T.C. BALIKESĠR ÜNĠVERSĠTESĠ FEN-EDEBĠYAT FAKÜLTESĠ GENEL FĠZĠK MEKANĠK LABORATUVARI

Benzer belgeler
T.C. BALIKESĠR ÜNĠVERSĠTESĠ FEN-EDEBĠYAT FAKÜLTESĠ GENEL FĠZĠK MEKANĠK LABORATUVARI

1) Bir sarkacın hareketini deneysel olarak incelemek ve teori ile karşılaştırmak. 2) Basit sarkaç yardımıyla yerçekimi ivmesini belirlemek.

DENEY 3 ATWOOD MAKİNASI

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır.

Mekanik Deneyleri I ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Ertuğrul YÖRÜKOĞULLARI

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

Şekil 8.1: Cismin yatay ve dikey ivmesi

DENEY 5 DÖNME HAREKETİ

Fiz Ders 10 Katı Cismin Sabit Bir Eksen Etrafında Dönmesi

DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

DENEY 1. İncelenmesi. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi

Fizik 101-Fizik I Dönme Hareketinin Dinamiği

DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET

ÖDEV SETİ 4. 1) Aşağıda verilen şekillerde her bir blok 5 kg olduğuna göre yaylı ölçekte ölçülen değerler kaç N dir.

DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

elde ederiz

KUVVET, MOMENT ve DENGE

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise;

FIZ Uygulama Vektörler

DENEY 6 BASİT SARKAÇ

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUVARI DENEY RAPORU

Düzgün olmayan dairesel hareket

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUVARI DENEY RAPORU

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUARI DENEY RAPORU. Deneyin yapılış amacının ne olabileceğini kendi cümlelerinizle yazınız.

Fiz 1011 I. Vize UYGULAMA

Şekil 6.1 Basit sarkaç

VERİLER. Yer çekimi ivmesi : g=10 m/s 2

2 SABİT HIZLI DOĞRUSAL HAREKET

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

EĞİK ATIŞ Ankara 2008

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından

DENEY 3. Hooke Yasası

Fizik 101-Fizik I

3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Grv. M. ERYÜREK Arş. Grv. H. TAŞKIN

Toplam

DİNAMİK. Merkezcil Kuvvet Kütle Çekimi. Konu Başlıkları Serbest Cisim Diyagramı Newton un Hareket Kanunları. Sürtünme Kuvveti

Hareket Kanunları Uygulamaları

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0

DİNAMİK MEKANİK. Şekil Değiştiren Cisimler Mekaniği. Mukavemet Elastisite Teorisi Sonlu Elemanlar Analizi PARÇACIĞIN KİNEMATİĞİ

elde ederiz. Bu son ifade yeniden düzenlenirse,

Fizik 101: Ders 6 Ajanda. Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket

DENEY 4. Akım Geçiren Tele Etkiyen Kuvvetler: Akım terazisi

BÖLÜM 9 ÇÖZÜLMESİ ÖNERİLEN ÖRNEK VE PROBLEMLER

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümü Dinamik Dersi (Türkçe Dilinde) 1. Çalişma Soruları / 24 Eylül 2017

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Fizik 101-Fizik I Hareket Kanunları. Nurdan Demirci Sankır Ofis: 325, Tel:4331 Enerji Araştırmalrı Laboratuarı (YDB- Bodrum Kat) İçerik

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Ders İkinci Ara Sınavı

Hareket Kanunları. Newton un Hareket Kanunları. Fiz 1011 Ders 5. Eylemsizlik - Newton un I. Yasası. Temel - Newton un II. Yasası

Doğrusal Momentum ve Çarpışmalar

Fizik 101: Ders 17 Ajanda

DENEY 3 ATWOOD MAKİNASI

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

: Bazı Uzunluk Ölçme Araçlarını Tanımlamak ve

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

Newton Kanunu / Hava izi

İş-Kinetik Enerji, Potansiyel Enerji, Enerji Korunumu

Bölüm 2. Bir boyutta hareket

4. İKİ BOYUTLU UZAYDA ÇARPIŞMA

DENEY 2. Statik Sürtünme Katsayısının Belirlenmesi. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Bölüm-4. İki Boyutta Hareket

KKKKK VERİLER. Yer çekimi ivmesi : g=10 m/s 2. Metrik Ön Takılar sin 45 = cos 45 = 0,7

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

BAHAR YARIYILI FİZİK 2 DERSİ. Doç. Dr. Hakan YAKUT. Fizik Bölümü

Bağıl hız ve bağıl ivme..

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir.

Fizik 101: Ders 18 Ajanda

DİNAMİK TEKNOLOJİNİN BİLİMSEL İLKELERİ

KKKKK. Adı Soyadı : Numarası : Bölümü : İmzası : FİZİK I

4 ESNEK VE ESNEK OLMAYAN ÇARPIŞMALAR

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

BÖLÜM 03. Doğrusal Hareket Alt yüzeyi yere paralel olarak yerleştirilmiş, camdan yapılmış

VERİLER. Yer çekimi ivmesi : g=10 m/s 2

Bir boyutta sabit ivmeli hareket..

Fizik 101: Ders 21 Gündem

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

HARRAN ÜNİVERSİTESİ 2016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ

DİNAMİK. Ders_9. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi

Theory Turkish (Turkmenistan) Bu soruya başlamadan önce lütfen ayrı bir zarfta verilen genel talimatları okuyunuz.

r r s r i (1) = [x(t s ) x(t i )]î + [y(t s ) y(t i )]ĵ. (2) r s

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Dinamik. Fatih ALİBEYOĞLU -10-

A A A A A A A A A A A

Bölüm 9: Doğrusal momentum ve çarpışmalar

BASİT HARMONİK HAREKET

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

TORK VE DENGE. İçindekiler TORK VE DENGE 01 TORK VE DENGE 02 TORK VE DENGE 03 TORK VE DENGE 04. Torkun Tanımı ve Yönü

BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ

3/9 54 kg kütleli bir sandık 27 kg kütleli pikup kamyonetin arka kapağında durmaktadır. Şekilde yalnızca biri görülen iki tutucu kablodaki T

TEKNOLOJİNİN BİLİMSEL İLKELERİ

DİNAMİK Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı

Deneyin Amacı. Teorik Bilgi : Yerçekimi ivmesi ve serbest düşme

TORK VE DENGE 01 Torkun Tanımı ve Yönü

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı

Transkript:

T.C. BALIKESĠR ÜNĠVERSĠTESĠ FEN-EDEBĠYAT FAKÜLTESĠ GENEL FĠZĠK MEKANĠK LABORATUVARI

FĠZĠK BÖLÜMÜ BALIKESĠR 2015-2016 GENEL FĠZĠK LABORATUVARI ĠMZA ÇĠZELGESĠ ÖĞRENCĠNĠN : ADI SOYADI : FAKÜLTE NUMARASI : BÖLÜMÜ : DENEY NO DENEYĠN ADI TARĠH ĠMZA

DENEY 1: MEKANĠK SĠSTEMLERE GĠRĠġ A-HOOK KANUNU-KUVVETLERĠN ÖLÇÜMÜ Araçlar -Deney tahtası -Kütle asıcısı GiriĢ -Yay terazisi -Kütleler Kuvvet kavramı F = ma olarak; Newton un ikinci kanunuyla ifade edilir. Bu kanunu kullanarak kütlesi bilinen bir cisim meydana getirdiği ivmeyi ölçerek o cisim üzerindeki kuvvet tespit edilebilir. Fakat bu yöntem pratik olarak çok nadirdir. Daha uygun bir diğer yöntem ise ayarlanabilen değerleri belli kuvvetler ile bilinmeyen kuvvetleri karşılaştırmaktır. Her iki kuvvet bir cisim üzerine uygulandığı zaman ve aynı zamanda cisim ivmesiz ise bilinmeyen kuvvet hem büyüklük hem de yön olarak bilinen kuvvete tam olarak ters düşmek zorundadır. Bu statik sistemler ile kuvvetlerin ölçümü ve uygulanmasıyla ilgili iki yöntem vardır. Bunlardan birisi ayarlanmış kuvvetleri asmaktır. Kütlesi m olan bir cisim için yerçekimi kuvveti F = mg olarak bu kütleyi aşağı doğru çeker, burada g yerçekimi ivmesidir (g = 9.8 m/s 2 aşağı doğru, dünyanın merkezine doğru). Yay terazisi kuvvetlerin uygulanması ve ölçülmesinde ikinci bir yöntem olarak kullanılır. Bu deneyde yay terazisinin özelliklerini incelemek için ayarlanmış kütleler tarafından sağlanan bilinen kuvvetleri kullanacaksınız. Düzenek Yay terazisini deney tahtasının üzerine asın. Yayın plastik tüple dikey olarak asılı bulunmasına dikkat ediniz. Yay terazisinde herhangi bir ağırlık olmaksızın, Şekil 1.1.a da da görüldüğü gibi terazinin santimetre ölçeğinde göstergeyi, 0 cm noktasına gelene kadar yay terazisinin üzerinde bulunan sıfırlama vidasını ayarlayınız. Metot 1. Yay terazisinin ucuna 20 gram bir kütle ile birlikte bir kütle asıcısı asınız. Şekil 1.1.b de görüldüğü gibi santimetre ölçeğinde yayın aldığı yolu ölçünüz. Bu değeri Tablo 1.1 de uygun bir yere kaydediniz. Toplam kütle içerisinde 5 gr olan kütle asıcısının kütlesini dikkate alınız. 2. Kütle asıcısına ek kütleler asarak tabloda gösterilen yay terazisine asılı her bir değer için toplam kütleyi ayarlayınız. Her değer için yayın aldığı yolu kaydediniz. 3. F = mg formülünü kullanarak kullanılan her kütle değeri için toplam ağırlığı Newton cinsinden bulunuz. Sonuçlarınızı Tablo 1.1 e yerleştiriniz.

NOT: Kuvvet ölçmek için asılı ağırlıklar kullanılırsa gram terimi genel olarak bir ağırlık birimiymiş gibi kullanılır. Ağırlık ile kütle arasındaki fark iyi anlaşıldığı sürece bu kullanımda herhangi bir sakınca yoktur. Ağırlık = Kütle x Yerçekimi ivmesi Ağırlık kütleye ve yerçekimine dayanan bir kuvvettir. Eğer çekim sabiti değişirse ağırlık da değişir, fakat kütle aynı kalır. ġekil 1.1 Deney Düzeneği ġekil 1.2 Yay sabitinin ölçülmesi

Hesaplamalar 1. Ayrı bir kağıt üzerinde, ağırlığın, x-ekseni yayın aldığı yol olmak üzere, yayın aldığı yola olan grafiğini çiziniz. Nokta değerleriniz üzerinden en iyi uyuşmayı sağlayan bir çizgi çiziniz. Grafiğin eğimi yay terazisinde kullanılan yayın yay sabitini verecektir. 2. Yay sabitini çizdiğiniz grafikten hesaplayınız. (N/m) birimini kullanınız. Yay sabiti (k) =..(N/m) Sorular 1. Kuvvet ve yaydaki yol değişimi arasındaki çizgisel ilişki Hook kanunu olarak bilinmektedir. Eğer Hook kanunu geçerli olmasaydı, kuvvetleri ölçmek için bir yay halen başarılı bir şekilde kullanılabilir miydi? Eğer öyleyse nasıl? 2. Kuvvetlerin ölçümü için bir yayın ayarlanmasında Hook kanunu hangi yönden kullanışlı bir özellik oluyor? Tablo 1.1 Kütle (gram) Ağırlık = F = mg (N) Yayın Aldığı Yol (m) 10 20 30 40 50 60 70 B- BĠLEġKELERĠNE AYRILAN KUVVETLER-BĠLEġKELER Araçlar -Deney tahtası -Kuvvet çemberi -Kütle asıcısı (3) -Derece ölçeği -Makaralar(3) -İp Teori Bu deneyde iki kuvvetin birbirlerine eklendikleri zaman bir tek kuvvet gibi aynı etkiye sahip olduğunu bulacaksınız. İleride göreceğiniz gibi x-y düzlemindeki herhangi bir kuvvet x ve y yönündeki kuvvetlerin toplamı olarak ifade edilir. Düzenek Düzeneği Şekil 1.3 deki gibi kurunuz. Görüldüğü gibi bir makaradan geçirilerek kuvvet çemberine bağlı bir kütlenin meydana getirdiği kuvveti F olarak tanımlayın. Kuvvet çemberini yerinde tutabilmek için tutucu iğneyi kullanınız. İpi dengeden makaranın altından kuvvet çemberine kadar yatay olarak çalışacak biçimde yaya

terazisini ve makarayı kurunuz. İkinci bir kütleyi direkt olarak kuvvet çemberinden asınız. ġekil 1.3 Deney Düzeneği Şimdi yatay kuvveti veya kuvvetin x-bileşenini ayarlamak için yaya terazisini makaraya doğru veya ters yönde çekiniz. Dikey kuvveti ya da kuvvetin y-bileşenini ayarlamak için de dikey kütle asıcısına bağlı olan kütleyi ayarlayınız. Kuvvetlerin x ve y bileşenlerini tutucu iğnenin kuvvet çemberini ortalayana kadar bu şekilde ayarlayınız. (Bu x ve y bileşenlerinin gerçekte F kuvvetinin kendisinden çok bu kuvvetin eşdeğerinin x ve y bileşenleri olduğuna dikkat ediniz) Yöntem 1. F in büyüklüğünü ve açısını kaydedin. Açıyı Şekil 1.3 de görüldüğü gibi ölçün. Büyüklük=.. Açı=. 2. F in eşdeğerinin x ve y bileşenlerinin büyüklüğünü kaydedin. x-bileşeni=.. y-bileşeni= 3. F in x ve y bileşeni olan F x ve F y nin büyüklükleri nedir? F x =. F y = 4. F in açısını ve F, F x ve F y nin büyüklüklerini kaydedin. F:Büyüklüğü=... F x =. Açı=.. F y =

Vektörleri tanımlamak için neden onların bileşkesini kullanıyoruz? Bunun bir sebebi bileşenlerin kullanımı matematiksel olarak vektörlerin toplanmasını daha kolay hale getiriyor. Şekil 1.4 x-ekseni ile θ gibi bir açı yapmış ve uzunluğu F olan bir kuvvetin x ve y bileşenlerini göstermektedir. Bileşenler birbirlerine 90 0 açı yaptıkları için onların toplamlarını bulmak için kullanılan paralelkenar kuralı bir dikdörtgendir. Dik üçgen özelliğini kullanarak AOX, F in bileşenleri kolayca hesaplanabilir; x-bileşeni Fcosθ ya ve y-bileşeni de Fsinθ ya eşittir. Eğer eklenen birçok vektörünüz var ise, ilk olarak her bir vektörün x ve y bileşenlerini tespit ediniz. Bütün x-bileşenlerini beraber ve bütün y-bileşenlerini de beraber toplayınız. Çıkan değer toplamı kuvvetin x ve y bileşenlerini verecektir. Bir makara ve asıcı kütle kullanarak bir kuvvet vektörünün yönünü ve büyüklüğünü istenilen şekilde oluşturmak için bu deneyin ilk bölümünde olduğu gibi deney düzeneğini kurun. Derece düzleminin x-eksenine paralel olmasına dikkat ediniz. 5. Kurduğunuz kuvvet vektörünün (F in) açısını ve büyüklüğünü kaydediniz. Büyüklüğü=.. Açı=.. 6. F in x ve y bileşenlerinin büyüklüklerinin olan F x ve F y yi hesaplayınız.(f x = Fcosθ, F y = Fsinθ) F x =.. F y = Şimdi deneyin ilk bölümünde olduğu gibi (Şekil 1.6) yay terazisi ve bir asılı kütle düzeneğini kurunuz. 6.soruda hesapladığınız değerleri kullanarak yay terazisini kuvvet çemberini yatay olarak F x miktarı kadar çekecek şekilde ayarlayınız. Asılı kütleyi de kuvvet çemberine dik yönde F y miktarı kadar çekecek şekilde ayarlayınız. ġekil 1.4 Vektör BileĢenleri

Sorular 1) Kuvvet çemberi derece düzleminin ortasında dengede mi bulunuyor? Genel olarak yukarıda yaptığınız gibi bir vektörün birbirlerine dik iki eksen boyunca bileşenlerini bulmak için kullanışlı bir yöntemdir. Fakat her zaman için x ve y eksenleri birbirlerine dik olmayabilir. Eğer yeterli zamanınız varsa deney düzeneğinizi bir vektörün birbirlerine dik olmayan eksenler üzerindeki bileşenlerini bulmak için kurmaya çalışınız.(bileşke kuvvetleri dik olmayan eksenlere yönlendirmek için makaralar kullanınız) 2) Bir vektörün dik olmayan eksenler üzerindeki bileşenlerini bulmak için kurmaya çalıştığınız düzenekte ne gibi zorluklarla karşılaştınız.

DENEY 2: MERMĠ FIRLATICISI MERMĠ YOLU Araçlar -Mermi fırlatıcısı ve plastik top -Karbon kağıdı -Düşeyde hareket edebilen hedef tahta -Grafik kağıdı -Cetvel -Beyaz kağıt Amaç Bu deneyin amacı bir masadan yatay olarak fırlatılan topun düşeyde aldığı yolun yatayda aldığı yola nasıl bağlı olduğunu bulmaktır. Teori Menzil namlu ile topun çarptığı yer arasındaki yatay uzaklıktır. Menzil x ile gösterilir ve x=v 0 t ile hesaplanır. Burada v 0 topun ilk hızıdır ve t uçuş zamanıdır. Eğer top yatay olarak fırlatılırsa topun uçuş zamanı t=x/v 0 olacaktır. Topun t süresinde aldığı düşey mesafe ile verilir. Burada g yerçekimi ivmesidir. t yi y de yerine yazarsak denklem haline gelir. Düzenek 1. Mermi fırlatıcısını bir masanın kenarına mengene ile sıkıştırınız. 2. Mermi fırlatıcısının açısını sıfır dereceye ayarlayın ki top yatay olarak fırlatılsın. 3. Düşey hedefin ilk konumunu belirlemek için orta menzilde bir test atışı yapın. Top hedefin alt tarafına çarpacak şekilde hedefi yerleştirin. 4. Hedef tahtayı beyaz kağıtla kaplayın bunun üzerine de karbon kağıdını sabitleyin. Deneyin YapılıĢı 1. Namludan taban kadar olan yüksekliği ölçün ve bunu Tablo 2.1 e kaydedin. Bu yüksekliği hedefin üzerinde işaretleyin. 2. Kurşun fırlatıcısının namlusundan hedefe kadar olan yatay uzaklığı ölçün ve sonucu Tablo 2.1 e kaydedin. 3. Topu fırlatın. 4. Hedefi 10 ile 20 cm arasında fırlatıcıya yaklaştırın. 5. Topun hedefte çarptığı noktanın namlunun yüksekliğinden 10 ile 20 cm arasında aşağıda kalmasını sağlayana kadar 2 nolu maddeden 4 nolu maddeye kadar olan işlemleri tekrarlayın.

ġekil 2.1 Deney Düzeneği Tablo 2.1 Veriler Namlunun Yüksekliği=. Yatay (x) Yükseklik (y) x 2 Analiz 1. Hedef üzerinde işaretlenen namlu seviyesi çizgisi ile topun bıraktığı iz arasındaki düşey uzaklığı ölçün ve sonucu Tablo 2.1 e kaydedin. 2. Bütün noktaların verileri için x 2 yi hesaplayın ve sonuçları Tablo 2.1 e kaydedin. 3. y nin x 2 ye göre değişiminde en uygun doğruyu veren grafiği çizin. 4. Grafiğin eğimini hesaplayın ve Tablo 2.2 ye kaydedin. 5. Grafiğin eğiminden topun ilk hızını hesaplayın ve Tablo 2.2 ye kaydedin. 6. Herhangi bir x ve y değeri kullanın. Y den t yi bulun ve x ile t den ilk hızı bulun. 7. İlk hızın bu iki yöntemle bulunan değerleri arasındaki yüzde hatayı hesaplayın ve Tablo 2.2 ye kaydedin.

Grafiğin Eğimi Eğimden hesaplanan ilk hız Uçuş süresi x ve y den hesaplanan ilk hız Yüzde hata Tablo 2.2 Ġlk Hız Sorular 1. Çizgi doğru mudur? Bu sonuç size x ile y arasındaki ilişki hakkında ne anlatır? 2. Eğer y nin x e göre grafiğini çizerseniz bu grafik y nin x 2 ye göre grafiğinden nasıl farklıdır? 3. Merminin yolu ne şekildedir?

DENEY 3 : BASĠT HARMONĠK TĠTREġTĠRĠCĠ (OSĠLATÖR) Araçlar -Araba -Araba yolu -2 Yay -Makara, ip -Kütle çengeli ve kütle takımı -Dengeleme kütleleri -Kronometre -Grafik kağıdı Amaç İki ucu yaya bağlı arabanın sürtünmesiz yol üzerinde yaptığı periyodik hareketin incelenmesi, periyodunun deneysel ve teorik değerlerinin karşılaştırılması. Teorik Bilgi Yaya bağlı kütlenin yaptığı titreşim hareketi için periyot olarak verilir. Burada T kütlenin ilk bulunduğu noktadan ileri geri gidip gelerek yine aynı noktaya gelmesi için geçen süredir, m titreşim hareketi yapan cismin kütlesi ve k da yay sabitidir. Hooke kanununa göre sıkıştırılmış yayın uyguladığı kuvvet F=kx dir. k sabiti yaya göre değişir. Aynı yay sabitine sahip yay değişik kuvvetler uygulanılarak farklı uzunluklarda sıkıştırılabilir. Kuvvete karşı yaydaki uzama arasında çizilen grafik çizgisel olarak değişir, buradan da k bulunabilir. Deneyin YapılıĢı: Teorik Olarak Bulunan Periyot 1. Arabanın kütlesini bulunuz ve bu değeri Tablo 3.1 e yazınız. 2. Arabayı yol üzerine yerleştirip araba yol üzerinde hareketsiz olana kadar yolun eğimini aşağıya veya yukarıya kaldırarak dengeleyiniz. 3. Şekil 3.1 deki gibi yayaları araba ve yol üzerindeki engellere bağlayınız. 4. Yaylara bağlı olan arabaya, iple makara üzerinden geçirerek kütle çengelini bağlayınız. 5. Arabaya bütün bağlantıları yaptıktan sonra arabanın denge durumunu Tablo 3.1 e kaydedin. 6. Kütle çengeline kütleler ekleyerek her ek kütle için yeni durumları kaydedin. Beş farklı kütle için bunları yeniden kaydedin. Yayları gereğinden fazla germeyin. Bu metot her iki yay için yay sabitini verecektir.

ġekil 3.1 Deney Seti Tablo 3.1 Arabanın kütlesi=.. Denge konumu= Ek Kütle (m) Kuvvet (mg) Konum Denge Konumundan Olan Yerdeğiştirme Hesaplama (Teorik Periyot) 1. Tablo 3.1 deki verileri kullanarak kuvvete karşı yerdeğiştirmeyi gösteren grafiği çiziniz. Verilen noktalardan en uygun şekilde geçen bir çizgi çekiniz ve bu çizginin eğimini bulunuz. Grafiğin eğimi, yay sabiti k ya eşittir. ġekil 3.2 k=. 2. Arabanın kütlesi ve yay sabitini kullanarak teorik formülden periyodu hesaplayınız. Arabanın üzerine 500 g kütle eklendiğinde yine teorik olarak periyodu bulunuz. Periyot(Teorik) Kütlesiz Araba T 1 = Kütleli Araba T 2 =

Deneysel Olarak Bulunan Periyot 7. Arabanın ucuna asmış olduğunuz ipi ve kütle çengelini çıkarınız ve arabayı denge durumuna getiriniz. 8. Denge durumunda bulunan arabayı, yayları çok germeyecek şekilde denge konumundan uzağa çekip bırakarak titreşim hareketi yaptırınız. Her denemede 5 titreşim hareketi için geçen zamanı Tablo 3.2 ye yazınız. 9. Arabaya 500 g kütle ilave ederek yine 5 titreşim için geçen zamanı 5 deneme için tekrarlayarak bulunuz ve Tablo 3.2 ye yazınız. Hesaplama (Deneysel Periyot) 1. Tablo 3.2 deki verileri kullanarak, kütleli ve kütlesiz arabanın ayrı ayrı 5 titreşim için ortalama zamanlarını bulunuz. 2. Bulunan bu ortalama zamanlar 5 titreşim içindir. Periyot ise 1 titreşim için geçen süre demektir. Bu nedenle periyodu hesaplamak için bu ortalama zamanları 5 e bölünüz ve Tablo 3.2 ye kütleli ve kütlesiz araba için bulduğunuz periyotları yazınız. Tablo 3.2 Deneme 1 2 3 4 5 Ortalama 5 titreşim için geçen zaman Periyot (Deneysel) Kütlesiz Arabanın Periyodu T 1 = Deneme 1 2 3 4 5 Ortalama 5 titreşim için geçen zaman Periyot (Deneysel) Kütleli Arabanın Periyodu T 1 = KarĢılaĢtırma Ölçülen ve teorik değerler arasındaki % hatayı hesaplayınız. Kütlesiz araba için % hata= Kütleli araba için % hata=..

DENEY 4: NEWTON UN ĠKĠNCĠ KANUNU Araçlar -Araba -Araba yolu -İp, Makara -Taban ve destek çubuğu -Kütle çengeli ve kütle seti -Ağaç veya metal durdurucu blok -Kronometre -Denge kütlesi Amaç Newton un İkinci Kanunu nu doğrulamak. Teori Newton un İkinci Kanunu na göre dır. F, cisim üzerine etkiyen bileşke kuvvet; m, cismin kütlesi ve a ise cismin ivmesidir. Deney sisteminde arabanın kütlesi m 1, kütle çengelinin kütlesi m 2 ise (Şekil 4.1) bileşke kuvvet F tüm sisteme etkir. Kütle çengelinin ağırlığından dolayı F=m 2 g olur. Cismin üzerine etkiyen sürtünme kuvveti ihmal edilebilir. Newton un İkinci Kanunu na göre sistem üzerine etkiyen bileşke kuvvet ma ya eşittir. Burada m sistemin toplam kütlesidir ve (m 1 +m 2 ) ye eşittir. Bu deneyde sürtünmeyi göz ardı ettiğimizden F=m 2 g kuvveti, (m 1 +m 2 )a ya eşit olacaktır. F=m 2 g=(m 1 +m 2 )a Deneyde sistemin ivmesinin bulmak için arabanın belirli bir d yolunu alması için geçen zamanı ölçerek den ivme hesaplanabilir. Buna göre ivme olarak bulunur. Deneyin YapılıĢı 1. Yolun üzerine arabayı yerleştiriniz ve araba hareketsiz duruma gelene kadar yolun altındaki ayakları aşağı veya yukarı ayarlayarak yolu düz konuma getiriniz. 2. Arabanın kütlesini Tablo 4.1 e kaydedin. 3. Makarayı yolun ucuna Şekil 4.1 deki gibi bağlayınız. Arabayı yolun üzerine yerleştirerek araba üzerinde bulunan deliğe ipi bağlayınız. İpin diğer ucunu askı çengeline bağlayınız. Kütle çengeli yere çarpmadan önce araba engele çarpacak şekilde ipin boyunu ayarlayın.

ġekil 4.1 Deney seti 4. Arabanın konumunu Tablo 4.1 e kaydedin. Bütün denemeleri aynı uzaklık için yapın. 5. Arabaya ve/veya askı çengeline kütleler ekleyerek yeni konumları ve zamanları kaydedin. 6. En az 5 defa ölçüm yapın ve değerleri Tablo 4.1 e kaydedin. Tablo 4.1 m 1 (arabanı n kütlesi) m 2 (kütle çengelini n kütlesi) d (yer değiştirme=son konum-ilk konum) t 1 t 2 t 3 t 4 t 5 t ort (ortalama zaman) Veri Analizi 1. Ortalama zamanları hesaplayıp Tablo 4.1 e kaydedin. 2. Tablo 4.1 deki verileri kullanarak her durum için ivmeyi hesaplayın ve Tablo 4.2 ye kaydedin. 3. Her durum için (m 1 +m 2 )a değerini hesaplayın ve Tablo 4.2 ye kaydedin. 4. Her durum için F=m 2 g değerini hesaplayın ve Tablo 4.2 ye kaydedin. 5. F=m 2 g ile (m 1 +m 2 )a arasındaki % hatayı hesaplayın ve Tablo 4.2 ye kaydedin.

m 1 (arabanın kütlesi) m 2 (kütle çengelinin kütlesi) Tablo 4.2. a (ivme) (m 1 +m 2 )a F=m 2 g % hata

DENEY 5 : MERKEZCĠL KUVVET Amaç Bir cismin belirli bir eksen etrafında dönmesiyle meydana gelen merkezcil kuvveti incelemek ve bu kuvvete etki eden faktörlerin incelenmesi. Teori Sabit bir kuvvet, sabit hız vektörüne sürekli olarak dik bir şekilde etki ederse, cisim R yarıçaplı çember etrafında düzgün bir dönme hareketi yapar. Bu harekete düzgün dairesel hareket denir. Bu dairesel hareket sonucunda merkezkaç ve merkezcil kuvvetler ortaya çıkar. Bir ipin ucuna bağlanan taş, bir eksen çevresinde döndürülürse, yörüngeye teğet doğrultuda fırlayıp kaçmaya çalışır. Taşı sürekli olarak yörünge dışına kaçmaya zorlayan bu kuvvete, merkez kaç adı verilir. Taşın merkezkaç kuvvet etkisinde kalıp uzaklaşmasını önleyen ve onu yörüngede tutan kuvvetse, merkezcil kuvvet diye adlandırılır. Merkezkaç ve merkezcil kuvvetlerin şiddetleri aynı, yönleri terstir ve her zaman ikisi birlikte bulunur. Periyot : Dairesel yörüngede hareket eden cismin bir turu için geçen süredir. T ile gösterilir. Frekans :Dairesel yörüngede dolanan cismin birim zamandaki (1sn)devir sayısıdır. f ile gösterilir. Periyot ile frekans arasındaki bağıntı; T=1/f dir. Çizgisel Hız: Düzgün dairesel hareket yapan cismin yörüngesel hızıdır. ν ile gösterilir. Birimi m/sn dir. ν=2πr/t T=1/f ν=2πrf Açısal Hız: Dairesel hareket yapan cismin belirli bir w yayını tarama hızına denir. ω=2π/t T=1/f ω= 2πf Çizgisel hız ile açısal hız arasındaki ilişki ise; ν =ωr Merkezcil Ġvme: Üzerine kuvvet etkiyen cismin hız vektöründe değişme olur. Hızdaki değişmede ivmeyi meydana getirir. Dairesel harekette ivme merkeze doğrudur. a ile gösterilir. a M = ν 2 /r ya da a M =4π 2 r/t 2 a M =ω 2 r a M = - 4π 2 r/t 2 merkezcil ivme vektörel olarak bu şekildedir. Buradan merkezcil kuvvet;

F=m*a M F=m* ν 2 /r ya da F=m*ω 2 r olur. Buradan ; F = - m 4π 2 r/t 2 merkezcil kuvvet vektörel olarak bu şekildedir. Deneyin YapılıĢı Şekilde görüldüğü gibi, m kütleli bir arabayı, başlangıçtan r kadar uzaklıkta bir konuma yerleştirildiğini ve yatay düzlemdeki dairesel yörüngede sabit hızla döndürüldüğünü varsayalım. Arabanın eylemsizliği, hareketin doğrusal bir yol boyunca kalmasını sağlamak eğilimindedir. 1. Yolun üzerine arabayı hareketsiz durumda yerleştiriniz 2. Arabanın kütlesini tabloya kaydedin. 3. r uzaklığını ölçerek önce çizgisel ve açısal hızı hesaplayarak tabloya kaydedin. 4. Daha sonra merkezcil ivmeyi bularak buradan merkezcil kuvvet değerlerini tabloya kaydedin. 5. Aynı adımları arabanın kütlesini ve frekans değerlerini değiştirerek tekrarlayın. Arabanın Kütlesi Frekans r uzaklığı Çizgisel Hız Açısal Hız Merkezcil İvme Merkezcil Kuvvet

YERÇEKĠMĠ KUVVETĠ Araçlar -Havayolu sistemi ve araba -Kronometre GiriĢ DENEY 6: YERÇEKĠMĠ KUVVETĠ VE ORTALAMA HIZ Bu deneyde Newton un ikinci kanunu kullanılacaktır (F=ma). İdeal olarak basitçe dünyanın çekim kuvveti sayesinde serbest olarak düşen bir cismin kütlesini ölçüp üzerindeki kuvveti hesaplayacak ve ivmesini ölçeceksiniz. Oysa serbest düşen bir cismin ivmesini hassas bir şekilde ölçmek zordur. Ölçüm hassasiyeti eğimli bir yüzey üzerinde yavaşça kayan bir cisim sayesinde arttırılabilir. Şekil 7.1 de deney düzeneğini bulabilirsiniz. Çekim kuvveti F g iki bileşenine ayrılabilir. Bu bileşenlerden birisi arabaya dik diğeri de hareket yönündedir. Bileşenlerden sadece hareket yönündeki arabayı ivmelendirir. Diğer bileşen arabaya dik etki eden hava akımı sayesinde dengelenir. Şekilden de görüldüğü gibi arabayı ivmelendiren kuvvettir. Arabanın ivmesini ölçerek F belirlenip F g hesaplanır. ġekil 7.1 Arabaya Etkiyen Kuvvetler ġekil 7.2 Deney Düzeneği Deneyin YapılıĢı 1. Hava yolunu Şekil 7.2 deki gibi yerleştirin. 2. Hava yolunun destek noktaları arasındaki uzaklığı ölçüp bulduğ unuz d uzaklığını kaydedin. 3. h yüksekliğindeki bir bloğu hava yolunun ayağının altına yerleştirin ve h yüksekliğini kaydedin. 4. İki kapı arasındaki uzaklığı ölçüp D olarak kaydedin. 5. Arabanın kütlesini kaydedin. 6. Arabayı hava yolunun başından bırakarak kronometreye basın. İlk kapıdan geçene kadarki süreyi t 1 olarak kaydedin. Arabanın 1. ve 2. kapılar arası geçirdiği süreyi yine kronometre ile ölçün ve t 2 olarak kaydedin.

7. Aynı ölçümlerden birçok kez tekrarlayarak Tablo 7.1 e kaydedin. Veri ve Hesaplamalar 1. eşitliğini kullanarak θ açısını belirleyiniz. 2. Her zaman aralığı için L uzunluğunu t 1 ve t 2 ye bölerek v 1 ve v 2 hızlarını bulun. 3. Her ölçüm için yi kullanarak arabanın ivmesini bulun. 4. Ortalama ivmeyi bulun. 5. Her bir ölçüm için yı kullanarak araba üzerindeki kuvveti bulun. 6. yı kullanarak her bir ölçüm için yi bulun. 7. Kütleyi(m) x eksenine yerleştirerek grafiğini çizin. d=.. D=.. θ=. h=. L=... Tablo 7.1 Veri ve Hesaplamalar m t 1 t 2 v 1 v 2 a a ort F g Analiz Çizilen grafiği nasıl bir bağlantı gösteriyor? Grafik orijinden geçiyor mu? Grafiğin eğiminden yer çekimi ivmesi g sabitini bulun. ORTALAMA HIZ Araçlar -Havayolu sistemi ve araba -Kronometre GiriĢ Ortalama hız değeri kullanışlı olabilir. Ortalama hız kavramını kullanarak belli bir süre sonunda nerede olacağımızı tahmin edebiliriz. Ancak trafik polisleri ortalama hızınızdan çok radarla ölçüm yaptıkları andaki hızınızla ilgilenirler. Bu deneyde ortalama hız ile ani hız arasındaki ilişkiyi araştıracaksınız.

ġekil 7.3 Düzeneğin Hazırlanması Yapılacak iģlemler 1- Şekil 7.3 de görüldüğü gibi hava yolunun son noktasını 1-2 cm lik bir destek yerleştirin. 2- noktasını ölçüp Tablo 7.3 e kaydedin. 3- Araba için noktası seçip kurşun kalem ile hava yolu üzerinde işaretleyin. Böylece her zaman aynı noktayı kullanabilirsiniz. 4- Şekildeki gibi ışık kapısı zamanlayıcı ve yardımcı ışık kapısını den eşit uzaklıklara koyup ışık kapıları arasındaki mesafeyi D olarak Tablo 7.3 e kaydedin. 5- Arabayı da tutup sonra bırakın. Araba iki ışık kapısından geçerken zamanları t 1 olarak kaydedin. 6-5. adımı dört kez tekrarlayıp zamanları t 2, t 3, t 4, t 5 olarak kaydedin. 7- Uzaklığı 10 cm kadar azaltıp 4-6 arasındaki adımları tekrar edin. Veri ve Hesaplamalar 1- D nin her değeri için t 1, t 2, t 3, t 4, t 5 zamanlarının ortalama değerlerini hesaplayıp t ortalama olarak kaydedin. 2- = d / yı hesaplayın. Bu arabanın iki ışık kapısı arasındaki hızıdır. 3- D ve t, ve grafiğini çizin. Tablo 7.3 Veri ve Hesaplamalar = D