MODERN (SEMBOLİK) MANTIK

Benzer belgeler
B. ÇOK DEĞERLİ MANTIK

MODERN MANTIK DERS NOTLARI

DOĞRULUK TABLOSU / ÇİZELGESİ İLE DENETLEME

Editörler Prof.Dr.Işıl Bayar Bravo & Doç.Dr.Mustafa Yıldız MODERN MANTIK

MODERN MANTIK DERS NOTLARI

MODERN (SEMBOLİK) MANTIK

II.Ünite: KLASİK MANTIK (ARİSTO MANTIĞI)

Yüklemler Mantığında Çözümleyici Çizelgeler (Çürütme Ağaçları)

Öncelikle Niceleme /Yüklemler Mantığının temel kavramları ve sembolleştirilmesi ile ilgili bilgileri özetleyelim:

ÇÖZÜMLÜ ÖRNEK 3.5 ÇÖZÜM

DERS ÖĞRETİM PLANI TÜRKÇE. 1 Dersin Adı: Sembolik Mantık II. 2 Dersin Kodu: FLS Dersin Türü: Seçmeli. 4 Dersin Seviyesi: Lisans

SEMBOLİK MANTIK MNT102U

Biçimselleştirme. - 4 sayısını gösterir. Mantıktaki örnekte ise parantezleri kullanarak P S) ifadesini elde ederiz

YZM 3217 YAPAY ZEKA DERS#6: MANTIK

Çözümleyici Çizelgeler (Çürütme Ağaçları)

İçinde x, y, z gibi değişkenler geçen önermelere açık önerme denir.

6.8 Aşağıdaki biçimlerin neden birer ikb olmadıklarını açıklayınız.

Bir kavramın işaret ettiği herhangi bir varlıkta bir özelliğin bulunup bulunmadığını ifade etmenin tek yolu önerme kurmaktır. Yani öznesiyle yüklemi

YZM 3217 YAPAY ZEKA DERS#6: MANTIK

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK

Kategorik Yargılar. Bazı dört ayaklı hayvanlar antiloptur. Tüm antiloplar otçuldur. Bazı dört ayaklı hayvanlar otçuldur.

Bir önermenin anlamlı olması onun belli bir doğruluk değeri taşıması demektir. Doğru bir önerme de yanlış bir önerme de anlamlıdır.

A Tüm S ler P dir. Tümel olumlu. E Hiçbir S, P değildir. Tümel olumsuz. I Bazı S ler P dir. Tikel olumlu. O Bazı S ler P değildir.

Mantıksal Operatörlerin Semantiği (Anlambilimi)

MODERN (SEMBOL K) MANTIK

IV.Ünite: SEMBOLİK MANTIK: D - Çok Değerli Mantık Özet

12. SINIF MANTIK DERSİ SÖKE ANADOLU LİSESİ 1. ORTAK SINAVI KAZANIM TABLOSU (Sınav Tarihi: 4 Nisan 2017)

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48


AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

Matematik Ders Föyü. Uygulayalım. Terim. Önerme. Doğruluk Değeri. Ortaöğretim Alanı MF - 01 NOT NOT. 1. Aşağıdaki tabloyu tanımlı veya tanımsız

Matematik Ders Föyü. Uygulayalım. Terim. Önerme. Doğruluk Değeri. Ortaöğretim Alanı MF - 01 NOT NOT. 1. Aşağıdaki tabloyu tanımlı veya tanımsız

KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR


BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

Öncülün öznesi sonucun yüklemi ve öncülün yüklemi sonucun öznesi olduğu çıkarımlardır.

Önermelerin doğru veya yanlış olabilmesine doğruluk değerleri denir.

Sembolik gösterim matematiğin yarısıdır. Bertrand Russef

MANTIK FELSEFESĐ - TEO GRÜNBERG

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

İÇİNDEKİLER. Mantık Kurallarının Elektrik Devrelerine Uygulanması... 14

HİKMET YURDU Düşünce Yorum Sosyal Bilimler Araştırma Dergisi

(2) Mona Lisa tablosunu yapan ya Rembrandt tı veya Michelangelo ydu. O tabloyu Rembrandt yapmadı. Michelangelo yaptı.

Mantık ile Doğru Düşünme İlişkisi

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır.

MATEMATİK ADF. Önermeler - I ÜNİTE 1: MANTIK. Önerme. örnek 2. Bir önermenin değili (olumsuzu) örnek 3. Doğruluk Tablosu. örnek 1.

Sunum ve Sistematik 1. BÖLÜM: ÖNERMELER

LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ

harfi almanca kökenli (Zahlen) Z X bir sonlu küme ise, X = X deki öğelerin sayısını gösterir

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

KLASİK MANTIK MNT402U KISA ÖZET

2. ÜNİTE KLASİK MANTIK

Önermeler. Önermeler

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER

EĞİTİM - ÖĞRETİM YILI 12. SINIF VE MEZUN GRUP FELSEFE GRUBU DERSLERİ DESTEKLEME VE YETİŞTİRME KURSU KONULARI VE TESTLERİ

Örnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. w w w. m a t b a z. c o m ÖNERMELER- BİLEŞİK ÖNERMELER

BAHAR DÖNEM SONU - 1. OTURUM - Cumartesi 09:30 2. YARIYIL

MATEMATİK I Ders Notları

YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM

Önermeler mantığındaki biçimsel kanıtlar

9SINIF MATEMATİK. Mantık Kümeler

KAMU YÖNETİMİ LİSANS PROGRAMI

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

MODERN MANTIK ARASINAVI (SOSYOLOJİ) ÇÖZÜMLERİ B GRUBU

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir.

YAYINLARI. ISBN:

A A A A A A A A A A A

KLASIK MANTIK. UYARI: Tümdengelim, zihnin genelden özele, Tümevarım, zihnin özelden genele, Analoji, zihnin özelden özele, sonuç çıkartmasıdır.

BILGI FELSEFESI. Bilginin Doğruluk Ölçütleri

Bölüm 3. Klasik Mantık ve Bulanık Mantık. Serhat YILMAZ 1

Yazar. Neriman KARAVELİOĞULLARI

Bilimsel Yasa Kavramı. Yrd.Doç.Dr. Hasan Said TORTOP Kdz.Ereğli-2014

C. Doğru, Yanlış, Doğruluk Değeri Doğru: Bir önermenin nesnesine olan uygunluğudur. Örnek: İnsanlar ölümlüdür.

KLASİK MANTIK (ARİSTO MANTIĞI)

Russell ın Belirli Betimlemeler Kuramı

ELEMETLER VE BİLEŞİKLER ELEMENTLER VE SEMBOLLERİ

Lisans. Ayrık Matematik Yüklemler ve Kümeler. Konular. Tanım. Tanım çalışma evreni: U izin verilen seçenekler kümesi örnekler:

FONKSİYONLAR. Örnek: (2x-2,y-3)=(10,-3) olduğuna göre x ve y sayılarını bulunuz.

Frege'nin Fonksiyon-Argüman Ayrımı ve Genel Önermelere İlişkin Analizi *

MADDE NEDİR? Çevremize baktığımızda gördüğümüz her şey örneğin, dağlar, denizler, ağaçlar, bitkiler, hayvanlar ve hava birer maddedir.

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

1 MATEMATİKSEL MANTIK

Ertuğrul UZUN AKIL TUTKUNU HUKUK. A. Peczenik in Hukukî Argümantasyon Teorisi Üzerine Bir İnceleme

ÖZ ÖBEĞİN TÜMLEYENİ KÜME MİDİR, ÖZ ÖBEK MİDİR? 1. Ahmet İnam

Araştırma Yöntem ve Teknikleri

MANTIK. 3. p 0, q 1 ve r 1 iken aşağıdaki önermelerin doğruluk değerlerini bulunuz. p q q. q b. ( ) ' c. ( p q) r

A.Adnan Saygun Caddesi 10/1 Sıhhiye/ANKARA Tel: Faks:

C PROGRAMLAMA YRD.DOÇ.DR. BUKET DOĞAN PROGRAM - ALGORİTMA AKIŞ ŞEMASI

ELEMENTLER VE BİLEŞİKLER

Saygın KIRILMAZ, Tolga TANIŞ, Simay AYDIN

ELEMENT VE BİLEŞİKLER

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 9.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 9.SINIF KAZANIM VE SÜRE TABLOSU

aofdersnotlari.net BAHAR ARA - 1. OTURUM - Cumartesi 09:30 2. YARIYIL

1. BÖLÜM DÜZLEM GEOMETRİNİN TEMEL KAVRAMLARI İÇİNDEKİLER

ELEMENTLER VE SEMBOLLERİ

Boole Cebri. Muhammet Baykara

Transkript:

MODERN (SEMBOLİK) MANTIK A. ÖNERMELER MANTIĞI 1. Önermelerin Sembolleştirilmesi Önermeler mantığında her bir yargı, q, r... gibi sembollerle ifade edilir. Örnek: Dünya gezegendir. Dünya nın şekli elistir. q Güneş yakıcıdır. r 2. Önerme Eklemleri : ~, ^, v,, Dünya gezegen ise güneş yakıcıdır. ( r) r Dünya gezegendir ve şekli elistir. ( ^ q) ^ q Ay, ışık kaynağı değildir. (~) ~ Bitkiler köklüdür. () Dünya gezegendir veya güneş yakıcıdır. ( v r) v r Güneş doğduğunda ancak gündüz olur. ( r) r 1

3. Önerme Çeşitleri a. Basit önerme Bir tek yargısı olan önermeler basittir. Aristotales filozoftur. Bazı çiçekler kokuludur. q b. Bileşik önerme Birden fazla yargısı olan önermeler bileşiktir. Aristotales filozoftur veya bilim adamıdır. ( v q) q Yağmur yağıyor ise hava bulutludur. (r s) r s Not: Đçinde önerme eklemi taşıyan önermeler de birden fazla yargı taşıdıklarından bileşiktirler. Đstanbul başkent değildir (~ ) (bileşen) ~ Kuşlar kanatlıdır ve iki ayaklıdır. (q ^ r) q (bileşen) r (bileşen) Bileşik önermeyi meydana getiren önermelerin her birine bileşen denir. Hiçbir bileşeni olmayan önermeler basittir. Sadece değilleme (~) ekleminin tek bileşeni vardır. Kuşlar ötücüdür. () önermesi basittir. Kuşlar ötücü değildir. (~) önermesi bileşiktir. 4. Ana Eklem Ana Bileşen Birden fazla bileşik önermeden oluşan önermelerde en son işleme katılan eklem, ana eklemdir. Ana eklemin karşıladığı önermeler de ana bileşendir. 2

5. Temel Doğruluk Çizelgeleri a. Değilleme eklemi (~) Bilim faydalıdır. () Bilim faydalı değildir. (~ ) ~ Bilimin faydalı olmadığı doğru değildir. (~~) ~P ~ b. Tikel evetleme eklemi ( v ) Bileşenlerden en az birinin doğru olduğunu kabul eden önerme eklemidir. Hava bulutludur veya hava yağmurludur. ( v q) q 3

c. Tümel evetleme eklemi ( ^ ) Bileşenlerinin tümünün doğru olduğunu kabul eden önerme eklemidir. Bileşenlerin birlikteliğini ifade eden ile, kadar, hem-hem, da-da tümel evetleme eklemiyle belirtilir. Mevsim yazdır ve güneş yakıcıdır. ( ^ q) q d. Koşul eklemi ( ) Yargının bir koşula bağlı olduğu önerme eklemidir. Yağmur yağıyor ise hava bulutludur. ( q) (ön bileşen) q (ard bileşen) 4

Hava bulutlu değilse yağmur yağmaz. (~q ~) ~q ~ önermesi, q önermesinin mantıksal sonucudur. Dolayısıyla aynı doğruluk değerlerine sahitirler. Yağmur yağmıyor veya hava bulutludur. (~ v q) ~ q önermesi de, q önermesinin mantıksal sonucudur. Dolayısıyla doğruluk değerleri aynıdır. e. Karşılıklı koşul eklemi ( ) Yargının sadece tek bir koşula bağlı olduğu önerme eklemidir. Güneş doğduğunda ancak ve ancak gündüz olur. ( q) 6. Denetlemeler a. Tutarlılık Bir önermenin tutarlılığı : Yorumlama tablosunda doğrulardan oluşan en az bir satırı bulunan önermeler tutarlıdır. Mevsim kıştır. D Y Tutarlı Geçersiz 5

Not 1: 1. Tutarlı önermeler geçersiz olabilir. 2. Geçersiz önermeler tutarlı olabilir. Mevsim kıştır veya mevsim kış değildir. ( v ~ ) ~ Not 2: Geçerli her önerme tutarlıdır. Mevsim kıştır ve mevsim kış değildir. ( ^ ~ ) Not 3: Tutarsız her önerme geçersizdir. Geçersiz bir önerme tutarsız olabilir. Birden fazla önermenin birlikte tutarlılığı: Yorumlama tablosunda doğrulardan oluşan ortak bir yorumu bulunan önermeler birlikte tutarlıdır. ~ v q, ~ q önermeleri birlikte tutarlıdır. 6

b. Geçerlilik: Yorumlama tablosunda yanlışlardan oluşan hiçbir satırı bulunmayan önermeler geçerlidir. Yukarıda geçen önermelerin geçerliliğini inceleyelim, Çıkarımların Geçerliliği: Bir çıkarımın geçerli olması, öncülleri doğruyken sonucun yanlış olmamasına bağlıdır. Buna göre öncülleri doğru iken sonucu yanlış olan çıkarım geçersiz, diğer hallerde geçerlidir.örnek: Güneş doğmuştur. () öncül O halde gündüz olmuştur (q) sonuç q olarak sembolleştirilebilen bu çıkarımın geçerliliğini inceleyelim. c. Eşdeğerlilik: Aynı doğruluk değerine sahi önermeler eşdeğerdir. Not: Bütün geçerli önermeler eşdeğerdir. Not: Bütün tutarsız önermeler eşdeğerdir. A, B gibi iki ayrı önermenin eşdeğer olması (aynı doğruluk değerinde olması) A B önermesinin geçerli olmasına veya ~ (A B ) önermesinin tutarsız olmasına bağlıdır. Buna göre ~ (A B) tutarsız ise, (A B) geçerlidir. Dolayısıyla A ile B eşdeğerir. 7

B. YÜKLEMLER MANTIĞI Đçinde (her), (bazı) gibi niceleyici geçen önermeler yüklemler mantığının konusunu oluşturur. Bu önermelere genel önerme denir. Đçine niceleyici geçmeyen önermelere de tekil önerme denir. Yüklemler mantığında önermeler mantığından farklı olarak basit önermelerin iç yaıları da sembolleştirilebilmektedir. Örnek olarak: Bütün kuşlar kanatlıdır önermesi önermeler mantığında olarak sembolleştirilirken, yüklemler mantığında ( xfx ) şeklinde sembolleştirilir. Bu ayrıntılı sembolleştirilmeden dolayı önermeler mantığında tutarlı olan bir önerme yüklemler mantığında tutarsız olabilmektedir. 1. Tanımlamalar a. Değişmezler ve sembolleştirilmesi: Mantık değişmezleri: ~, ^, v,, (önerme eklemleri), (niceleyiciler) Özel değişmezler: a, b, c...(ad değişmezleri ) F, G, H...(yüklem değişmezleri) Aristo filozoftur (Fa) a F Aristo insandır. (Ga) a G Sokrates insandır. (Gb) b G Aristo filozof ise Aristo insandır. (Fa Ga) Fa Ga 8

b. Değişkenler: Belli bir değeri olmayan ve farklı değerler alabilen x, y, z... gibi sembollere değişken denir. içine x, y, z gibi değişken geçen önermelere de açık önerme denir. Örneğin; x < z x + y = 4" z başkenttir. birer açık önermedir. Açık önermelerin doğruluk değeri yoktur. c. Tümel Niceleme: x katıdır (Kx) açık önermesi E= {demir, cam} evreninde Demir katıdır. Cam katıdır. özellemeleri yaıldığında, evrendeki tüm elemanlar (Tümel niceleme gereği evrendekilerin hesi) açık önermedeki x i karşılarsa, Kx açık önermesi verilen evren için "x K x olarak gösterilir. x (x başkenttir)" önermesinin E = {Ankara, Đstanbul} evreninde; Ankara başkenttir. D Đstanbul başkenttir. Y özellemeleri yaıldığında, D ^ Y Y sonucuna ulaşılır. Buna göre tümel niceleyici ile yaılan önerme verilen evrende gerçeklenmemiştir. d. Tikel niceleme: x sıvıdır. (Sx) açık önermesi E= {su, taş} evreninde, Su sıvıdır. Taş sıvıdır. özellemeleri yaıldığında; evrendeki bazı elemanlar (Tikel niceleme gereği evrendekilerden en az biri) açık önermedeki x i karşılarsa, Sx açık önermesi verilen veren için x S x olarak gösterilir. x (tek sayıdır.)" önermesinin E = {0, 1, 2}} evreninde 0 tek sayıdır. Y 1 tek sayıdır. D 2 tek sayıdır. Y özellemeleri yaıldığında, Y v D v Y D sonucuna ulaşılır. Buna göre tikel niceleyici ile yaılan önerme verilen evrende gerçeklenmiştir. Tümel niceleyici ile yaılan önermelerde, özellemelerin arasında tümel evetleme eklemi ( ^ ) kullanılır. Tikel niceleyici ile yaılan önermelerde, önermeler arasında tikel evetleme eklemi ( v ) kullanılır. 9

e. Niceleyici Değilleme Kuralları (Eşdeğerlilik) ~ x F x x ~Fx ~ x F x x ~Fx ~ x ~ F x x Fx ~ x ~ F x x Fx Eşdeğerlilik Örnekleri: Her insanın fakir olduğu doğru değildir. Bazı insanlar fakir değildir. Bazı insanların fakir olduğu doğru değildir. Hiçbir insan fakir değildir. Hiçbir insanın fakir olmadığı doğru değildir. Bazı insanlar fakirdir. Bazı insanların fakir olmadığı doğru değildir. Her insan fakirdir. s.gky 10