Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation
|
|
|
- Si̇mge Kashani
- 8 yıl önce
- İzleme sayısı:
Transkript
1 Simülasyonda İstatiksel Modeller Banks, Carson, Nelson & Nicol Discrete-Event System Simulation
2 Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun bir model geliştirilebilir: Eğitimli bir tahminle bilinen dağılımlardan birini seçiniz Dağılımın parametrelerini belirleyiniz Uygunluğunu test ediniz
3 Kuyruk Sistemleri Bir kuyruk sisteminde varışlar arası süreler ve servis sürelerinin düzeni olasıksal olabilir. Varışlar arası süreler ve servis sürelerinin dağılımı için örnek istatiksel modeller: Üssel Dağılım: Servis süreleri tümü ile rasgele ise Normal Dağılım: Oldukça sabit ancak bir miktar değişim söz konusu ise (pozitif veya negatif yönde) Kesik Normal Dağılım: Normal dağılım gibidir ancak değerler sınırlanmıştır. Gamma ve Weibull Dağılımı: Üssel dağılıma göre daha geneldir (pdf deki tepe değerlerin yeri ve kuyrukların şekli bakımından).
4 Stok ve Tedarik Zinciri Gerçekçi stok ve tedarik zinciri sistemlerinde en az üç rasgele değişken vardır: Belli bir zaman diliminde sipariş başına talep edilen adetler Talepler arası süre Sipariş ile teslimat arasında geçen süre (lead time) Lead time dağılımı için örnek istatiksel model: Gamma Talep dağılımı için örnek istatiksel modeller: Poisson: basit ve büyük ölçüde tablolaştırılmış. Negatif binom dağılımı: Poisson a göre daha uzun kuyruğa sahip (daha büyük talepler). Geometrik: Negatif binom dağılımının özel bir durumu (en az bir talebin oluştuğu verilmişse).
5 Ayrık Dağılımlar Ayrık rasgele değişkenler, sadece integer değerlerin oluştuğu rasgele olayları tanımlamak için kullanılır: Bernoulli denemeleri ve Bernoulli dağılımı Binom dağılımı Geometrik ve negatif binom dağılımı Poisson dağılımı
6 Bernoulli Denemeleri ve Bernoulli Dağılımı Bernoulli Denemeleri: Sonucu başarı veya başarısızlık olan n denemenin yapıldığı bir deney gözönüne alalım: X j 1, eğer j. denemenin sonucu başarı ise X j 0, eğer j. denemenin sonucu başarı ise Bernoulli dağılımı (bir deneme): E(X j ) p ve V(X j ) p(1-p) pq Bernoulli süreci: p j p, x j 1, j 1,2,..., n ( x j) p( x j ) 1 p q, x j 0,j 1, 2,...,n 0, diğer durumlarda Denemeler bağımsızken n Bernoulli denemesi için: p(x 1,x 2,, x n ) p 1 (x 1 )p 2 (x 2 ) p n (x n )
7 Binom Dağılımı n Bernoulli denemesindeki başarıların sayısı, X, binom dağılımına sahiptir. p( x) n x 0, p x q n x, x diğer 0,1,2,..., n durumlarda Gerekli sayıda başarı ve başarısızlığa sahip sonuçların sayısı x adet başarı ve (n-x) adet başarısızlık olma olasılığı Ortalama değeri, E(x) p + p + + p n*p Varyansı, V(X) pq + pq + + pq n*pq
8 Geometrik & Negatif Binom Dağılımı Geometrik dağılım İlk başarılı sonuç elde edilene kadarki Bernoulli denemelerinin sayısı, X E(x) 1/p, ve V(X) q/p 2 x 1 q p, x 0,1,2,..., n p( x) 0, diğer durumlarda Negatif binom dağılımı k. başarı elde edilene kadarki Bernoulli denemelerinin sayısı, Y,p ve k parametreleri ile negatif binom dağılımına sahiptir: y 1 q p( y) k 1 0, E(Y) k/p, ve V(X) kq/p 2 y k p k, y diğer k, k + 1, k + 2,... durumlarda
9 Poisson Dağılımı Poisson dağılımının, α > 0 için, olasılık yoğunluk (pdf) ve kümilatif yoğunlık (cdf) fonksiyonları: p( x) e 0, α x α x!, x diğer 0,1,... durumlarda F( x) x α i e α i 0 i! E(X) α V(X)
10 Poisson Dağılımı Örnek: Bilgisayar tamir elemanı her servis ihtiyacında bir çağrı almaktadır. Saatteki çağrı sayısının yaklaşık Poisson (saatte α 2) olduğu verilmişse: Önümüzdeki saat içinde elemenın 3 çağrı alma olasılığı: p(3) e /3! 0.18 veya, p(3) F(3) F(2) saatlik periyotta 2 veya daha fazla çağrı alma olasılığı: p(2 veya üstü) 1 p(0) p(1) 1 F(1) 0.594
11 Sürekli Dağılımlar Değişkenin belli bir aralıkta herhangibir değer alabildiği rastsal olayları tanımlamak için sürekli rasgele değişkenler kullanılabilir: Uniform Üssel (Exponential) Normal Weibull Lognormal
12 Uniform Dağılım Olasılık yoğunluk ve kümilatif yoğunluk fonksiyonları aşağıdaki olan bir X rasgele değişkeninin (a,b) aralığında uniform dağılıma sahip olduğu, U(a,b), söylenir: 0, x p a 1, a x b x a f ( x) b a F( x), a x p b 0, diğer durumlarda b a 1, x b Özellikleri P(x 1 < X < x 2 ) olasılığı [F(x 2 ) F(x 1 ) (x 2 -x 1 )/(b-a)] aralığının uzunluğu ile orantılıdır E(X) (a+b)/2 V(X) (b-a) 2 /12 U(0,1) raslantı değişkenlerinin (variates) üretilebileceği rasgele sayıları ürtme olanağı sağlar.
13 Üssel Dağılım Olasılık yoğunluk ve kümilatif yoğunluk fonksiyonları aşağıdaki olan bir X rasgele değişkeninin λ > 0 parametresi ile üssel dağılıma sahip olduğu söylenir: λe f ( x) 0, λx, x 0 diğer durumlarda 0, F( x) x λe dt 1 e 0 λt λx, x p 0 x 0 E(X) 1/λ V(X) 1/λ 2 Şekildeki farklı üssel pdf ler içn dikey ekseni kesim noktasının λ, değerini verdiği ve tüm pdf lerin kaşistiği görülebilir.
14 Üssel Dağılım Hafızasız olma özelliği 0 veya daha büyük tüm s ve t değerleri için: P(X > s+t X > s) P(X > t) Örnek: Bir ampulün yaklaşık üssel (λ 1/3 saatte) olduğu verilmiş yani ortalama üç saate 1 başarısızlık sözkonusu. Ampülün ortalama ömründen daha uzun dayanma olasılığı: P(X > 3) 1-(1-e -3/3 ) e Ampülün 2 ile 3 saat arasında dayanma olasılığı: P(2 < X < 3) F(3) F(2) saat kullanılmış olduğu halde ampulün 1 saat daha dayanma olasılığı: P(X > 3.5 X > 2.5) P(X > 1) e -1/
15 Normal Dağılım Normal dağılıma sahip bir X rasgele değişkeninin olasılık yoğunluk fonksiyonu: f ( x) x μ exp, p x p σ 2π 2 σ Ortalama: Varyans: Gösterim: X ~ N(μ,σ 2 ) Sahip olduğu özellikler: lim f ( x) 0, ve lim f ( x) 0 x. x p μ p σ 2 f 0 f(μ-x)f(μ+x); pdf μ civarında simetriktir. pdf x μ için en büyük değerini alır; ortalama ve tepe değeri eşittir.
16 Normal Dağılım Dağılımın Değerlendirilmesi: Nümerik yöntem kullanılmalı, F(x) için kapalı formda çözümü yok μ ve σ, değerlerinden bağımsız standard normal dağılım (ortalaması 0, varyansı 1): Z ~ N(0,1) Değişken dönüşümü ile: Z (X - μ) / σ olarak alınırsa Φ z t dt e z 2 / ) ( π, ( ) ) ( ) ( 2 1 ) ( )/ ( )/ ( 2 / 2 σ μ σ μ σ μ φ π σ μ Φ x x x z dz z dz e x Z P x X P x F
17 Normal Dağılım Örnek: Bir geminin yüklenmesi için gerekli süre, X, N(12,4) normal dağılıma sahip ise Geminin 10 saatten az sürede yüklenme olasılığı: F( 10) Φ Φ( 1) Simetri özelliğinden: Φ(1), Φ (-1) in tümleyenidir:
18 Weibull Dağılımı Weibull dağılımına sahip bir X rasgele değişkeninin pdf i: 3 parametresi var: β x ν f ( x) α α 0, Konum parametresi: υ, ( pν p ) Ölçek parametresi: β, (β > 0) Biçim parametresi. α, (> 0) Örnek: υ 0 and α 1: β 1 x ν exp α β, x ν diğer durumlarda β 1 iken, X ~ exp(λ 1/α)
19 Lognormal Dağılım Lognormal dağılıma sahip bir X rasgele değişkeninin pdf i: 1 exp f ( x) 2πσx 0, ( ln x μ) 2σ 2 2, x f 0 diğer durumlarda μ1, σ 2 0.5,1,2. Ortalama E(X) e μ+σ2 /2 Varyans V(X) e 2μ+σ2 /2 ( e σ2-1) Normal Dağılım ile İlişkisi Y ~ N(μ, σ 2 ) iken, X e Y ~ lognormal(μ, σ 2 ) μ ve σ 2 parametreleri lognormal dağılımın ortalama ve varyansı değil
20 Poisson Dağılımı Tanım: N(t) [0,t] aralığında meydana gelen olayların sayısını temsil eden bir sayma fonksiyonudur. Aşağıdaki koşullar sağlanırsa {N(t), t>0} sayma süreci λ ortalamasına sahip bir Poisson sürecidir: Her seferinde bir varış oluşur {N(t), t>0} durağan artımlara sahip {N(t), t>0} bağımsız artımlara sahip Özellikleri λt n e ( λt) P[ N( t) n], t 0 ve n 0,1,2,... için n! Ortalama ve varyansı eşit: E[N(t)] V[N(t)] λt Durağan artım: s ile t aralığındaki varışların sayısı da λ(t-s) ortalaması ile Poisson dağılımına sahip
21 Varışlar Arası Süre i. ve i+1. varışalar arasında geçen süre A i olmak üzere bir Possion sürecindeki varışlar arası süreleri (A 1, A 2, ) göz önüne alırsak: [0,t] aralığında varış gerçekleşmemişse ilk varış t süresi sonunda olur, böylece: P{A 1 > t} P{N(t) 0} e -λt P{A 1 < t} 1 e -λt [exp(λ)ye ait cdf] Varışlar arası süreler, A 1, A 2,, üssel olarak dağılmıştır ve 1/λ ortalaması ile bağımsızdırlar. Arrival counts ~ Poi(λ) Durağan ve Bağımsız Interarrival time ~ Exp(1/λ) Hafızasız
22 Ayırma ve Birleştirme Ayırma: Poisson sürecindeki her bir olayın p olasılığı ile Tip I, ve 1-p olasılığı ile Tip II olarak sınıflanabildiğini varsayarsak: N1(t) ve N2(t) λp and λ(1-p) ile Poisson süreçleri iken N(t) N1(t) + N2(t) Birleştirme: N(t) ~ Poi(λ) İki Poisson süreci birleştirildiğinde N1(t) ~ Poi[λp] N2(t) ~ Poi[λ(1-p)] N1(t) + N2(t) N(t), N(t) λ 1 + λ 2 ile bir Poisson sürecidir λ λp λ(1-p) N1(t) ~ Poi[λ 1 ] λ 1 λ 1 + λ 2 N(t) ~ Poi(λ 1 + λ 2 ) N2(t) ~ Poi[λ 2 ] λ 2
23 Durağan Olmayan Poisson Süreci Nonstationary Poisson Process (NSPP) Durağan artımları olmayan Poisson süreci t anındaki varış oranı λ(t), ile karakterize edilir. Bir t anına kadar olan varışların sayısının beklendik değeri, Λ(t): Λ(t) t λ(s)ds 0 λ1 oranına sahip durağan bir n(t) Poisson süreci ile λ(t) oranına sahip durağan olmayan bir Poisson sürecinin ilişkisi: Durağan Poisson süreci için λ 1 ile varış zamanları t 1, t 2,, ve durağan olmayan Poisson süreci için λ(t) ile T 1, T 2,, ise: t i Λ(T i ) T i Λ 1 (t i )
24 Durağan Olmayan Poisson Süreci Örnek: Bir postaneye varışların 8 ile 12 saatleri arasında dakikada 2 oranı ile gerçekleştiğini ve daha sonra 16 ya kadar dakikada 0.5 oranı ile gerçekleştiğini varsayalım. t 0 saat 8 e karşılık gelmek üzere, NSPP N(t) için: 2, 0 t p 4 λ( t) 0.5, 4 t p 8 t anına kadar beklendik varış sayısı: 2t, 0 t p 4 Λ( t) 4 t t + + 2ds 0.5ds 6, 4 t p ila 14 arasındaki varış sayısına ait olasılık dağılımı: P[N(6) N(3) k] P[N(Λ(6)) N(Λ(3)) k] P[N(9) N(6) k] e (9-6) (9-6) k /k! e 3 (3) k /k!
25 Deneysel (Empirical) Dağılımlar Parametreleri veri örneğinde gözlemlenen değerlerdir. Rasgele değişkenin parametrik bir dağılıma sahip olup olmadığının tesbit edilmesinin imkansız veya gereksiz olduğu durumlarda kullanılabilir. Avantajı: Örnek içinde gözlemlenen değerler dışında bir varsayım yapmaya gerek bırakmaz. Dezavantajı: Örnek olası değerlerin alabileceği tüm değer aralığını kapsamıyor olabilir.
26 Özet Simülasyon modelinin oluşturulmasında giriş verilerinin toplanması ve analizi (örneğin giriş verileri için bir dağılımın öngörülmesi) önemli bir iştir. Özellikle bilmeniz gerekenler: Ayrık, sürekli ve deneysel dağılımlar arasındaki fark. Poisson süreci ve özellikleri.
Simülasyonda İstatiksel Modeller
Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun
EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler
EME 3105 1 Giriş Sistem Simülasyonu Önümüzdeki hafta simulasyon girdilerinin modellenmesinde kullanılan kesikli ve sürekli Simulasyonda İstatistiksel Modeller-I Ders 4 dağılımlar hatırlatılacaktır. Rassal
IE 303T Sistem Benzetimi
IE 303T Sistem Benzetimi 1 L E C T U R E 5 : O L A S I L I K T E K R A R 2 Review of the Last Lecture Random Variables Beklenen Değer ve Varyans Moment Kesikli Dağılımlar Bernoulli Dağılımı Binom Dağılımı
Ders 6: Sürekli Olasılık Dağılımları
Ders 6: Sürekli Olasılık Dağılımları Normal Dağılım Standart Normal Dağılım Binom Dağılımına Normal Yaklaşım Düzgün (uniform) Dağılım Üstel Dağılım Dağılımlar arası ilişkiler Bir rastgele değişkenin, normal
EME 3117 SISTEM SIMÜLASYONU. Üçgensel Dağılım. Sürekli Düzgün Dağılım. Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar
0..07 EME 37 SISTEM SIMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)
BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH
BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Uygulamalı bilim
EME 3117 SİSTEM SİMÜLASYONU. Üçgensel Dağılım. Sürekli Düzgün Dağılım. Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar
9.0.06 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar EME 7 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller (Sürekli Dağılımlar) Ders 5 Sürekli Düzgün Dağılım Sürekli Düzgün (Uniform)
Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler
Rastgele Değişkenlerin Dağılımları Mühendislikte İstatistik Yöntemler Ayrık Rastgele Değişkenler ve Olasılık Dağılımları Yapılan çalışmalarda elde edilen verilerin dağılışı ve dağılış fonksiyonu her seferinde
KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı
KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli
Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları
Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.
Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ
YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.
19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.
9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)
SÜREKLİ DÜZGÜN DAĞILIM
SÜREKLİ DÜZGÜN DAĞILIM X rassal değişkenin olasılık yoğunluk fonksiyonu; şeklinde ise x e düzgün dağılmış rassal değişken, f(x) e sürekli düzgün dağılım denir. a 0 olduğuna göre, f(x) >0 olur.
13. Olasılık Dağılımlar
13. Olasılık Dağılımlar Mühendislik alanında karşılaşılan fiziksel yada fiziksel olmayan rasgele değişken büyüklüklerin olasılık dağılımları için model alınabilecek çok sayıda sürekli ve kesikli fonksiyon
Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları
Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli ġans DeğiĢkenlerinin Olasılık Fonksiyonları X, şans değişkeni ve, 2,.., n ise bu tesadüfi değişkenin
OLASILIK ve KURAMSAL DAĞILIMLAR
OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine
Rasgele Değişken Üretme Teknikleri
Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan
ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER
ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER DOÇ. DR. NİHAL ERGİNEL 2015 X beklenen değeri B[X] ile gösterilir. B[X] = BEKLENEN DEĞER Belli bir malzeme taşınan kolilerin ağırlıkları
3/6/2013. Ders 6: Kesikli Olasılık Dağılımları
Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı
Ders 6: Kesikli Olasılık Dağılımları
Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı
WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ
ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ SÜREKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 WEIBULL DAĞILIMI Weibull dağılımı, pek çok farklı sistemlerin bozulana kadar geçen süreleri ile ilgilenir. Dağılımın
Ders 5: Kesikli Olasılık Dağılımları
Ders 5: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı
Ders 5: Kesikli Olasılık Dağılımları
Ders 5: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı
ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM
ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ KESİKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 GEOMETRİK DAĞILIM Bir Bernoulli deneyi ilk olumlu sonuç elde edilmesine kadar tekrarlansın. X: ilk olumlu sonucun
Rassal Değişken Üretimi
Rassal Değişken Üretimi Doç. Dr. Mehmet AKSARAYLI GİRİŞ Yaşadığımız ya da karşılaştığımız olayların sonuçları farlılık göstermektedir. Sonuçları farklılık gösteren bu olaylar, tesadüfü olaylar olarak adlandırılır.
BAZI ÖNEMLİ SÜREKLİ DEĞİŞKEN DAĞILIMLARI
BAZI ÖNEMLİ SÜREKLİ DEĞİŞKEN DAĞILIMLARI BAZI SÜREKLİ OLASILIK DAĞILIMLARI 1. SÜREKLİ DÜZGÜN (UNIFORM) DAĞILIM 2. NORMAL DAĞILIM 3. BİNOM DAĞILIMINA NORMAL YAKLAŞIM 4. POISSON DAĞILIMINA NORMAL YAKLAŞIM
AKT201 Matematiksel İstatistik I Yrd. Doç. Dr. Könül Bayramoğlu Kavlak
AKT20 Matematiksel İstatistik I 207-208 Güz Dönemi AKT20 MATEMATİKSEL İSTATİSTİK I ÖDEV 6 Son Teslim Tarihi: 29 Aralık 207 Cuma, Saat: 5:00 (Ödevlerinizi Arş. Gör. Ezgi NEVRUZ a elden teslim ediniz.) (SORU
Dr. Mehmet AKSARAYLI
Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli
MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1
MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1 şeklinde tanımlanan dağılımın a) Ortalama ve varyans değerlerini bulunuz b) Moment yaratma fonksiyonunu bularak a-şıkkını tekrar çözünüz. Bir tezgahta üretilen
Kümülatif Dağılım Fonksiyonu (Sürekli)
Kümülatif Dağılım Fonksiyonu (Sürekli) sürekli bir rastgele değişken olsun. Bu durumda kümülatif dağılım fonksiyonu şu şekilde tanımlanır. F ( ) = Pr[ ] Tipik bir KDF şu şekilde görünür:.0 F () 0 Kümülatif
SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım
SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin
SÜREKLİ OLASILIK DAĞILIŞLARI
SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla
SAB 101 OLASILIK DERS NOTLARI. Prof.Dr. Fatih TANK. SAB 101 Olasılık. F.Tank. 1. Geometirk Dağılım. 2. Negatif Binom Dağılımı
SAB 101 OLASILIK DERS NOTLARI Prof.Dr. Fatih TANK Ankara Üniversitesi Uygulamalı Bilimler Fakültesi Sigortacılık ve Aktüerya Bilimleri Bölümü Prof.Dr. Fatih TANK - Olasılık Ders Notları- Sayfa : 1/7 Haftalık
İSTATİSTİK DERS NOTLARI
Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü [email protected] İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi Balıkesir Üniversitesi İnşaat
1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi
1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri
Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ RANDOM DEĞİŞKEN
SÜREKSİZ (DISCRETE) OLASILIK DAĞILIMLARI 1 RANDOM DEĞİŞKEN Nümerik olarak ifade edilebilen bir deneyin sonuçlarına rassal (random) değişken denir. Temelde iki çeşit random değişken vardır. ##süreksiz(discrete)
ÇIKTI ANALİZİ BENZETİM TÜRLERİ
ÇIKTI ANALİZİ BENZETİM TÜRLERİ Çıktı analizi benzetimden üretilen verilerin analizidir. Çıktı analizinde amaç, bir sistemin performansını tahmin etmek ya da iki veya daha fazla alternatif sistemlerin performansını
İçindekiler. Ön Söz... xiii
İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1
IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R
IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
1.58 arasındaki her bir değeri alabileceği için sürekli bir
7.SUNUM Hatırlanacağı gibi, kesikli rassal değişkenler sonlu (örneğin; 0, 1, 2,...,10) veya sayılabilir sonsuzlukta (örneğin; 0, 1, 2,...) değerler alabilmektedir. Fakat birçok uygulamada, rassal değişkenin
ARALIK TAHMİNİ (INTERVAL ESTIMATION):
YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta
4) Seyrek rastlanılan bir hastalık için belli bir zaman araalığında bu hastalığa yakalananların sayısının gözlenmesi,
POĐSSON DAĞILIMI Poisson Dağılımı sürekli oramlarda (zaman, alan, hacim, ) kesikli sonuçlar veren ve aşağıda a),b),c) şıklarında belirilen özelliklere sahip deneylerin modellenmesinde kullanılan bir dağılım
ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL
ANADOLU ÜNİVERSİTESİ ENM 317 Prof. Dr. Nihal ERGİNEL 2 ÖRNEKLEME Anakütleden n birimlik örnek alınması ve anakütle parametrelerinin örnekten tahmin edilmesidir. 3 ÖRNEKLEME ALMANIN NEDENLERİ Anakütleye
altında ilerde ele alınacaktır.
YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 5: Rastgele Değişkenlerin Dağılımları II Prof. Dr. İrfan KAYMAZ Sık Kullanılan Dağılımlar Frekans tablolarına dayalı histogram ve frekans poligonları, verilerin dağılımı hakkında
KESİKLİ DÜZGÜN DAĞILIM
KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda
SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN
SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.
ALIŞTIRMALAR. Sayısal Bilginin Özetlenmesi:
İSTATİSTİK I ALIŞTIRMALAR Y.Doç.Dr. Hüseyin Taştan AÇIKLAMA: N: P. Newbold, İşletme ve İktisat için İstatistik, 4. basımdan çeviri. Çift sayılı alıştırmalar için kitabın arkasındaki çözümlere bakabilirsiniz.
İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı...
İÇİNDEKİLER Ön Söz... Saymanın Temel Kuralları... Permütasyon (Sıralama)... 8 Kombinasyon (Gruplama)... 6 Binom Açılımı... Olasılık... 9 İstatistik... 8... Dağılımlar... 5 Genel Tarama Sınavı... 6 RASTGELE
1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...
1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar
Olasılık Kuramı ve Bazı Olasılık Dağılımları
KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası
Olasılık ve İstatistik Hatırlatma
Olasılık ve İstatistik Hatırlatma BSM 445 Kuyruk Teorisi Güz 014 Yrd. Doç. Dr. Ferhat Dikbıyık Bir olayın olasılığı bize ne anlatır? Verilen bir olasılığın manası nedir? Örnek: Tavlada düşeş atma olasılığı
SÜREKLİ RASSAL DEĞİŞKENLER
SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.
EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi. Özet İstatistikler ve Histogram (Minitab)(1) Örnek: Eczane İçin Servis Süreleri
EME 3117 1 2 Girdi Analizi SİSTEM SIMÜLASYONU Modellenecek sistemi (prosesi) dokümante et. Veri toplamak için bir plan geliştir. Veri topla. Verilerin grafiksel ve istatistiksel analizini yap. Girdi Analizi-I
RİSK ANALİZİ VE AKTÜERYAL MODELLEME
SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla
Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir.
3.5. Bazı Kesikli Dağılımlar 3.5.1. Bernoulli Dağılımı Bir deneyde başarı ve başarısızlık diye nitelendirilen iki sonuçla ilgilenildiğinde bu deneye (iki sonuçlu) Bernoulli deneyi ya da Bernoulli denemesi
Dağılımın parametreleri λ ve ζ, sırasıyla, lnx in ortalama değerini ve standart sapmasını belirtir; λ=e(lnx) ve ζ=[var(lnx)] 1/2.
Bölüm 5 Logaritmik Normal Dağılım / Lognormal Dağılım Bir X rasgele değişkenine ilişkin lnx olasılık dağılımı normal ise, X in olasılık dağılımı logaritmik normal dağılım ya da kısaca lognormal dağılım
Normallik Varsayımı ve Ençok Olabilirlik Yöntemi
Normallik Varsayımı ve Ençok Olabilirlik Yöntemi EO Açıklayıcı Örnekler Ekonometri 1 Konu 14 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike
SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI
SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI Yrd. Doç.Dr. İrfan Yolcubal Kocaeli Üni. Jeoloji Müh. Random Değişken: Nümerik olarak ifade edilen bir deneyin sonuçları Süreksiz(Discrete) Random Değişken: Randomdeğişken
8. Uygulama. Bazı Sürekli Dağılımlar
8. Uygulama Bazı Sürekli Dağılımlar : Bir tür böcek 6 gün yaşadıktan sonra iki gün içinde aynı miktarlarda azalıp ölmektedir. X rasgele değişkeni bu türden bir böceğin ömrü olmak üzere, X U (6,8) dır.
MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
rasgele değişkeninin olasılık yoğunluk fonksiyonu,
3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının
Rastlantı Değişkenleri
Rastlantı Değişkenleri Olasılık Kütle Fonk. Example: A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers,
Matematik Ders Notları. Doç. Dr. Murat Donduran
Matematik Ders Notları Doç. Dr. Murat Donduran Mart 18, 28 2 İçindekiler 1 Tanımlı Integral Uygulamaları 5 1.1 Olasılık.............................. 5 3 4 İÇINDEKILER Bölüm 1 Tanımlı Integral Uygulamaları
Diferansiyel denklemler uygulama soruları
. Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,
İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik
6.SUNUM İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik özellikleri (ortalama, varyans v.b. gibi) hakkında
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
İSTATİSTİK I KAVRAMLARININ
YTÜ-İktisat İstatistik II İstatistik I Gözden Geçirme İSTATİSTİK I KAVRAMLARININ GÖZDEN GEÇİRİLMESİ Hüseyin Taştan Yıldız Teknik Üniversitesi, İktisat Bölümü, email: [email protected] YTÜ-İktisat İstatistik
Sürekli Rastsal Değişkenler
Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım
Olasılık ve Dağılım Teorisi Kavramlarının Gözden Geçirilmesi
İSTATİSTİK I: Olasılık ve Dağılım Teorisi Kavramlarının Gözden Geçirilmesi Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü 22 Eylül 2012 Ekonometri: Olasılık ve Dağılım - H. Taştan 1 İstatistik
Ders 4: Rastgele Değişkenler ve Dağılımları
Ders 4: Rastgele Değişkenler ve Dağılımları Rastgele değişken kavramı Kesikli ve sürekli rastgele değişkenler İki boyutlu rastgele değişkenler Beklenen değer Varyans Örnek uzaydaki her elemanı bir sayıyla
Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH
BİYOİSTATİSTİK Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Olasılık Hatırlatma Olasılık teorisi,
RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir:
RISK ANALIZI SINAVI WEB EKİM 2017 SORU 1: Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir: 115 240 325 570 750 Hasarların α = 1 ve λ parametreli Gamma(α, λ) dağılıma
Deney Dizaynı ve Veri Analizi Ders Notları
Deney Dizaynı ve Veri Analizi Ders Notları Binom dağılım fonksiyonu: Süreksiz olaylarda, sonuçların az sayıda seçenekten oluştuğu durumlarda kullanılır. Bir para atıldığında yazı veya tura gelme olasılığı
BÖLÜM 1: YAşAM ÇÖzÜMLEMEsİNE GİRİş... 1
ÖN SÖZ...iii BÖLÜM 1: Yaşam Çözümlemesine Giriş... 1 1.1. Giriş... 1 1.2. Yaşam Süresi... 2 1.2.1. Yaşam süresi verilerinin çözümlenmesinde kullanılan fonksiyonlar... 3 1.2.1.1. Olasılık yoğunluk fonksiyonu...
ENM 316 BENZETİM ÖDEV SETİ
ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki
Tek Değişkenli Sürekli Dağılımlar-III
Tek Değişkenli Sürekli Dağılımlar-III 1 Ki-Kare Dağılımı X Gammapα,βq olmak üzere olasılık yoğunluk fonksiyonu fpxq xα 1 e x{b β α, x>0, şeklinde tanımlanır. Burda α p 2 ve β 2 için olasılık yoğunluk fonkstionu
2018 YILI BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI İSTATİSTİK VE OLASILIK 29 NİSAN 2018
2018 YILI BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI İSTATİSTİK VE OLASILIK 29 NİSAN 2018 Sigortacılık Eğitim Merkezi (SEGEM) tarafından hazırlanmış olan bu sınav sorularının her hakkı saklıdır. Hangi amaçla olursa
Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri
Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Mehmet YILMAZ [email protected] 0 KASIM 207 8. HAFTA.7 M/M//N/ sistemi için Bekleme zamanının dağılımı ( ) T j rastgele değişkeni j. birimin
Ankara Üniversitesi, SBF İstatistik 2 Ders Notları Prof. Dr. Onur Özsoy 1
1 Rastgele bir denemede ortaya çıkması olası sonuçların tamamıdır Örnek: bir zar bir kez yuvarlandığında S= Yukarıdaki sonuçlardan biri elde edilecektir. Sonuçların her biri basit olaydır Örnek: Bir deste
TEK BOYUTLU RASSAL DEĞİŞKENLER
TEK BOYUTLU RASSAL DEĞİŞKENLER Rassal değişken: S örnek uzayının her bir basit olayını yalnız bir gerçel değere dönüştüren fonksiyonuna rassal (tesadüfi) değişken denir. İki para birlikte atıldığında üste
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ
ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki
SİSTEM SİMÜLASYONU
1106104 SİSTEM SİMÜLASYONU Yrd Doç. Dr. Sırma Yavuz Çarşamba 13:00-15:30 (F-19) Ofis: B Blok - Kat 4 Donanım Lab. Ofis Saatleri : Çarşamba 16:00-17:00 Ders İçeriği Simülasyona Giriş: Simülasyonun avantaj
MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
2018 İKİNCİ SEVİYE AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME 12 MAYIS 2018
2018 İKİNCİ SEVİYE AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME 12 MAYIS 2018 Sigortacılık Eğitim Merkezi (SEGEM) tarafından hazırlanmış olan bu sınav sorularının her hakkı saklıdır. Hangi amaçla
RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 2007
RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 007 1 Tekdüze Dağılım Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk
SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II KUYRUK TEORİSİ - I DERS NOTLARI
SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II KUYRUK TEORİSİ - I DERS NOTLARI KUYRUK TEORİSİ Her birimiz kuyruklarda bekleyerek vakit geçirmişizdir. Bu derste kuyruklarlarla ilgili
ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları
ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları. 9 + = 6. A dan B ye 5 farklı şekilde gidebilir. B den C ye 3 farklı şekilde gidebilir. 5.3 = 5. 4.5 = 0 7. 5.3.3.5 5 3. kişi için iki durum
Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01
Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi
ĐST 474 Bayesci Đstatistik
ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan [email protected] Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık
kümeleri sırasıyla n 1, n 2,..., n k eleman içeriyorsa, önce A 1 nin bir elemanını seçmenin n 1
3. Olasılık Hesapları ve Olasılık Dağılımları 3.3. Sayma Teknikleri Olasılık hesapları ve istatistikte birçok problem, verilen küme elemanlarının sayılmasını veya sıralanmasını gerektirir. Eğer bir olayın
DERS 8 BELİRSİZ TALEP DURUMUNDA STOK KONTROL. Zamanlama Kararları. Bir Seferlik Karar
Zamanlama Kararları DERS 8 BELİRSİZ TALEP DURUMUNDA STOK KONTROL Miktar kararları Ne zaman sipariş verilecek? kararıyla birlikte verilir. Bu karar, stok yönetimindeki ana kararlardan biridir. Ne zaman
DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ
DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS OLASILIK VE İSTATİSTİK FEB-222 2/ 2.YY 3+0+0 3 3 Dersin Dili Dersin Seviyesi
2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI: SİGORTA MATEMATİĞİ. Soru 1
Soru Günde 8 saat çalışan bir bankanın müşterilerinin sayısı ile ilgili olarak şu bilgi verilmektedir: Müşteri sayısı, bankanın açıldığı an 9 müşteri ile başlayıp, her saat başı 9 oranı ile doğrusal artarak
OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar
OLASILIK OLASILIK İstatistiğin temel araçlarından biri olasılıktır 17. yy daşans oyunları ile başlamıştır Her bir denemenin çıktısı belirsizdir Fakat uzun dönemde çıktı kestirimlenebilir Bireysel belirsizlik
Rastgelelik, Rastgele Sinyaller ve Sistemler Rastgelelik Nedir?
Rastgelelik, Rastgele Sinyaller ve Sistemler Rastgelelik Nedir? Rastgelelik en basit anlamda kesin olarak bilinememektir. Rastgele olmayan deterministiktir (belirli). Bazı rastgele olgu örnekleri şöyle
Finansal Ekonometri. Ders 2 Olasılık Teorisi ve Rasgele Değişkenler
Finansal Ekonometri Ders 2 Olasılık Teorisi ve Rasgele Değişkenler Tek Değişkenli Rasgele Değişkenler Tanım (rasgele değişken): Bir rasgele değişken, X, SX örneklem uzayından değerler alan ve bu örneklem
