altında ilerde ele alınacaktır.



Benzer belgeler
Appendix C: İstatistiksel Çıkarsama

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi

IE 303T Sistem Benzetimi

İçindekiler. Ön Söz... xiii

SIRADAN EN KÜÇÜK KARELER (OLS)

Çıkarsama, Tahmin, Hipotez Testi

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

Matris Cebiriyle Çoklu Regresyon Modeli

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015

İSTATİSTİK I KAVRAMLARININ

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir:

Ekonometri I VARSAYIMLARI

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler

OLASILIK ve KURAMSAL DAĞILIMLAR

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

AKT201 Matematiksel İstatistik I Yrd. Doç. Dr. Könül Bayramoğlu Kavlak

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK

Appendix B: Olasılık ve Dağılım Teorisi

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler

Simülasyonda İstatiksel Modeller

İstatistiksel Kavramların Gözden Geçirilmesi

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

İstatistik ve Olasılık

1: DENEYLERİN TASARIMI VE ANALİZİ...

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

SÜREKLİ RASSAL DEĞİŞKENLER

SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

14 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi. Özet İstatistikler ve Histogram (Minitab)(1) Örnek: Eczane İçin Servis Süreleri

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

EME 3117 SISTEM SIMÜLASYONU. Üçgensel Dağılım. Sürekli Düzgün Dağılım. Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar

Deney Dizaynı ve Veri Analizi Ders Notları

7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar

EME 3117 SİSTEM SİMÜLASYONU. Üçgensel Dağılım. Sürekli Düzgün Dağılım. Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar

İSTATİSTİKSEL DARALTICI (SHRINKAGE) MODEL VE UYGULAMALARI * A Statistical Shrinkage Model And Its Applications*

13. Olasılık Dağılımlar

Eşanlı Denklem Modelleri

Dr. Mehmet AKSARAYLI

2018 İKİNCİ SEVİYE AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME 12 MAYIS 2018

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı...

İSTATİSTİK DERS NOTLARI

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

BASİT REGRESYON MODELİ

QUANTILE REGRESYON * Quantile Regression

Tesadüfi Değişken. w ( )

EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9

İstatistik ve Olasılık

SÜREKLİ DÜZGÜN DAĞILIM

Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

MAK 210 SAYISAL ANALİZ

BÖLÜM 1: YAşAM ÇÖzÜMLEMEsİNE GİRİş... 1

İki Değişkenli Bağlanım Çıkarsama Sorunu

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

İstatistik I Ders Notları

EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER


ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

Rassal Değişken Üretimi

ĐST 474 Bayesci Đstatistik

SEK Tahmincilerinin Türetilmesi. SEK Tahmincilerinin Türetilmesi. Ekonometri 1 Konu 8 Sürüm 2,0 (Ekim 2011)

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

ALIŞTIRMALAR. Sayısal Bilginin Özetlenmesi:

İstatistik ve Olasılık

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL

Bekleme Hattı Teorisi

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir.

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

Örnek 1: 2 x = 3 x = log 2 3. Örnek 2: 3 2x 1 = 2 2x 1 = log 3 2. Örnek 3: 4 x 1 = 7 x 1 = log 4 7. Örnek 4: 2 x = 3 2 x 2 = 3

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Transkript:

YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini tahmin etmekte kullanabileceğimiz tahmin ediciler türetmemizi sağlayan genel tahmin yöntemleri nelerdir? Momentler Yöntemi (Method of Moments) Maksimum Olabilirlik Yöntemi (Method of Maximum Likelihood) En Küçük Kareler (Least Squares) Bu derste sadece Momentler Yöntemi ve Maksimum Olabilirlik Yöntemlerini inceleyeceğiz. En Küçük Kareler yöntemi Regresyon başlığı altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 2 MOMENTLER YÖNTEMİ (METHOD of MOMENTS) Momentler yöntemi en eski tahmin yöntemlerinden biridir. Anakütleye ilişkin dağılımsal varsayımlar altında, populasyon momentlerinin örneklem momentlerine eşitlenerek ortaya çıkan bilinmeyen denklem sisteminin populasyon parametreleri için çözümüne dayanır. Elimizde k tane bilinmeyen populasyon parametresi olsun. Bunları θ 1,θ 1,...,θ k ile gösterelim. Bu parametrelerin Momentler Yöntemi tahmin edicileri aşağıdaki sistemin çözümüyle bulunur: E(X) = 1 X i n E(X 2 ) = 1 n. =. X 2 i E(X k ) = 1 n Burada populasyon momentlerinin bilinmeyen parametrelerin bir fonksiyonu X k i

YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 3 olduğunu unutmayın. Bu populasyon momentlerini örneklem momentlerine eşitleyerek k bilinmeyenli k denklem elde ettik. Bunun çözümü bize Momentler Yöntemi Tahmin Edicilerini verir. ÖRNEK: X 1,X 2,...,X n Binom(1,p) dağılımından çekilmiş rassal bir örneklem olsun. p nin momentler yöntemi tahmin edicisini bulun. Burada bilinmeyen populasyon parametresi bir tanedir. Öyleyse momentler yöntemi tahmin edicisi eşitliğinden hareketle olur. E(X) = p = X ˆp mom = X YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 4 MOMENTLER YÖNTEMİ k Populasyon Momentleri Örneklem Momentleri 1 µ 1 = E(X) ˆµ 1 = 1 n n X i 2 µ 2 = E(X 2 ) ˆµ 2 = 1 n n X2 i 3 µ 3 = E(X 3 ) ˆµ 3 = 1 n n X3 i 4 µ 4 = E(X 4 ) ˆµ 4 = 1 n n X4 i...... k µ k = E(X k ) ˆµ k = 1 n n Xk i

YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 5 MOMENTLER YÖNTEMİ (dvm) ÖRNEK: N(µ,σ 2 ) anakütlesinden çekilmiş n boyutlu rassal bir örneklemden hareketle µ ve σ 2 parametrelerinin MOM tahmin edicilerini bulun. Burada bilinmeyen iki parametre olduğundan ilk iki populasyon momentini örneklem momentlerine eşitlersek Buradan da E(X) = µ = X E(X 2 ) = µ 2 + σ 2 = 1 n X 2 i bulunur. ˆµ mom = X ˆσ mom 2 = 1 n (X i X) 2 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 6 MOMENTLER YÖNTEMİ (dvm) ÖRNEK: Uniform(α,β) anakütlesinden çekilmiş n boyutlu rassal bir örneklemden hareketle α ve β parametrelerinin MOM tahmin edicilerini bulun. Burada bilinmeyen iki parametre olduğundan ilk iki populasyon momentini örneklem momentlerine eşitlersek E(X) = E(X 2 ) = İkinci eşitlikten hareketle (α β) 2 12 α + β = X 2 (α β)2 + 12 = 1 n ( α + β 2 ) 2 = 1 n (X i X) 2 = ˆσ 2 Buradan aşağıdaki bilinmeyen denklem sistemi elde edilir: X 2 i α + β = 2X (α β) 2 = 12ˆσ 2 = β α = 2 3ˆσ

YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 7 Bu denklem sistemini çözersek momentler yöntemi tahmin edicileri ˆα mom = X 3ˆσ ˆβ mom = X + 3ˆσ olarak bulunur. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 8 MAKSİMUM OLABİLİRLİK TAHMİN YÖNTEMİ (MAXIMUM LIKELIHOOD ESTIMATION) İstatistik ve ekonometride en sık kullanılan nokta tahmin yöntemlerinden biridir. Anakütleyi betimleyen olasılık yoğunluk fonksiyonunu (ya da olasılık kütle fonksiyonunu, eğer r.d. kesikli ise) f(x;θ) ile gösterelim. Bu anakütleden çekilmiş n gözlemli r.ö. X 1,X 2,...,X n, bunun belli bir gerçekleşmesi ise x 1,x 2,...,x n olsun. Maksimum Olabilirlik tahmin yöntemi (kısaca MLE) belli bir örneklem değerlerinin gerçekleşme olabilirliğini en yüksek yapan anakütle parametrelerini bulmaya çalışır. Elimizde bir rassal örneklem olduğundan ve bunların çekildiği anakütlenin bilindiği (oyf biliniyor) varsayıldığından, bağımsızlık özelliğinden hareketle ortak olasılık yoğunluk fonksiyonu f(x 1,x 2,...,x n ;θ) = f 1 (x 1 ;θ) f 2 (x 2 ;θ),..., f n (x n ;θ) = f(x i ;θ), i = 1,2,...,n

YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 9 olarak yazılabilir. Burada X 1 = x 1,X 2 = x 2,...,X n = x n olduğuna, örneklem yinelense başka gözlem değerleri elde edileceğine dikkat edin. Olabilirlik fonksiyonu ortak olasılık fonksiyonuna verilen başka bir isimdir. Tek fark şudur ki ortak olasılık fonksiyonunda θ nın bilindiği X lerin bilinmediği, olabilirlik fonksiyonunda ise X lerin bilindiği, bir başka deyişle belli bir gerçekleşmesinin gözlemlenmiş olduğu, θ nın ise bilinmediği örtük olarak varsayılır. Rassal örneklemin belli bir gerçekleşmesini x = {x 1,x 2,...,x n } ile gösterelim. Olabilirlik fonksiyonu x verilmişken θ yı bilinmeyen olarak ifade eden bir fonksiyondur: L(θ x 1,x 2,...,x n ) = L(θ x) = f(x i ;θ), i = 1,2,...,n YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 10 Maksimum Olabilirlik tahmin edicileri olabilirlik fonksiyonunu en yükseğe çıkaran tahmin ediciler olarak tanımlanır. Anakütlenin dağılımının ne olduğu biliniyorsa bu aşağıdaki matematiksel probleme dönüşür: MLE t.e. ˆθ mle dersek: max L(θ x) = θ f(x i ;θ) ˆθ mle = arg max L(θ x) = θ f(x i ;θ) Bu maksimizasyon probleminin çözümünde kolaylık sağlaması için, ortak olasılık fonksiyonunun e tabanına göre logaritması (ln, doğal log) kullanılabilir: ( n ) max ln L(θ x) = ln f(x i ;θ) = ln(f(x i ;θ)) θ

YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 11 θ nın MLE t.e.: ˆθ mle = arg max lnl(θ x) θ ya da ˆθ mle = arg max θ ln(f(x i ;θ)) Bu maksimizasyon probleminin çözümü için gerekli ve yeterli koşullar: θ lnl(θ x) = 0, lnl(θ x) < 0 θ2 θ k bilinmeyen parametreden oluşuyorsa logolabilirlik fonksiyonunun bu parametrelere göre birinci türevleri sıfır (gerekli koşul), ikinci türev matrisi (Hessian) negatif belirli olmalı (yeterli koşul). YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 12 Başarı olasılığının p (0 < p < 1) olduğu Bernoulli dağılımından 10 r.d. çekilmiş olsun: X 1,X 2,...,X 10. Bunların gözlemlenen değerlerine x 1,x 2,...,x 10 diyelim. Toplam başarı sayısını y = x 1 + x 2 +... + x 10 ile gösterelim. Olabilirlik fonksiyonu bilinmeyen populasyon parametresi p nin bir fonksiyonudur: L(p x 1,x 2,...,x 10 ) = p y (1 p) n y Bu 10 denemenin 6 sının başarı ile sonuçlandığını varsayalım, yani y = x 1 + x 2 +... + x 10 = 6. Bu durumda olabilirlik fonksiyonu, başka bir deyişle, 10 bağımsız Binom denemesinde 6 başarı gözlemleme olasılığı L(p x 1,x 2,...,x 10 ) = p 6 (1 p) 4 olur. 0.1, 0.2,..., 0.9 aralığında olabilirlik fonksiyonu değerleri şöyledir:

YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 13 p L(p x) = p 6 (1 p) 4 0.1 0.00000066 0.2 0.00002621 0.3 0.00017503 0.4 0.00053084 0.5 0.00097656 0.6 0.00119439 0.7 0.00095296 0.8 0.00041943 0.9 0.00005314 Olabilirlik fonksiyonunun y/10 = 0.6 değerinde en yüksek olduğuna dikkat edin. Bir sonraki şekilde p için daha sık grid değerleri kullanılarak L(.) fonksiyonunun grafiği gösterilmiştir. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 14 x 10 4 12 10 L(p): Olabilirlik Fonksiyonu 8 6 4 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 p

YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 15 ÖRNEK: n bağımsız Bernoulli(p) denemesinde örneklem gerçekleşme değerlerine x = (x 1,x 2,...,x n ) diyelim. Bu örneklem değerlerinden hareketle bilinmeyen parametre p nin MLE t.e. bulun. Olasılık fonksiyonu: Olabilirlik fonksiyonu f(x i ;p) = p x i (1 p) 1 x i, x i = 1,0, i = 1,2,...,n L(p x) = f(x i ;p) = p x i (1 p) 1 x i n denemede toplam başarı sayısına y dersek (y = x 1 + x 2 +... + x n ) olabilirlik fonksiyonu L(p x) = p x i (1 p) 1 x i = p y (1 p) n y, y = x 1 + x 2 +... + x n Olabilirlik fonksiyonunun doğal logaritmasını alırsak: ln L(p x) = y ln(p) + (n y) ln(1 p) YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 16 Buradan p ye göre 1.türev: 2.türev p ln L(p x) = y p n y 1 p = 0, = p = y n p 2 lnl(p x) = y p 2 Öyleyse p nin MLE tahmin edicisi n y < 0, her p değeri için (1 p) 2 ˆp mle = y n = X

YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 17 ÖRNEK: x = (x 1,x 2,...,x n ), Poisson dağılımına uyan bir anakütleden çekilmiş n gözlemli rassal örneklem değerlerini göstersin. Bu örneklem değerlerinden hareketle bilinmeyen parametre λ nın MLE t.e. bulun. X Poisson(λ) olduğuna göre olasılık fonksiyonu: f(x i ;λ) = e λ λ x i x i!, x i = 1,2,3,..., i = 1,2,...,n Log-olabilirlik fonksiyonu: [ n ] [ ] e λ λ x i n lnl(λ x) = ln = ln e nλ λ x i x i! x i! [ n ] = nλ + ln(λ) x i ln x i! [ n ] = nλ + nln(λ) x ln x i! YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 18 ÖRNEK (dvm): Poisson(λ) dağılımdan çekilen n gözlemli rassal örneklem değerleri için log-olabilirlik fonksiyonu: [ n ] ln L(λ x) = nλ + nln(λ) x ln x i! λ ya göre 1. türev: 2. türev: Öyleyse λ nın MLE t.e.: λ lnl(λ x) = n + n x = 0, λ lnl(λ x) = n x λ2 λ 2 < 0, ˆλ mle = X = λ = x her λ değeri için

YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 19 L(λ) Poisson(λ) icin Log olabilirlik fonksiyonu λ YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 20 ÖRNEK: x = (x 1,x 2,...,x n ), ortalaması µ, varyansı σ 2 olan Normal dağılan bir anakütleden çekilmiş rassal örneklem değerleri olsun. Populasyon parametreleri µ ve σ 2 nin MLE tahmin edicilerini bulun. X N(µ,σ 2 ) olduğundan olasılık yoğunluk fonksiyonu: ( f(x i ;µ,σ 2 1 ) = exp 1 ) 2πσ 2 2σ 2 (x i µ) 2, < x i <, i = 1,2,...,n Olabilirlik fonksiyonu: L(µ,σ 2 x) = = f(x i ;µ,σ 2 ) = ( 1 2πσ 2 ( 1 exp 1 ) 2πσ 2 2σ 2 (x i µ) 2 ( 1 ) 2σ 2 (x i µ) 2 ) n n exp = (2πσ 2 ) n/2 exp ( 1 2σ 2 ) (x i µ) 2

YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 21 ÖRNEK: Log-olabilirlik fonksiyonu: 1. türevler: lnl(µ,σ 2 x) = n 2 ln(2π) n 2 ln(σ2 ) 1 2σ 2 µ lnl(µ,σ2 x) = 1 σ 2 (x i µ) = 0 σ 2 lnl(µ,σ2 x) = n 2σ 2 + 1 2σ 4 Bu sistemin eşanlı çözümünden elde edilir. ˆµ mle = X, ˆσ 2 mle = 1 n (x i µ) 2 (x i µ) 2 = 0 (X i X) 2 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 22 ÖRNEK: 2. türevler: µ 2 lnl(µ,σ2 x) = n σ 2 µ σ 2 lnl(µ,σ2 x) = 1 σ 4 (σ 2 ) 2 lnl(µ,σ2 x) = σ 2 µ lnl(µ,σ2 x) = 1 σ 4 (x i µ) n 2σ 4 1 σ 6 (x i µ) 2 (x i µ) Hessian matrisini MLE çözümlerinde değerlersek H ˆµmle,ˆσ mle 2 = µ lnl(µ,σ 2 x) 2 2 µ σ lnl(µ,σ 2 x) 2 = σ 2 µ lnl(µ,σ2 x) 2 (σ 2 ) lnl(µ,σ 2 x) 2 n ˆσ 2 mle 0 0 n 2ˆσ 4 mle Bu matris negatif belirli olduğundan 2. derece koşulları da sağlanmış olur.

YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 23 MAKSİMUM OLABİlİRLİK TAHMİN YÖNTEMİNİN ÖZELLİKLERİ: Değişmezlik (Invariance): ˆθ mle, θ nın MLE tahmin edicisi olsun. θ nın γ = g(θ) gibi bir fonksiyonu tanımlanmış olsun. Değişmezlik özelliğine göre γ nın MLE t.e.si ˆγ mle = g(ˆθ mle ) olur. Tutarlılık: MLE tahmin edicisi ˆθ mle tutarlıdır. Asimptotik Normallik: θ nın MLE tahmin edicisi ˆθ mle asimptotik normaldir: ( ) n, n(ˆθmle θ) N 0,σ 2ˆθ burada σ 2 θ = 1 I(θ), I(θ) = E θ [ ] 2 lnl(θ x) θ MLE tahmin edicisi doğru parametre değeri θ çevresinde yaklaşık olarak normal dağılır. Yukarıdaki varyans ifadesindeki I(θ) terimi Fisher information olarak bilinir. Bu değer ne kadar büyükse (ne kadar çok bilgi varsa) varyans o kadar küçük olur.