Çok Fonksiyonlu Bir Elektronik Pülverizatörde İlaçlama İşleminin Optimal ve Bulanık Kontrolü

Benzer belgeler
Isıl İşlem Uygulamalarında Kullanılan Bir Karışım Tankının Bulanık Mantık Esaslı Denetimi

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR

PROSES KONTROL DENEY FÖYÜ

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör.

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

YÖNEYLEM ARAŞTIRMASI - III

HİDROLİK BİR SERVO SİSTEMİN KAYAN REJİMLİ KONUM KONTROLU

Akışkanların Dinamiği

YENİLENEBİLİR ENERJİ KAYNAKLARI RÜZGAR ENERJİSİ SİSTEMLERİ Eğitim Merkezi Projesi

Akışkanların Dinamiği

YÖNEYLEM ARAŞTIRMASI - III

NÖ-A NÖ-B. Adı- Soyadı: Fakülte No:

Bulanık Mantık Tabanlı Uçak Modeli Tespiti

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM

OTOMATİK KONTROL. Set noktası (Hedef) + Kontrol edici. Son kontrol elemanı PROSES. Dönüştürücü. Ölçüm elemanı

LİNEER DALGA TEORİSİ. Page 1

Birinci Mertebeden Adi Diferansiyel Denklemler

G( q ) yer çekimi matrisi;

1. Aşağıda verilen fiziksel büyüklüklerin dönüşümünde? işareti yerine gelecek sayıyı bulunuz.

LYS MATEMATİK DENEME - 1

Kapalı Ortam Sıcaklık ve Nem Denetiminin Farklı Bulanık Üyelik Fonksiyonları Kullanılarak Gerçekleştirilmesi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

2. Basınç ve Akışkanların Statiği

MAK669 LINEER ROBUST KONTROL

Taşınım Olayları II MEMM2009 Akışkanlar Mekaniği ve Isı Transferi bahar yy. borularda sürtünmeli akış. Prof. Dr.

Kalman Filtresi ile LQR ve PI Denetleyicilerin DC Motor Sistemine Uygulanması LQR and PI Controller with Kalman Filter Applied to DC Motor System

BULANIK MANTIK YÖNTEMİNİN PID DENETLEYİCİ PERFORMANSINA ETKİSİ

DEN 322. Pompa Sistemleri Hesapları

EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ

Plazma İletiminin Optimal Kontrolü Üzerine

Dairesel Temellerde Taban Gerilmelerinin ve Kesit Zorlarının Hesabı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 2011 Süre: 90 dakika CEVAP ANAHTARI. y = c n x n+r. (n + r) c n x n+r 1 +

ÇÖZÜM 1) konumu mafsallı olup, buraya göre alınacak moment ile küçük pistona etkileyen kuvvet hesaplanır.

VANTİLATÖR DENEYİ. Pitot tüpü ile hız ve debi ölçümü; Vantilatör karakteristiklerinin devir sayısına göre değişimlerinin belirlenmesi

Akım Modlu Çarpıcı/Bölücü

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

JEODEZİK AĞLARIN OPTİMİZASYONU

(Mekanik Sistemlerde PID Kontrol Uygulaması - 2) DENEYSEL KARIŞTIRMA İSTASYONUNUN PID İLE DEBİ KONTROLÜ. DENEY SORUMLUSU Arş.Gör.

Hidrostatik Güç İletimi. Vedat Temiz

Deney 21 PID Denetleyici (I)

SORU 1) ÇÖZÜM 1) UYGULAMALI AKIŞKANLAR MEKANİĞİ 1

KBM0308 Kimya Mühendisliği Laboratuvarı I BERNOLLİ DENEYİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1

Dijital Kontrol Sistemleri Prof.Dr. Ayhan Özdemir. Dengede bulunan kütle-yay sistemine uygulanan kuvvetin zamana göre değişimi aşağıda verilmiştir.

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

İleri Diferansiyel Denklemler

DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. Dinamik sistemlerin Kontrolü ve Modellemesi MK-413 4/Güz (3+0+0) 3 5

Otomatik Kontrol I. Dinamik Sistemlerin Matematik Modellenmesi. Yard.Doç.Dr. Vasfi Emre Ömürlü

Yrd.Doç. Dr. Tülin ÇETİN

Kütlesel kuvvetlerin sadece g den kaynaklanması hali;

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Uyarlamalı Bulanık-PI Denetim Esaslı Dinamik Senkron Kompanzatör ile Reaktif Güç Kompanzasyonu Benzetim Çalışması

HAFİF TİCARİ KAMYONETİN DEVRİLME KONTROLÜNDE FARKLI KONTROLÖR UYGULAMALARI

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN

BURSA TEKNİK ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVAR DERSİ POMPA DENEYİ

Enerji var veya yok edilemez sadece biçim değiştirebilir (1.yasa)

Kontrol Sistemlerinin Analizi

İleri Diferansiyel Denklemler

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü

İleri Diferansiyel Denklemler

Alınan Puan NOT: Yalnızca 5 soru çözünüz, çözmediğiniz soruyu X ile işaretleyiniz. Sınav süresi 90 dakikadır. SORULAR ve ÇÖZÜMLER

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Mekatronik Mühendisliği Uygulamalarında Yapay Zekâ. Ders 1- Yapay Zekâya Giriş. Erhan AKDOĞAN, Ph.D.

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

T.C. SELÇUK ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI

Kıyıcı Beslemeli DA Motorun Oransal İntegral ve Bulanık Mantık Oransal İntegral Denetleyicilerle Hız Kontrolü Karşılaştırılması

HAVA ARAÇLARINDAKİ ELEKTRONİK EKİPMANLARIN SOĞUTULMASINDA KULLANILAN SOĞUTMA SIVILARININ PERFORMANSA BAĞLI SEÇİM KRİTERLERİ

HOMOGEN OLMAYAN DENKLEMLER

MAK 210 SAYISAL ANALİZ

PROJE ADI: Bir Koniğin Üzerindeki Veya Dışındaki Bir Noktadan Çizilen Teğetlerin Denklemlerini Matrisler Yardımıyla Bulma

TEK BÖLGELİ GÜÇ SİSTEMLERİNDE BULANIK MANTIK İLE YÜK FREKANS KONTRÜLÜ

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI

Bulanık Mantık Bilgisayar Mühendisliği Bölümü Arasınav - 11 Nisan 2014 Süre: 1 Saat 30 Dakika

DENEY 3 HAVALI KONUM KONTROL SİSTEMİ DENEY FÖYÜ

KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ/ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

POSITION DETERMINATION BY USING IMAGE PROCESSING METHOD IN INVERTED PENDULUM

NÖ-A NÖ-B. Şube. Alınan Puan. Adı- Soyadı: Fakülte No: 1. Aşağıda verilen fiziksel büyüklüklerin eşit olduğunu gösteriniz. 1/6

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

BULANIK MANTIK VE SİSTEMLERİ BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu DönüşümÜ

ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 4B: DC MOTOR TRANSFER FONKSİYONU VE PARAMETRELERİNİN ELDE EDİLMESİ

Tarla Pülverizatörü Asılır & Çekilir Tip Modeller

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

ii) S 2LW 2WH 2LW 2WH S 2WH 2LW S 3( x 1) 5( x 2) 5 3x 3 5x x Maliye Bölümü EKON 103 Matematik I / Mart 2018 Proje 2 CEVAPLAR C.1) C.

Makale. ile ihtiyacın eşitlendiği kapasite modülasyon yöntemleri ile ilgili çeşitli çalışmalar gerçekleştirilmiştir

Şanlıurfa Kuru Tarım İşletmelerinde Farklı Makina Seti ve Arazi Büyüklüğüne Göre Optimum Ürün Deseninin Belirlenmesi

DERS BİLGİ FORMU. Okul Eğitimi Süresi

1. Giriş. 2. Dört Rotorlu Hava Aracı Dinamiği 3. Kontrolör Tasarımı 4. Deneyler ve Sonuçları. 5. Sonuç

Fiziksel Sistemlerin Matematik Modeli. Prof. Neil A.Duffie University of Wisconsin-Madison ÇEVİRİ Doç. Dr. Hüseyin BULGURCU 2012

SORULAR - ÇÖZÜMLER. NOT: Toplam 5 (beş) soru çözünüz. Sınav süresi 90 dakikadır. 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1.

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ

ErP ready 2015 KULLANIM ALANLARI KONUT TİPİ. Konutlardaki. Ecocirc Serisi

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

Transkript:

KSU Mühendislik Bilimleri Dergisi, 16(2),2013 42 KSU. Journal of Engineering Sciences, 16(2),2013 Çok Fonksiyonlu Bir Elektronik Pülverizatörde İlaçlama İşleminin Optimal ve Bulanık Kontrolü Mahit GÜNEŞ 1*, Selçuk ARSLAN 2, Ahmet Ertuğrul BAY 1 1 Kahramanmaraş Sütçü İmam Üniversitesi, Elektrik-Elektronik Mühendisliği, Kahramanmaraş, Türkiye 2 Kahramanmaraş Sütçü İmam Üniversitesi, Biyositem Mühendisliği, Kahramanmaraş, Türkiye ÖZET: Bu çalışmada tüm parçaları tasarlanan elektronik kontrollü bir pülverizatörün karışım tankının seviye kontrolü ve ilaç karışım oranı Doğrusal İkinci dereceden Düzenleyici (Lineer Quadratik Regülatör-LQR) metotları ve bulanık mantık kontrol teknikleri kullanılarak simülasyonu gerçekleştirilmiştir. Karışım tankına alınan temiz su ve kimyasal ilaç sıvı oranları reçeteye bağlı kalarak karışım modeli türetilmiştir. Türetilen model üzerinde LQR kontrol metodu uygulanarak elde edilen sonuçlar bulanık kontrol sonuçları ile karşılaştırılmıştır. Anahtar Kelimeler: LQR, Bulanık Kontrol, Optimal Kontrol, Tank Seviyesi, Karışım Tankı. Pesticide Control Of Multi-Functional Electronic Sprayer By Using Optimal And Fuzzy Controller ABSTRACT: In this study, the control simulation of the tank level and pesticide mixing ratio of a newly constructed electronic sprayer was carried out using Linear Quadratic Regulator (LQR) and fuzzy control techniques. The mixture model is derived according to clean water and prescribed liquid chemical rates into the mix tank. The results obtained from LQR control utilizing derived model were compared with the result of fuzzy controller. Keywords: LQR, Fuzzy Control, Optimal Control, Tank Level, Mixed Tank Level. 1. GİRİŞ Ulusal gelirinin %25 i tarım sektöründen karşılanan ülkemizde tarımsal mücadelede modern tarım makinalarının kullanımı da son derece önemlidir. Fonksiyonel makinelerin etkin kullanılması için iyi tasarlanmış kontrol sistemlerine ihtiyaç vardır. Bu vesile ile ülkemizde ve yurt dışında araç teknolojisi üzerine hizmet veren COBO TÜRK firması ile Kahramanmaraş Sütçü İmam Üniversitesi bir araya gelerek Bilim Sanayi ve Teknoloji Bakanlığının SANTAZ projeleri kapsamında optimum ilaçlama işlemlerinde kullanılmak üzere yeni nesil bir tam otomatik kontrollü bir pülverizatör geliştirilmiştir. Günümüzde kontrol edilebilen sistemlerde birçok modern kontrol yöntemleri kullanılmaktadır. Kullanılacak kontrol yöntemleri ekonomik olması ve kontrol gereksinimlere en iyi cevap vermesi ilkelerine göre belirlenmektedir. Matematik modeli türetilebilen sistemlerde birçok modern kontrol teknikleri uygulanabilmektedir. Model türetilmesine ihtiyaç duyulmadan da bulanık kontrol gibi çeşitli kontrol teknikleri de kullanılabilmektedir. Modern denetimli sistemlerin temeli, belirli bir kriter için klasik denetimli tasarım yöntemlerinin optimizasyonuna dayanmaktadır. Optimal kontrol sistemlerinde lineer optimal durum denetleyicisi ikinci dereceden maliyet fonksiyonunu minimize etmek üzere tasarlanır. Böylece denetleyici için optimal kontrol parametreleri bulunur [1-8]. Bu çalışmada elektronik kontrollü pülverizatörün içinde bulunan akışkan tankının seviye kontrolü için sistemin modeli türetilmiş ve sistemin transfer fonksiyonu elde edilmiştir. Tank karışımını ve seviyesini kontrol etmek amacıyla LQR ve bulanık mantık kontrol metotları kullanılmış Matlab/Simulink benzetim programı kullanılarak sonuçlar test edilmiş ve elde edilen veriler karşılaştırılmıştır. 2. SİSTEMİN YAPISI Tüm parçaları ayrı ayrı tasarlanan çekilir tip bir pülverizatörün kontrolü tamamen elektronik olup kullanıcı sadece dokunmatik operatör panelinden ilaç karışım miktarlarını ve dekar başına atılması gereken bilgileri girmektedir. Geleneksel pülverizatörlerden farklı olarak Ar-Ge niteliği taşıyan aşağıdaki sistemlerle donatılmış tamamen elektronik kontrollü yeni bir ürün ortaya çıkartılmıştır. Geliştirilen sisteme araç teknolojisinde standart olarak kullanılan CAN-BUS haberleşme altyapısı kullanılarak açı, araç hızı, rüzgâr hızı ve ultrasonik mesafe algılayıcıları gibi tüm algılayıcılar yerleştirilmiş ve fonksiyonel hale getirilmiştir. Reçete bilgilerine göre karışım oranının hesaplayan karışım kontrolü yapılmıştır. *Sorumlu Yazar: Mahit GÜNEŞ, mgunes@ksu.edu.tr

KSU Mühendislik Bilimleri Dergisi, 16(2),2013 43 KSU. Journal of Engineering Sciences, 16(2),2013 Araç hızına bağımlı olarak dekar başına karşılık gelen ilaçlama miktarını ayarlayan debi kontrolü gerçekleştirilmektedir. Bom dengeleme ve engellerden sakınma kontrolü eklenmiştir. Karışım tankı seviye kontrolü gerçekleştirilmiştir. Tüm sistemi kontrol algoritmaları 16 bit gelişmiş çift çekirdekli mikrodenetleyici kartı kullanılarak ve haberleşme yazılımları sructure Text (ST) dili kullanılarak VT3 platformunda geliştirilmiştir. İlaç karışımları için 3 adet kimyasal tank sistemi tamamen yerli imkanlar kullanılarak ucuz maliyetli şekilde otomatik kontrol sistemi geliştirilmiştir. Aracın süpürdüğü alan ve araç hızı birleştirilerek atması gereken ilaç miktarının kontrolü gerçekleştirilmiştir. Sistemde debi kontrolü için hidrolik motor kullanılarak enerji ihtiyacı traktörden alınabilmektedir. Yine hidrolik güç kullanılarak 25 metreye kadar uzatılabilir bom sisteminin mekanik hareketleri kontrol edilebilmektedir. Geliştirilen sistemin genel blok diyagramı Şekil- 1 de, sistemin fotoğrafı ise Şekil-2 de verilmiştir. Şekil-2. Geliştirilen sistem 3. KARIŞIM VE SEVİYE KONTROL MODELİ Kullanılan tankın, taban alanı A ve yüksekliği h olan dikdörtgen prizma şeklindedir. Temiz su girişi, Kimyasal karışım girişi ve çıkış için oransal valfler bulunmaktadır. Girişler ve çıkışlar için kullanılan kontrol valfinin ayarı kontrolör tarafından istenilen su seviyesine göre yapılmaktadır. d(biriken Miktar) d(aρh) = (Giren Debi) (Çıkan debi) (1) = (ρ w Q w + ρ p Q p ) ρ t Q t (2) Karışım oranı sabit bir katsayı olup temiz su ile ilaç karışımından oluşmaktadır. Dolayısıyla, Qp=KmQw şeklinde yazılabilir ve denklem 2 tekrar düzenlenirse denklem 3 elde edilir. d(aρh) = Q w (ρ w + ρ p K m ) ρ t Q t (3) Denklem-3, bir kütle dengesi olarak doğru, ama gerçekte çözüm için çıkış debisine sıvının uyguladığı basınçta işleme katılır. Tank içerisindeki sıvı basıncı kapalı bir tank için: P 1 = ρgh (4) şeklinde ifade edilir. Eğer kapalı bir tank değil ve sıvıya açık hava basıncı etkiyorsa: Şekil-1. Sistemin genel blok diyagramı P 1 = P a + ρgh (5) P 1 = Zemindeki sıvı basıncı ; P a = Açık hava basıncı ρ = akışkan yoğunluğu g = yer çekimi sabiti h = tank içindeki sıvının yüksekliği

KSU Mühendislik Bilimleri Dergisi, 16(2),2013 44 KSU. Journal of Engineering Sciences, 16(2),2013 Bernoulli denklemine göre bir tanktaki h yüksekliğindeki suyun a kesitli çıkış ağzından dışarı çıkan debi miktarı ise denklem 6 daki gibi yazılabilir.[3,6] Q t = C d a 2gh (6) Sonuç olarak bir tank içerisindeki karışımlı su seviyesi değişimi denklem 7 ile ifade edilir. dh = Q w(ρ w +K m ρ p ) ((1 K m )ρ w +K m ρ p )C d a 2gh A C d = Boşalma Katsayısı a = Çıkış Valfi çapı (m) g = Yer çekimi sabiti Denklemde ρ w = ρ p = ρ t = 1 kabul edilirse; (7) Sistemin transfer fonksiyonu Denklem-17 de gösterildiği gibi elde edilir. H(s) = R(1+K m) Q w (s) τs+1 (17) R = Sistem Kazancı τ = A. R = Zaman sabiti C d = 0,68, a = 0,005 m 2, g = 9.81N/kg, H 0 = 0.5m olmak üzere 1 R = C d a 2gH = 1 0 0,68 0,005 2 9,81 0.5 = 93,9045 τ = A. R = 93.9045 1.25 = 117.38 Karışım oranı ilaç reçetesine göre belirlenmekte olup bu çalışmada 800 mililitre suya göre 200 mililitre ilaç karışımı kabul edilmiş ve K m karışım oranı 0.2 olarak alınmıştır. Sistemin Transfer Fonksiyonu ; w(1 + K m ) C d a 2gh (8) da 2gh + Q w (1 + K m ) (9) Denklem-9, birinci dereceden diferansiyel denklem olarak elde edilir. Elektronik Kontrollü Pülverizatörün karışım tankı seviyesini doğrusal olarak kontrol etmek için tanktaki sıvının normal çalışma seviyesinde durgun bir noktadaki çok küçük değişiklikleri göz önünde bulundurarak bu denklemi doğrusal hale getirilir. H = H 0 + h (10) H(s) = 93.9045(1+0.2) ; (18) Q w (s) 117.38s+1 H(s) Q w (s) = 112.68 117.38s+1 3.1. LQR Kontrolü (19) Kontrol edilecek sistemin genel blok diyagramı Şekil 4 de gösterilmiştir. Burada H 0 çalışma seviyesi olup sabittir. h ise akışkan yüksekliğinin çok küçük değişimleridir. Dolayısı ile doğrusal hale getirilmiş yeni denklemimiz denklem- 11 deki gibidir. da 2gH 0 h + Q w (1 + K m ) (11) R = C d a 2gH 0 (12) R w(1 + K m ) (13) τ dh w(1 + K m )R (14) Denklem-14 te her iki tarafının Laplace dönüşümü alınırsa; τsh(s) + h(0) + H(s) = R(1 + K m )Q w (s) (15) Burada h(0) = 0 alınırsa, H(s)[τs + 1] = R(1 + K m )Q w (s) (16) Şekil 3. Sistemin LQR Kontrol Blok Diyagramı Bir optimal kontrol problemi, performans kriteri veya maliyet fonksiyonunu en aza indiren optimum bir kontrolün bulunmasıdır. LQR denetimi, optimal denetim sistemleri olarak sınıflandırılmış tasarımlardır. Bu kontrol mühendisliği için önemli bir fonksiyondur. Tasarımın amacı istenilen çalışma performansını sağlayacak olan pratik bileşenler ile bir sistemi gerçekleştirmektir. İstenilen performans zaman alanı, performans indisleri açısından ifade edilebilir. Örneğin, bir basamak giriş için maksimum aşım ve yükselme zamanı, zaman alanı indisleridir. Geçici ve sürekli durum performansı durumunda, performans indisleri normal olarak zaman alanında belirtilmektedir

KSU Mühendislik Bilimleri Dergisi, 16(2),2013 45 KSU. Journal of Engineering Sciences, 16(2),2013 LQR ikinci mertebeden bir performans indeksine sahip lineer bir sistem için optimal kontrolü sağlar. Sürekli-zaman sisteminde fonksiyonel bir denklem Eşitlik 21 de olduğu gibi tanımlanır [4,5]. t 1 f(x, t) = min h(x, u) (20) u t 0 t 0 t 1 değerlerinde ki bu fonksiyonun ifadesi : f(x, t 0 ) = f(x(0)), f(x, t 1 ) = 0 (21) olur. Hamilton- Jacobi Denklemi uygulanırsa = min u [h(x, u) + ( )T g(x, u)] (22) Lineer zamanla değişmeyen bir sistemin denklemi Optimal kontrol yasasına göre u opt = Kx şeklinde yazılır ve K ifadesinin değeri: K = R 1 B T P olur. u opt değeri H-J denkleminde yerine yazılırsa P matrisinin bulunması için aşağıdaki Riccati denklemi bulunur. PA + A T P + Q PBR 1 B T P = 0 (30) Q ve R matrisleri simetrik ve pozitif tanımlanabilen matrislerdir. Kuadratik form için Q matrisinin tamamının pozitif ve simetrik olma şartı söz konusudur. Q matrisinin köşegen seçilmesinin nedeni ise kuadratik kontrolde Q matrisinin her zaman simetrik bir Q matrisi ile değiştirilebilir olmasıdır. Bu matrisler ilk aşamada Bryson kuralına göre aşağıdaki gibi seçilir. x = Ax + Bu (23) şeklinde tanımlanır. Performans kriteri kuadratik olarak uygulanırsa 25 deki gösterilen şekilde tanımlanır. t 1 J = h(x T Qx + u T Ru) (24) t 0 Bu ifadelerin sonucunda Hamilton-Jacobian eşitliği: = min u [xt Qx + u T Ru + ( )T (Ax + Bu) ] (25) q1 q2 Q qn r1 2 r R rn Q u = [(t f t 0 ) max (x t (t f )) 2 ] 1 R u = [(t f t 0 ) max (u t (t f )) 2 1 ] (31) (32) P matrisi simetrik ve kare matris olmak üzere f(x, t) = x T Px (26) Bryson kuralı bazı durumlarda iyi sonuç vermesine rağmen bu Q ve R matrisleri kapalı çevrim kontrol sistemlerinde deneme yanılma yoluyla tasarım mühendisleri tarafından seçilmektedir. şeklinde tanımlanırsa, = xt d Px, = 2Px ve [ dx dx ]T = 2x T P (27) İfadeleri sonucunda Hamilton-Jacobian eşitliği 29. denklemdeki tanımlanır. x T d Px = min u [xt Qx + u T Ru + 2x T P(Ax + Bu) ] (28) Burada u ifadesini minimize etmek için denklem-29 yazılır. d[ ] du = 2u T R + 2x T PB = 0 (29) Şekil 4. LQR ile elde edilen sistem birim basamak tepki grafiği

KSU Mühendislik Bilimleri Dergisi, 16(2),2013 46 KSU. Journal of Engineering Sciences, 16(2),2013 Şekil-8. Kural Tablosu. Şekil 5. LQR Kontrolünde uygulanan kare dalga tepkisi Durulama işlemi, bulanık bilgilerin kesin sonuçlara dönüştürülmesi işlemidir. Durulama işleminde ağırlık merkezi yöntemi en yaygın kullanılan durulama yöntemidir. 3.2. Bulanık Mantık Kontrolü Bulanık mantığın temeli bulanık küme teorisine dayanır. Bulanık mantık klasik küme gösteriminin genişletilmesidir. Bulanık varlık kümesinde her bir varlığın üyelik derecesi vardır. Varlıkların üyelik derecesi, (0, 1) aralığında herhangi bir değer olabilir ve A(x) üyelik fonksiyonu ile gösterilir. Kontrolde kullanılan giriş üyelik fonksiyonu hata ve hata değişim grafiği Şekil-6 da gösterilmiştir. Q n i1 n i1 u i out out ( u ) i i ( u ) (33) Şekil-6. Giriş üyelik fonksiyonu. Yine kontrolde kullanılan çıkış üyelik fonksiyonu Şekil-7 de gösterilmiştir. Şekil 9.Bulanık kontrol ile elde edilen sistem birim basamak tepki grafiği Şekil-7. Çıkış üyelik fonksiyonu Aşağıdaki dilsel ifadeler kullanılarak Şekil-8de verilen kural tablosu kullanılmıştır. NB=Negative Big NS=Negative Small Z=Zero PS=Positive Small PB=Positive Big Şekil 10. Bulanık Kontrolüne uygulanan kare dalga tepkisi

KSU Mühendislik Bilimleri Dergisi, 16(2),2013 47 KSU. Journal of Engineering Sciences, 16(2),2013 [7]. http://mechatronics.poly.edu/control_lab/water_ Tank_Manual.p Access Date: 1/7/2014 12:11 PM. [8]. Özçalık, H.R., Kılıç, E., Yılmaz, Ş., Gani, A., Bulanık Mantık Esaslı Sıvı Seviye Denetiminde Farklı Üyelik Fonksiyonlarının Denetim Performansına Etkisinin İncelenmesi, Otomatik Kontrol Ulusal Toplantısı, TOK2013, 26-28 Eylül 2013, Malatya, S.243-247. Şekil 11. Her iki kontrol sisteminin karşılaştırılması. 4. SONUÇLAR Elektronik Kontrollü Pülverizatörün karışım tankındaki karışım oranları ile seviye kontrolü için LKR ve Bulanık kontrol işlemleri uygulanmıştır. Modeli türetilen karışım tank sistemi üzerinde Matlab/SIMULINK programı yardımı ile yapılan simülasyon sonuçlarına göre LKR kontrolünde aşım olmadığı gözlenmiş ve sistemin oturma zamanı 6 sn süresinde olmuştur. Bulanık kontrolde ise yaklaşık %5 aşım olmasına karşılık set değerine daha hızlı gelmekte ve oturma zamanı yaklaşık 15sn dir. Bu sonuçlar ışığında bu çalışmada optimal kontrol yöntemlerinden olan LQR kontrolünün, Bulanık kontrol yöntemine göre daha iyi sonuç verdiği gözlemlenmiştir. 5. KAYNAKLAR [1]. Gunes Mahit, Fuzzy and three-step control of refiner system to get stable freeness for recycled paper Scientific Research and Essays Vol. 6(1), pp. 110-117, 4 January, 2011. [2]. Güneş M, Dogru N, Fuzzy Control of Brushless Excitation System for Steam Turbo generators, IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 25, NO. 3, SEPTEMBER 2010. [3]. Keçecioglu F, Şekkeli M, Güneş M. Lineer Kuadratik Regülatör (LKR) ile Hidrolik Türbinin Optimal Kontrolü. TOK2013. [4]. Ö. Oral, L. Çetin ve E. Uyar, A Novel Method on Selection of Q And R Matrices In The Theory Of Optimal Control International Journal of Systems Control, Cilt.1, No:2, s: 84-92, 2010. [5]. http://www.control-systemsprinciples.co.uk/whitepapers/coupled-tankssystems.p Access Time: 12/27/2013 1:21 PM. [6]. R.S. Burns, Advanced Control Engineering, Butterworth-Heinemann, 2001.