iplikleri

Kas. Hücreler Kas teli (fibra muscularis) Hücre membranı (sarkolemma) Endoplazmik retikulum (sarkoplazmik retikulum) Mitokondriyon (Sarkozom)

KALP KASI Kalpte ve kalpten çıkan büyük damarlarda bulunur. Miyofilamanların organizasyonu iskelet kasındakilerle aynıdır; histolojik kesitlerde

Kas Dokusu Çeşitleri. 3 tip kas dokusu. Düz kaslar Kalp kası Çizgili iskelet kası

Uzm. Fzt. Kağan Yücel - Ufuk Üni. SHMYO Öğrt. Gör. Egzersize Giriş ve Egzersiz Fizyolojisi

Düz Kas. Nerede???? İçi boş organların duvarı, Kan damarlarının duvarı, Göz, Kıl follikülleri. Mesane. Uterus. İnce bağırsak

11. SINIF KONU ANLATIMI 39 İNSANDA DESTEK VE HAREKET SİSTEMİ 3 KAS SİSTEMİ

KAS DOKUSU. Doç.Dr. E.Elif Güzel

Başkent Üniversitesi Tıp Fakültesi Fizyoloji Anabilim Dalı KAS FİZYOLOJİSİ. Düz Kas. Dr. Sinan CANAN

Proteinler. Fonksiyonlarına göre proteinler. Fonksiyonlarına göre proteinler

Kas Doku Histolojisi. Dr.Sevda Söker

KAS FĐZYOLOJĐSĐ. Doç.Dr.Nesrin Zeynep Ertan

İskelet kasının fonksiyonel özellikleri, kas lif tipleri. Kas duyu organları ve hareketin kontrolü. Doç.Dr. Mitat KOZ

01 OCAK 2015 ELEKTRİK AKIMI VE LAMBA PARLAKLIĞI SALİH MERT İLİ DENİZLİ ANADOLU LİSESİ 10/A 436

KAS Dicle Aras

Kas Uzunluğu - Kuvvet İlişkisi

İÇİNDEKİLER. 1 Projenin Amacı Giriş Yöntem Sonuçlar ve Tartışma Kaynakça... 7

Hücre zedelenmesi etkenleri. Doç. Dr. Halil Kıyıcı 2015

MALZEMELERİN FİZİKSEL ÖZELLİKLERİ

11. SINIF KONU ANLATIMI 40 HUXLEY KAYAN İPLİKLER MODELİ KAS KASILMASI VE GEVŞEMESİ

İnsanda Destek ve Hareket Sistemi

SPOR FİZYOLOJİSİ. Doç. Dr. Gülbin RUDARLI NALÇAKAN

KASLAR VE EGZERSİZ PROF. DR. ERDAL ZORBA

KAS KASILMASININ BĐYOFĐZĐĞĐ

Bitkilerde Çiçeğin Yapısı, Tozlaşma, Döllenme, Tohum ve Meyve Oluşumu

KAS FİZYOLOJİSİ-1. Doç.Dr. Mitat KOZ

ALGILAMA - ALGI. Alıcı organların çevredeki enerjinin etkisi altında uyarılmasıyla ortaya çıkan nörofizyolojik süreçler.

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ

ET HİJYENİ, MUAYENESİ VE TEKNOLOJİSİ DERS NOTLARI (1) PROF.DR.T.HALÛK ÇELİK

Doğada yaşayan canlıların tamamı hücrelerden oluşmuştur. Canlılardan bazıları tek bir

Miyositlerin yapısı; atrium, ventrikül ve purkinje hücrelerinde farklılık göstermektedir.

MOTOR PROTEİNLER. Doç. Dr. Çiğdem KEKİK ÇINAR

Mayoz ve Eşeyli Üreme Biyoloji Ders Notları

MEMBRAN FARKLILAŞMALARI I-SERBEST YÜZEY FARKLILAŞMALARI

Bu konuda cevap verilecek sorular?

EĞİTİM BİLİMİNE GİRİŞ 1. Ders- Eğitimin Temel Kavramları. Yrd. Doç. Dr. Melike YİĞİT KOYUNKAYA

Bitkisel Dokular, Bitkinin Kısımları, Meristem Doku

4- Solunum Sisteminin Çalışması : Solunum sistemi soluk (nefes) alıp verme olayları sayesinde çalışır.

Outline (İzlence) Fitness. Vücut geliştirme (Body Building)

Bilgisayar Uygulamaları PSİ105

Mekatroniğe Giriş Dersi

Oksijen, flor ve neon elementlerinin kullanıldığı alanları araştırınız.

II. Bölüm HİDROLİK SİSTEMLERİN TANITIMI

OTOMATİK TRANSMİSYONLAR

Yedi Karat Kullanım Klavuzu. Yedi Karat nedir? Neden Karat?

BİT ini Kullanarak Bilgiye Ulaşma ve Biçimlendirme (web tarayıcıları, eklentiler, arama motorları, ansiklopediler, çevrimiçi kütüphaneler ve sanal

HÜCRE VE SİNİRSEL İLETİ. Prof Dr. Muzaffer ÇOLAKOĞLU

KAS Klinik Önem. Doç.Dr.Vatan KAVAK

Döküm. Prof. Dr. Akgün ALSARAN

DESTEK VE HAREKET SİSTEMİ

Veri Toplama Yöntemleri. Prof.Dr.Besti Üstün

5. ÜNİTE KUMANDA DEVRE ŞEMALARI ÇİZİMİ

Kalp Fonksiyonları KALP FİZYOLOJİSİ. Kalp Fonksiyonları. Kalbin Lokalizasyonu ve Ölçüleri. Kalbin Lokalizasyonu ve Ölçüleri. Dolaşım Sistemleri

YILDIZLAR NASIL OLUŞUR?

Türkiye Ekonomi Politikaları Araştırma Vakfı Değerlendirme Notu Sayfa1

KİNEZYOLOJİ ÖĞR.GÖR. CİHAN CİCİK

DENEY 2: PROTOBOARD TANITIMI VE DEVRE KURMA

T.C. TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ

DENEY 2. Şekil 1. Çalışma bölümünün şematik olarak görünümü

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ

D VİTAMİNİ TARİHSEL BAKI D vitamini miktarına göre değişir. öğünde uskumru yesek de, böbrekler her

Geleceğe Açılan Teknolojik Kapı, TAGEM

Mak-204. Üretim Yöntemleri II. Vida ve Genel Özellikleri Kılavuz Çekme Pafta Çekme Rayba Çekme

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ

DENEY Kum Kalıba Döküm ve Besleyici Hesabı 4 Doç.Dr. Ahmet ÖZEL, Yrd.Doç.Dr. Mustafa AKÇİL, Yrd.Doç.Dr. Serdar ASLAN DENEYE HESAP MAKİNASI İLE GELİNİZ

ÇİZGİLİ KAS FİZYOLOJİSİ PROF.DR.MITAT KOZ

EGZERSİZE KAS SİSTEMİNİN YANITI

AYDINLATMA DEVRELERİNDE KOMPANZASYON

Atom. Atom elektronlu Na. 29 elektronlu Cu

Yaşam Dönemleri ve Gelişim Görevleri Havighurst'un çeşitli yaşam dönemleri için belirlediği gelişim görevleri

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1. BASINÇ, AKIŞ ve SEVİYE KONTROL DENEYLERİ

2 tip düz kas vardır: 1. Viseral düz kaslar. (mide, barsak, üreter, damarlar) 2. Çok üniteli düz kaslar (iris kasları, piloerektör kaslar)

II İskelet. I Deri. Ayxmaz/biyoloj. Destek ve hareket sistemleri. 3-Deriye bağlı bezler: Yağ bezleri Ter bezleri Süt bezleri Koku bezleri

KASLAR HAKKINDA GENEL BİLGİLER. Kasların regenerasyon yeteneği yok denecek kadar azdır. Hasar gören kas dokusunun yerini bağ dokusu doldurur.

En İyi Uygulamalar ve Kullanım Kılavuzu

ÖĞRETMEN KILAVUZU İNCE FİLM DALGA KILAVUZLARI VE SOL JEL SÜRECİ

YERLİ ÜRETİCİLER TARAFINDAN ÇİN HALK CUMHURİYETİ MENŞELİ PVC İTHALATINA YÖNELİK YAPILAN KORUNMA ÖNLEMİ BAŞVURUSUNUN GİZLİ OLMAYAN ÖZETİ

Prof. Dr. Ahmet TUTAR Organik Kimya Tel No: Oda No: 813

DEĞERLENDİRME NOTU: Mehmet Buğra AHLATCI Mevlana Kalkınma Ajansı, Araştırma Etüt ve Planlama Birimi Uzmanı, Sosyolog

SÜREÇ YÖNETİMİ VE SÜREÇ İYİLEŞTİRME H.Ömer Gülseren > ogulseren@gmail.com

MAK 4026 SES ve GÜRÜLTÜ KONTROLÜ. 6. Hafta Oda Akustiği

lamlığı, rler; ligamentler(bağlar lar) ve kaslar

Modülasyonlu kontrol aktüatörü AME 435

BUĞDAY RUŞEYMİ (WHEAT GERM)

Tekerlek sistemi Takviyeli naylon taşıyıcılar üzerinde anti statik sentetik malzeme ve dişli kayış

YAPILARDA DERZLER VE SIZDIRMAZLIK MALZEMELERİ

ET TEKNOLOJİSİ BAHAR DÖNEMİ

DEVRELER VE ELEKTRONİK LABORATUVARI

SİNİR SİSTEMİ. Doç.Dr.Mitat KOZ

Transkript:

İskelet Kası Fizyolojisi Prof. Dr. Muzaffer ÇOLAKOĞLU

Kas Sistemi

KAS TÜRLERİ Çizgili kaslar (istemli çalışırlar) Kalp kası (miyokard - istemsiz çalışan tek çizgili kas) Düz kaslar Düz kaslar ve miyokard vücut ağırlığının ancak % 5-10 unu oluşturur

İSKELET KASI VE KALP KASI FARKLILIKLARI İskelet kası ile kalp kası arasındaki farklar İskelet kası ile kalp kası arasında pek çok benzerlikler olduğu gibi bazı önemli farklar da vardır. Kalp kası hücreleri oldukça küçüktürler (15-30 mmçap, 50 mm uzunluk). iskelet kası fibrilleri gibi uzunlamasına değillerdir. daha geniş, kısa T tüpleri vardır. dallara ayrılarak bitişik hücreleri birbirine bağlar (anastomoz). bu bağlanma Gap Kavşakları (bağlantı bölgeleri ) ve İnterkale Diskler ile gerçekleşir. Böylece ileti bir fibrilden diğerine yayılır. Çekirdekler periferik değil merkezi konumdadır. çok sayıda mitokondrisi vardır (oksidatif enerji kullanır). T tüpü - SR kavşakları triad değil diad lar şeklindedir.

İSKELET KASI VE DÜZ KAS FARKLILIKLARI Düz kaslar kalp ve iskelet kaslarından çok farklıdırlar. Aşağıdaki temel özellikleri taşırlar : Hücreleri çizgili değildir tek merkezi bir çekirdekleri vardır çapları 5-15 mm, uzunlukları 200-300 mm kadardır hücreler arasında Gap Kavşakları bulunur önemli miktarda bağ doku içerirler. Kasılma özellikleri de iskelet ve kalp kaslarından farklıdır. Uzun süre devam eden çok yavaş kasılmalar sergilerler.

Kasların Ortak Özellikleri Uyarılabilme İletebilme Kasılabilme Elastik olma Vizkozite

İskelet Kası Fonksiyonları Hareket Korunma Isı meydana getirme Postür ve vücut pozisyonu Mekanik iş Yutma Solunum

İskelet Kası Yetişkin insanda vücut ağırlığının % 40 ını, Çocuklarda vücut ağırlığının % 50 sini oluşturur İskelet Kası içeriği: % 75 su % 20 protein % 5 organik ve inorganik bileşikler Fonksiyonları: Hareket Postürün Korunması

İskelet Kas Sistemi Figure 6.2 Slide 6.1

İskelet Kasının Yapısı Kasın tamamı ve kası oluşturan alt birimlerden fasiküller ve kas fibrilleri fasya (fascia) adı verilen bir bağ doku ile örtülüdür Fasya nın fonksiyonları: Kas fibrillerini korur Kasları kemiğe bağlar Sinir ve kan/lenf damarları için uygun bir ağ zemini sağlar

Fasya katmanları Epimisyum Kas yüzeyini oluşturur Uçlara doğru daralarak tendon oluşturur Perimisyum Kas fibrillerini demetlere veya fasiküllere ayırır Endomisyum Tek bir kas fibrilinin (hücresinin) etrafını sarar

İskelet Kasının Yapısı Fig. 9.1, p. 279

İskelet Kasının Yapısı Kas Fasiküllerden oluşur. Epimisyum ile sarılıdır. Fasikül kas fibrilleri (hücreleri) demetidir. Bizim kas olarak gördüğümüz yapı çok sayıda fasikülden meydana gelir. Herbiri Perimisyum ile sarılıdır. Kas Fibrili fasikül kas fibrillerinden meydana gelir. Kasın gerçek hücreleridir. Herbiri Endomisyum denilen fasya ile sarılıdır.

İskelet Kasının Yapısı Figure 6.3 Slide 6.3

İskelet Kasının Yapısı

İskelet Kasının Yapısı Kas Göbeği Fasikül Fibril (hücre)

İskelet Kasının Yapısı Epimisyum Perimisyum Endomisyum Muscle Belly Fasciculus Fiber (Cell)

İskelet Kasının Yapısı Epimysium Perimysium Endomysium Sarkoplazma Sarkolemma Çekirdek Muscle Belly Fasciculus Fiber (Cell)

İskelet Kası Fibrilleri Tek bir kas fibrili Tek bir kas hücresidir. Çapı 10-80 mm arasındadır Silindirik yapıdadır Uyarılma ve impuls yayılımını mümkün kılan membranla çevrilidir Miyofibril demetleri içerir

İskelet Kas Fibrilinin Temel Bileşenleri Sarkolemma - kas hücresi membranı Sarkolemmanın hemen altında bulunan 100 veya daha fazla çekirdek içerir, Sarkoplazma - sarkolemmanın içini dolduran kas hücresi sitoplazması Sarkotübüler sistem Transvers tüpler (T-tüpleri) Sarkoplazmik retikulum Ca ++ alımı, düzenlemesi, salınımı ve depolanması

İskelet Kas Fibrilinin Temel Bileşenleri (devamı) Miyoglobinler - oksijeni sarkolemma dan alıp, mitokonri ye taşırlar Glikojen deposu içerirler Kas fibrillerinin alt birimleri olan Miyofibrilleri içerirler

KAS FİBRİLİ

SARKOLEMMA Kas hücresi membranına sarkolemma denir. Sarkolemmanın Transvers tüpler (T tüpleri) denilen ve hücre içine uzanan periodik kanalları vardır. Sarkolemma ve T tüplerinin görevi sarkolemmada oluşan aksiyon potansiyelini hücre içine ileterek kasılmanın başlamasını sağlamaktır.

Transvers Tüpler (T-Tüpleri) Kas içine doğru bükülerek giren ve kasın bir tarafından diğer tarafına doğru enine keserek (transvers) ilerleyen tübüler bir sistemdir. Sinirsel uyaranların, glikozun, O 2 nin ve iyonların hücre içine daha hızlı girmesini sağlar.

Sarkoplazmik Retikulum (SR) T-tüplerinin devamı olan bir düz endoplazmik retikulumdur. Kas hücresi içinde yaygın bir kanal ağı oluşturur. SR da kasılmayı başlatacak olan kalsiyum iyonunun (Ca+2) depoları vardır. Kas hücresinde meydana gelen uyaran sarkolemmada her iki yöne doğru yayılır ve T tüpleri ile hücre içine geçer. Buradan SR ağı boyunca hücre içine yayılarak, SR uçlarından Ca+2 un sarkoplazmaya salınmasına neden olur. Ca+2 kasılmayı başlatır. T-tüplerindeki voltaj sensörleri (DHP) aksiyon potansiyeli sarkolemmada yayılırken oluşan elektriksel akımı algılar. SR membranında Ryanodin Reseptörü DHP den gelen sinyalleri alarak kalsiyum kanallarının açılmasına neden olur. Kalsiyum SR den sarkoplazmaya salınır ve kasılma başlar.

Sarkoplazmik Retikulum terminal sisterna Sarkoplazmik retikulumun Z membranına yakın olan parçasıdır. triad = T tubule + terminal sisterna

KALSİYUM POMPASI SR membranında kasılma sonrasında kalsiyumu sarkoplazmadan tekrar SR ye konsantrasyon gradyanın tersine doğru geri alan ve bu sebeple ATP tüketen Kalsiyum Pompası yer alır.

Miyofibril Fibrilin kontraktil kısmıdır. Herbiri çok sayıda sarkomerden oluşur.

İskelet Kasında Kas fibrili ve Myofibrilin Görünümü

Kas ( x 1) Fasikül ( x 75) Fibril ( x 1000) Miyofibril ( x 20000)

Miyofibriller Kas fibrilinin alt birimleridir. Herbiri 2 mm çapındadır ve kas fibrili boyunca uzanır Kas hacminin % 80-90 ını oluştururlar Kas kasılmasının fonksiyonel birimidir Her miyofibrilin etrafını sıvı dolu SR çevreler, Seri olarak birbirlerine bağlı sarkomerlerden oluşur. ~1500 miyozin ve ~3000 aktin proteini içerirler

Sarkomer Kasılmanın temel birimidir. İki Z membranı (diski; çizgisi) arasında kalan kısımdır. Her miyofibrilde 10 ile 100,000 uçuca dizilmiş sarkomer bulunur. Sarkomerler Z diskleriyle hem birbirlerine bağlanırlar hem de ayrılırlar. Sarkomer kontraktil proteinlerden oluşur Aktin ( İnce filamanlar) Miyozin (Kalın filamanlardır) Troponin-tropomiyozin bileşiği (Aktin molekülü üzerinde yer alır) Sarkomerin ayırdedici bir görünümü vardır iskelet kasına çizgili bir görüntü verir Sarkomerin boyu istirahat koşullarında 2 mikron (m) kadardır.

Sarkomer M Çizgisi Z Çizgisi Z Çizgisi

I Bandı A Bandı I Bandı { {

I Bandı A Bandı H Zonu I Bandı { { {

{ A-Bandı I-Bandı { Z-Çizgisi

{ A-Bandı Sarkolemma Mitokondri I-Bandı Z-Diski { Sarkoplazmik Retikulum (SR) T-Tüpleri

Sarkomer Figure 6.5 Slide 6.4B

MİYOFİLAMANLARIN YAPISI AKTİN Z membranına bağlıdır. Z membranından diğer sarkomere uzanırlar. Her aktin miyofilamanı iki fibröz aktin proteinin oluşturduğu bir çift sarmaldır (F-Aktin) Bu F-Aktin sarmalında globüler aktin (G-Aktin) monomeri denilen yaklaşık 200 küçük birim bulunur. Her G-Aktin monomerinin kasılma sırasında Miyozinbağlayan (MBS), aktif bir bölgesi vardır Aktin miyofilamanı üzerinde uzanan Tropomiyozin protein molekülü yedi G- Aktin aktif bölgesini örter. Troponin protein kompleksi Tropomiyozine bağlıdır ve üç alt birimi vardır; Troponin-T = Troponin i Tropomiyozin ile bağlar, Troponin-I = İstirahatte Aktin ile miyozin arasında köprü kurulmasını önler, Troponin-C = Ca +2 bağlar Troponin-Tropomiyozin kompleksi G-aktinin aktif bölgeleri ile miyozin başı arasındaki etkileşimi düzenler.

AKTİN FİLAMANI

Aktin Filamanı Yapısı

Aktin Filamanı ve Tropomiyozin Molekülü

Aktin-Tropomiyozin ve Troponin

I C T

MİYOZİN Miyozinler Aktin kümesinin arasındadırlar. Aktin bağlayan bir proteindir. Miyozin molekülleri ATPaz aktivitesine sahip ikiye bölünmüş globüler bir baş, bir boyun ve bir kuyruktan oluşur. Boyun, başlar ve kuyruk ile menteşeler yardımıyla eklem yapar. Miyozin başı ve boynunun eklemli hareketi aktine bağlanmasını kolaylaştırır.

Miyozin Filamanı Yapısı

Miyozin FilamanıYapısı

Miyozin FilamanıYapısı Baş Kuyruk (Hafif Miromiyozin) Ağır Miromiyozin

Miyozin Filamanı Yapısı Baş Kuyruk (Hafif Miromiyozin) S2 S1 Ağır Miromiyozin

Miyofibril enine kesiti miyofibriller Her miyofibril demetler halinde miyofilamanlar içerir kalın MİYOZİN ince AKTİN

I bandı A bandı I bandı Z çizgisi/diski ince AKTİN filamanı H zonu /M çizgisi ile kalın MİYOZiN filamanı ELEKTRON MİKROSKOPTA MİYOFİBRİL GÖRÜNTÜSÜ

Her miyofibrilin çevresi, yani miyofibrillerin arası : Glikojen granülleri enerji Sarkoplazmik Retikulum kontrol Miyofilamanlar kuvvet üretimi MİYOFİBRİLL Mitokondri enerji

KAS FİBRİL inin UYARILMASI Figure 6.6 Slide 6.5B

Motor Son Plak ve Kasılmanın Başlaması

Motor Son Plak Potansiyeli (Nöromüsküler İleti) & Kasılma Mekanizması (Kayan Filamanlar Teorisi)

KASILMA MEKANİZMASI KAYAN FİLAMANLAR TEORİSİ 1.Sinirsel uyaranlar nöromüsküler kavşağa ulaşır. 2.Asetilkolin motor sinir ucundan salınır motor son plaktaki (kas hücresi membranındaki) asetilkolinkapılı Sodyum Kanallarının reseptörlerine bağlanır. 3.Bağlanma depolarizasyonu başlatır. Oluşan aksiyon potansiyeli t-tüpleri & sarkolemma boyunca yayılarak, sarkoplazmik retikulumdan Ca +2 salınımına neden olur. 4.Ca 2+ troponin e bağlanır troponin-tropomiyozin kompleksinin konumunu değiştirir. Bu değişiklikle troponin-tropomiyozin kompleksi, miyozin bağlanma bölgelerini açıkta bırakacak şekilde, aktin üzerinde kayar.

KAYAN FİLAMAN TEORİSİ 5. Ca 2+ aynı zamanda miyozin başının ATPaz aktivitesini arttırır ATP hidrolize olur & Enerji açığa çıkar 6. Açığa çıkan enerji miyozin başında depolanır bu enerji miyozin başını aktin filamanına doğru uzanarak çapraz köprü oluşturmasında kullanılır 7. Miyozin başları hamle vurumu denilen bir hareketle aktin filamanlarını miyofilamanlar birbiri arasına geçecek şekilde çeker. Böylece sarkomer boyu gittikçe kısalır (kasılma gerçekleşir)

KAYAN FİLAMAN TEORİSİ 8. Z diskleri birbirine yaklaşır sarkomer boyu kısalır (kasılma) kas fibrili kısalır tüm kas kısalır 9. Sarkoplazmada bulunan ATP kasılmadan sonra Ca+ 2 nin aktivasyonu ile miyozin başına bağlanarak başın aktinden ayrılmasını sağlar 10. Döngü tekraralanarak kasın boyu kısalmaya devam eder. 11. Gevşemenin başlaması için kalsiyumun tekrar SR dışına çıkarılması gerekir. Bu, ATP ile çalışan, kalsiyum pompası tarafından gerçekleştirilir.

KAS GEVŞEMESİ Sinirsel uyarı sonlanır, Kalsiyum SR a geri pompalanır, Kalsiyum Troponin den ayrılır, Aktin in Myosin bağlama kısmı yeniden örtülür ve çapraz köprüler ayrılır, Kalsiyum ortamdan uzaklaşınca ATPaz enzim aktivitesi de azalır, Sarkoplazmada aşırı kalsiyum varsa veya uzaklaştırılamamışsa spazm meydana gelir.

KALSİYUM (Ca +2 ) Kalsiyum olmazsa kasılma olmaz Aşırı kalsiyum spazm a neden olur (gevşeme gerçekleşmez)

Olayların Sırası 1. Sinirsel Uyaranın MSS de oluşumu 2. Alfa Motor Nöron ile Motor Son Plağa iletimi 3. Motor Son Plakta Asetilkolin salınımı ve kas fibrilinde aksiyon potansiyeli oluşumu 4. Sarkolemma & T-Tüplerine yayılışı 5. SR & Terminal Sisternalara geçişi 6. Ca ++ un Troponin (C) ye bağlanışı 7. Troponin tropomiyozin kompleksinde Konformasyonel Değişim 8. Çapraz Köprü Oluşumu 9. Konformasyonel Değişim (Hamle Vurumu) 10. Miyozin başının serbestlemesi & ATP bağlayarak ilk pozisyona dönme

Olayların Sırası 1. Sinirsel Uyaranın MSS de oluşumu 2. Alfa Motor Nöron ile Motor Son Plağa iletimi 3. Motor Son Plakta Asetilkolin salınımı ve kas fibrilinde aksiyon potansiyeli oluşumu 4. Sarkolemma & T-Tüplerine yayılışı 5. SR & Terminal Sisternalara geçişi 6. Ca++ un - Troponin (C) ye bağlanışı 7. Troponin tropomiyozin kompleksinde konformasyonel değişim 8. Çapraz Köprü Oluşumu 9. Hamle Vurumu 10.Miyozin başının serbestlemesi & ATP bağlayarak İlk pozisyona dönmesi

Olayların Sırası 1. Sinirsel Uyaranın MSS de oluşumu 2. Alfa Motor Nöron ile Motor Son Plağa iletimi 3. Motor Son Plakta Asetilkolin salınımı ve kas fibrilinde aksiyon potansiyeli oluşumu 4. Sarkolemma & T-Tüplerine yayılışı 5. SR & Terminal Sisternalara geçişi 6. Ca++ un - Troponin (C) ye bağlanışı 7. Troponin tropomiyozin kompleksinde konformasyonel değişim 8. Çapraz Köprü Oluşumu 9. Hamle Vurumu 10. Miyozin başının serbestlemesi & İlk pozisyona dönme

Olayların Sırası 1. Sinirsel Uyaranın MSS de oluşumu 2. Alfa Motor Nöron ile Motor Son Plağa iletimi 3. Motor Son Plakta Asetilkolin salınımı ve kas fibrilinde aksiyon potansiyeli oluşumu 4. Sarkolemma & T-Tüplerine yayılışı 5. SR & Terminal Sisternalara geçişi 6. Ca++ un - Troponin (C) ye bağlanışı 7. Troponin tropomiyozin kompleksinde konformasyonel değişim 8. Çapraz Köprü Oluşumu 9. Hamle Vurumu 10. Miyozin başının serbestlemesi & İlk pozisyona dönme

Olayların Sırası 1. Sinirsel Uyaranın MSS de oluşumu 2. Alfa Motor Nöron ile Motor Son Plağa iletimi 3. Motor Son Plakta Asetilkolin salınımı ve kas fibrilinde aksiyon potansiyeli oluşumu 4. Sarkolemma & T-Tüplerine yayılışı 5. SR & Terminal Sisternalara geçişi 6. Ca++ un - Troponin (C) ye bağlanışı 7. Troponin tropomiyozin kompleksinde konformasyonel değişim 8. Çapraz Köprü Oluşumu 9. Hamle Vurumu 10. Miyozin başının serbestlemesi & İlk pozisyona dönme

Olayların Sırası 1. Sinirsel Uyaranın MSS de oluşumu 2. Alfa Motor Nöron ile Motor Son Plağa iletimi 3. Motor Son Plakta Asetilkolin salınımı ve kas fibrilinde aksiyon potansiyeli oluşumu 4. Sarkolemma & T-Tüplerine yayılışı 5. SR & Terminal Sisternalara geçişi 6. Ca++ un - Troponin (C) ye bağlanışı 7. Troponin tropomiyozin kompleksinde konformasyonel değişim 8. Çapraz Köprü Oluşumu 9. Hamle Vurumu 10. Miyozin başının serbestlemesi & İlk pozisyona dönme

Olayların Sırası 1. Sinirsel Uyaranın MSS de oluşumu 2. Alfa Motor Nöron ile Motor Son Plağa iletimi 3. Motor Son Plakta Asetilkolin salınımı ve kas fibrilinde aksiyon potansiyeli oluşumu 4. Sarkolemma & T-Tüplerine yayılışı 5. SR & Terminal Sisternalara geçişi 6. Ca++ un - Troponin (C) ye bağlanışı 7. Troponin tropomiyozin kompleksinde konformasyonel değişim 8. Çapraz Köprü Oluşumu 9. Hamle Vurumu 10. Miyozin başının serbestlemesi & İlk pozisyona dönme C I T

Olayların Sırası 1. Sinirsel Uyaranın MSS de oluşumu 2. Alfa Motor Nöron ile Motor Son Plağa iletimi 3. Motor Son Plakta Asetilkolin salınımı ve kas fibrilinde aksiyon potansiyeli oluşumu 4. Sarkolemma & T-Tüplerine yayılışı 5. SR & Terminal Sisternalara geçişi 6. Ca++ un - Troponin (C) ye bağlanışı 7. Troponin tropomiyozin kompleksinde konformasyonel değişim 8. Çapraz Köprü Oluşumu 9. Hamle Vurumu 10. Miyozin başının serbestlemesi & İlk pozisyona dönme Ca ++

Olayların Sırası 1. Sinirsel Uyaranın MSS de oluşumu 2. Alfa Motor Nöron ile Motor Son Plağa iletimi 3. Motor Son Plakta Asetilkolin salınımı ve kas fibrilinde aksiyon potansiyeli oluşumu 4. Sarkolemma & T-Tüplerine yayılışı 5. SR & Terminal Sisternalara geçişi 6. Ca++ un - Troponin (C) ye bağlanışı 7. Troponin tropomiyozin kompleksinde konformasyonel değişim 8. Çapraz Köprü Oluşumu 9. Hamle Vurumu 10. Miyozin başının serbestlemesi & İlk pozisyona dönme Ca ++

Olayların Sırası 1. Sinirsel Uyaranın MSS de oluşumu 2. Alfa Motor Nöron ile Motor Son Plağa iletimi 3. Motor Son Plakta Asetilkolin salınımı ve kas fibrilinde aksiyon potansiyeli oluşumu 4. Sarkolemma & T-Tüplerine yayılışı 5. SR & Terminal Sisternalara geçişi 6. Ca++ un - Troponin (C) ye bağlanışı 7. Troponin tropomiyozin kompleksinde konformasyonel değişim 8. Çapraz Köprü Oluşumu 9. Hamle Vurumu 10. Miyozin başının serbestlemesi & İlk pozisyona dönme Ca ++

Olayların Sırası 1. Sinirsel Uyaranın MSS de oluşumu 2. Alfa Motor Nöron ile Motor Son Plağa iletimi 3. Motor Son Plakta Asetilkolin salınımı ve kas fibrilinde aksiyon potansiyeli oluşumu 4. Sarkolemma & T-Tüplerine yayılışı 5. SR & Terminal Sisternalara geçişi 6. Ca++ un - Troponin (C) ye bağlanışı 7. Troponin tropomiyozin kompleksinde konformasyonel değişim 8. Çapraz Köprü Oluşumu 9. Hamle Vurumu 10.Miyozin başının serbestlemesi & İlk pozisyona dönme Ca ++

Olayların Sırası 1. Sinirsel Uyaranın MSS de oluşumu 2. Alfa Motor Nöron ile Motor Son Plağa iletimi 3. Motor Son Plakta Asetilkolin salınımı ve kas fibrilinde aksiyon potansiyeli oluşumu 4. Sarkolemma & T-Tüplerine yayılışı 5. SR & Terminal Sisternalara geçişi 6. Ca++ un - Troponin (C) ye bağlanışı 7. Troponin tropomiyozin kompleksinde konformasyonel değişim 8. Çapraz Köprü Oluşumu 9. Hamle Vurumu 10. Miyozin başının serbestlemesi & İlk pozisyona dönme Ca ++ ATP

KAS FİBRİLİNİN KASILMASI

Kayan Filamanlar Teorisi: Genel Bakış Fig. 9.7, p. 287

Uyarılma - Kasılma Özeti Motor nöron uyarılması Latent periot Kasılma periyodu Gevşeme periyodu