PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve eksi işaretleriyle gösterdiğimizden işaret testi olarak adlandırılmaktadır. 2 1
Tek Örneklem İşaret Testi Yaklaşımlar: A. Analizi yapılacak örnek bilinmeyen bir M medyanlı anakütleden rasgele seçilen ve bağımsız ölçümleri içeren eden bir örnektir. B. Üzerinde durulan değişken en az ordinal ölçekle ölçülmüş olmalıdır. C. Üzerinde durulan değişken sürekli bir değişkendir. N adet ölçüm X1, X2,...Xn ile gösterilir. 3 Tek Örneklem İşaret Testi Hipotezler: A. (Çift yönlü test): H0: M=M0, H1: M M0 B. (Tek yönlü test): H0: M M0, H1: M>M0 C. (Tek yönlü test): H0: M M0, H1: M<M0 4 2
Her bir örnek değerinden medyan değeri Mo ı çıkardıktan sonraki değerin işaretini kaydediniz. Yani i=1,2,,n olmak üzere Xi-Mo farkının işaretini kaydediniz. 5 Eğer sıfır hipotezi doğru ise yani anakütle medyanı gerçekten Mo a eşitse anakütleden çekilen şans örnekte n adet Xi-Mo farklılığını hesap ederken artı ve eksi işaretlerin birbirine eşit olmasını bekleriz. 6 3
Herbir hipotez testi için karar modeli aşağıdaki gibidir. A. Sıfır hipotezi doğru iken n hacimli şans örnekte çok az sayıda herhangi bir işaretin gözlenmesi olasılığı α/2 ye eşit veya küçük ise α önem seviyesinde sıfır hipotezini reddederiz. 7 B. Sıfır hipotezi doğru iken n hacimli şans örnekte çok az sayıda eksi işareti gözlenmesi ihtimali α ya eşit veya küçük ise α önem seviyesinde sıfır hipotezini reddederiz. 8 4
C. Sıfır hipotezi doğru iken n hacimli şans örnekte çok az sayıda artı işaretin gözlenmesi olasılığı α ya eşit veya küçük ise α önem seviyesinde sıfır hipotezini reddederiz. 9 Sıfır hipotezi doğru iken varsayılan hipoteze göre üzerinde durulan işareti veren farklılıkların tesadüfi dağılımı p=0.5 parametresiyle binom dağılımıdır. 10 5
Sıfır hipotezi doğru iken varsayılan hipoteze göre üzerinde durulan işareti veren farklılıkların tesadüfi dağılımı p=0.5 parametresiyle binom dağılımıdır. 11 Sıfır hipotezi doğru ise anakütleden çekilen bir şans örneğin artı işaretine sahip olması olasılığı eksi işaretine sahip olması olasılığına eşittir. 12 6
Sıfır fark hesaplanması durumunda gözlem n adet veriden çıkartılarak işlemler yapılır. 13 Örnek: Lhiedtke ve arkadaşlarının yaptığı çalışmada sağ koroner damarlarda tıkanıklık olan bir hasta grubu incelenmeye alınmış ve hastalarda kanın bu damarlardan geçiş zamanı ölçülmüştür. 14 7
Bu hasta grubu için medyan geçiş zamanı 3.5 saniyedir. Şimdi bir başka araştırma grubunun aynı hastalığa sahip 11 örnek hastada aynı ölçümü yaptığını aşağıdaki sonuçları bulduğunu varsayalım. no 1 2 3 4 5 6 7 8 9 10 11 zn 1.8 3.3 5.65 2.25 2.5 3.5 2.75 3.25 3.1 2.7 3.0 15 İkinci araştırma grubu 0.05 anlamlılık seviyesinde örneklerin alındığı anakütledeki geçiş zamanın 3.5 saniyeden farklı olduğu söylenebilir mi? Ho: M=3.5 H1: M 3.5 16 8
Xi-3.5 farklılığı hesaplandığında dokuz tane negatif, bir pozitif, bir sıfır fark bulunur. Sıfır fark işlemlerden çıkartılır. P(K 1/10, 0.05)=0.0108 17 0.0108 olasılığı 0.025 ten küçük olduğu için sıfır hipotezini reddederiz, anakütle ortalamasının sıfırdan farklı olduğunu söyleyebiliriz. 18 9
Örnek hacminin 12 veya daha büyük olması durumunda binomun normale yaklaşımı kullanılabilir. Normale yaklaştırmak için 0.5 faktörünü kullanarak süreklilik düzeltmesini yapmamız gerekir. 19 z = ( K + 0.5) 0.5n 0.5 n değerini hesaplarız. Bu değer seçilen bir önem seviyesindeki standart normal dağılım değeriyle anlamlılık testi yapmamızı sağlar. 20 10