BÖLÜM 5 TRANSİSTÖRLERİN DC ANALİZİ. Konular: Amaçlar:

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BÖLÜM 5 TRANSİSTÖRLERİN DC ANALİZİ. Konular: Amaçlar:"

Transkript

1 ÖLÜM 5 5 TRANSİSTÖRLRİN D ANALİZİ Konular: Amaçlar: 5.1 Transistörde D çalışma noktası 5.2 Transistörde temel polarama 5.3 eyz polarma 5.4 Gerilim bölücülü polarma devresi 5.5 Geribeslemeli polarma devresi 5.6 Onarım Yükselteç tasarımında dc çalışma noktasının önemi Yükselteçlerde dc polarma ve analizi Yükselteçlerde kararlı çalışma için çeşitli polarma yöntemleri u bölümde transistörün yükselteç olarak nasıl çalıştırılacağını öğreneceksiniz. Yükselteç tasarımında dc polarma akım ve gerilimlerinin analizini yapacak ve kararlı bir çalışma için yöntemler geliştireceksiniz.

2 ANALOG LKTRONİK- 5.1 D ÇALŞMA NOKTAS ir transistör yükselteç (amplifikatör) olarak çalışabilmesi için dc polarma gereksinim duyar. Doğrusal ve verimli bir çalışma için transistörlü yükselteç devresinde polarma akım ve gerilimleri iyi seçilmeli veya hesaplanmalıdır. u durum bir önceki bölümde belirtilmişti. u bölümde; yükselteçlerde düzgün ve verimli bir çalışma için gerekli analizler yapılacaktır. u analizlerde dc yük hattı ve çalışma noktası (Q) gibi kavramların önemini ve özelliklerini kavrayacaksınız. D Polarma ve Çalışma Noktası Transistörlü yükselteç; girişinden uygulanan işaretleri yükselterek çıkışına aktarmak üzere tasarlanmış bir devredir. Transistör, yükselteç olarak çalışabilmesi için dc polarma gerilimlerine gereksinim duyar. Transistöre uygulanan polarma gerilimleri çıkış karakteristiği üzerinde transistörün çalışma noktasını belirler. Transistörün sahip olduğu polarma akım ve gerilim değerini gösteren bu nokta çalışma noktası ya da Q noktası olarak adlandırılır. Şekil-5.1 de bir transistörün çıkış karakteristiği üzerinde çeşitli çalışma noktası örnekleri verilmiştir. Örneğin dc polarma gerilimleri uygulanmasa idi transistörün çalışma noktası Q1 olurdu. u durumda transistör tümüyle kapalı olur ve girişinden uygulanan işaretleri yükseltmez idi. (ma) 2 Q 3 3 Q 2 4 Q 4 Q 1 () Şekil-5.1 Transistör için eşitli çalışma noktası örnekleri Transistöre polarma gerilimleri uygulandığında ise çalışma noktaları şekil üzerinde belirtilen Q2, Q3 ve Q4 noktalardan birinde olabilirdi. u çalışma noktalarında transistör doğal olarak yükselteç olarak çalışacaktır. Dolayısıyla girişinden uygulanan işareti yükselterek çıkışına aktaracaktır. Transistör çıkışından alınan işaret de nispeten bozulma olmayacaktır. u durum şekil-5.2 üzerinde ayrıntılı olarak gösterilmiştir. Örneğin şekil- 5.2.a da transistörün çalışma noktası uygun seçilmiş ve lineer bir yükseltme sağlanmıştır. Ancak çalışma noktasının uygun seçilmemesi durumunda ise çıkış işaretinde kırpılmalar oluşmaktadır. u durum şekil-5.2.b ve c üzerinde gösterilmiştir. 127

3 ANALOG LKTRONİK- A A A a) Lineer Çalışma b) Çıkış gerilimi kesim sınırında kırpılmış c) Çıkış gerilimi doyum sınırında kırpılmış Şekil-5.2 ir yükselteç devresinin lineer ve nanlineer çalışmasına örnekler D Yük Hattı Transistörlü yükselteç devrelerinde çalışma noktasının ve dc yük hattının önemini göstermek amacı ile şekil-5.3.a da görülen devreden yararlanılacaktır. u devrede transistörün polarma akım ve gerilimleri, ve kaynakları ile ayarlanabilmektedir. Devredeki transistör için kollektör karakteristik eğrileri ise şekil-5.3.b de verilmiştir. (ma) 0-5 R 22KΩ β D 200 R 200Ω µ 250µ 200µ 150µ 100µ 50µ () Şekil-5.3 Ayarlanabilen kaynaklarla dc polarma ve transistörün karakteristik eğrisi D polarmanın etkisini ve önemini anlamak amacı ile şekil-5.3 deki devrede akımını farklı değerlere ayarlayalım. Ayarladığımız her bir akımı değerine karşılık transistörün ve değerlerinin nasıl değiştiğini inceleyelim. İlk olarak kaynağını ayarlayarak değerini 100µA yapalım. u durumda transistörün kollektör akım ; β µA 20mA olacaktır. u kollektör akımına karşılık transistörde oluşan kollektör-emiter gerilim düşümü ; ( ) 10 (20mA 200Ω) 6 olacaktır. ulunan bu değerlere karşılık gelen transistörün çalışma noktası şekil-5.4.a da transistör karakteristiğinde gösterildiği gibi Q1 olacaktır. 128

4 ANALOG LKTRONİK- Transistörün beyz akımının 150µA yapılması durumunda ise kollektör akımı; β µA 30mA olacaktır. u kollektör akımına karşılık transistörde oluşan kollektör-emiter gerilim düşümü ; ( ) 10 (30mA 200Ω) 4 olacaktır. ulunan bu değerlere karşılık gelen transistörün çalışma noktası şekil-5.4.b de transistör karakteristiğinde gösterildiği gibi Q2 olacaktır. Son olarak akımını 200µA yapalım bu durumda transistörün çalışma noktasını bulalım. β µA 40mA ( ) 10 (40mA 200Ω) 2 olacaktır. ulunan bu değerlere karşılık gelen transistörün çalışma noktası şekil-5.4.c de transistör karakteristiğinde gösterildiği gibi Q3 olacaktır. Her akımı değerine bağlı olarak transistörün çalışma bölgesindeki değişimler şekil-5.4 üzerinde toplu olarak verilmiştir. 129

5 ANALOG LKTRONİK- 100µA R 200Ω 20mA (ma) 22KΩ 30 β D 200 a) 100µA değeri için transistörün Q 1 çalışma noktası Q 1 100µ () µA R 200Ω 30mA (ma) 30 Q 2 150µ 22KΩ β D 200 b) 150µA değeri için transistörün Q 2 çalışma noktası () µA R 200Ω 40mA (ma) Q 3 200µ 22KΩ 10 β D 200 c) 200µA değeri için transistörün Q 3 çalışma noktası 20 () Şekil-5.4 Çeşitli akımı değerlerinde transistörün çalışma noktasının değişimi Şekil-5.4 dikkatlice incelenirse transistörün beyz akımındaki değişim, kollektör akımını değiştirmekte dolayısıyla transistörün kollektör-emiter () gerilimi de değişmektedir. Örneğin akımındaki artma, akımını artırmaktadır. una bağlı olarak gerilimi azaltmaktadır. u durumda geriliminin ayarlanması ile değeri ayarlanmaktadır. nin ayarlanması ise transistörün D çalışma noktasını düzgün bir hat üzerinde hareket ettirmektedir. Şekil-5.4 de transistör karakteristiği üzerinde gösterilen ve Q1, Q2 ve Q3 ile belirtilen çalışma noktalarının birleştirilmesi ile bir doğru elde edilir. u doğru dc yük hattı olarak adlandırılır. Şekil-5.5 de dc yük hattı karakteristik üzerinde gösterilmiştir. 130

6 ANALOG LKTRONİK- (ma) DOYUM YÜK ÇİZGİSİ Q 3 200µ Q 2 150µ Q 1 100µ KSİM () Şekil-5.5 Transistör karakteristiği üzerinde dc yük hattının gösterilişi D yük hattı x eksenini 10 da kesmektedir. u değer noktasıdır. u noktada transistör kesimdedir çünkü kollektör ve beyz akımları idealde sıfırdır. Gerçekte beyz ve kollektör akımları bu noktada tam sıfır değildir. Çok küçük bir sızıntı akım vardır. u nedenle bu kesim noktası gerçekte 10 dan biraz daha küçüktür. Yine bu örnekte dc yük hattının eksenini kestiği değer idealde 50mA dir. u değer ise transistör için doyum noktasıdır. Transistörün doyum noktasında kollektör akımı maksimumdur. Çünkü bu noktada 0 dır. Kollektör akımı; R değerinde olacaktır ve maksimumdur. Lineer Çalışma Transistörün başlıca 3 çalışma bölgesi olduğu belirtilmişti. unlar; kesim, doyum ve aktif bölgelerdir. Transistör aktif bölgede çalışıyorken bütün çalışma noktaları kesim ve doyum bölgeleri arasındadır. Transistör eğer aktif bölgede çalışıyorsa girişine uygulanan işareti (sinyali) lineer olarak yükseltir. Lineer yükseltme işlemini incelemek amacıyla şekil-5.6.a da verilen devreden yararlanılacaktır. aşlangıçta devre girişine S işaretinin uygulanmadığını düşünelim. Devrede beyz akımının 150µA ve kollektör akımının ise 30mA olduğunu kabul edelim. u durumda transistörün çalışma noktası 4 olacaktır. u nokta şekil-5.6.b de transistör karakteristiği üzerinde gösterilen Q çalışma noktasıdır. Devre girişine S kaynağından tepe değeri 50µA olan bir sinüs işareti uygulandığını varsayalım. Önce S işaretinin pozitif saykılı geldiğini kabul edelim. u işaret; kaynağı ile aynı yönde etki edecek ve beyz akımının yükselmesine neden olacaktır. Giriş işareti S, pozitif tepe değerine ulaştığında beyz akımıda maksimum oranda yükselecektir. u anda µA olacaktır. u değer şekil-5.6.b de karakteristikte A noktası olarak işaretlenmiştir. una karşılık kollektör akımı 40mA değerine yükselecek, kollektör-emiter gerilimi ise 2 değerine düşecektir. u aşamadaki çalışmaya dikkat edilirse transistörün çalışma noktası A noktasına kaymıştır. urada giriş işaretinde toplam 50µA lik bir değişim vardır. Çıkış kollektör akımında ise 10mA lik bir değişim söz konusudur. Dolayısıyla giriş işaretinin pozitif saykılı 200 kat yükseltilmiştir. 131

7 ANALOG LKTRONİK- Giriş işaretinin negatif saykılında ise; bu işaret beyz akımını dolayısıyla kollektör akımını azaltacaktır. Transistör şekil-5.6.b de karakteristik üzerinde gösterilen ve olarak adlandırılan çalışma noktasına kayacaktır. u çalışma noktasında; 100µA, 20mA ve 6 değerine ulaşacaktır. Aynı şekilde dikkat edilirse giriş işaretinin 200 kat yükseltildiği görülecektir. +10 (ma) R 20KΩ R 200Ω Q A Q 200µ 150µ 100µ S () 6.7 β D 200 Q a) Ayarlı kaynaklarla transistörlü polarma devresi b) Yük hattı üzerinde sinyal davranışı Şekil-5.6 Transistörlü yükselteç devresi ve yük hattı üzerinde sinyal davranışları uraya kadar anlatılanlardan da anlaşılacağı gibi, devre girişinde ac giriş işareti yokken, transistör Q çalışma noktasında (sükunet noktası) kalmaktadır. Girişe bir sinyal gelmesi durumunda ise çalışma noktası bu sinyalin yönüne bağlı olarak aşağıya veya yukarıya kaymaktadır. Giriş işareti yükseltme işleminde Q noktasının etrafında salınmaktadır. Transistörün kesim veya doyum noktalarına ulaşmamaktadır. Çıkışta elde edilen işaret, giriş işaretinin yükseltilmiş bir formudur. Çıkış işaretinin dalga biçiminde herhangi bir bozulma yoktur. undan dolayı bu işleyişe Lineer Çalışma denir. Çıkışın ozulması (Distorsiyon) Transistörle gerçekleştirilen yükselteçlerde; çıkıştan elde edilen yükseltilmiş işaretin giriş işareti ile aynı dalga formunda olması istenir. Çıkış işaretinde her hangi bir bozulma olması istenmez. Çıkış işaretinde oluşan veya oluşabilecek bozulmaya ise distorsiyon adı verilir. Yükselteç devrelerinde bir çok nedenden dolayı distorsiyon oluşabilir. Şekil- 5.7 de transistör devresinde oluşabilecek distorsiyonlar çıkış karakteristikleri üzerinde gösterilmiştir. 132

8 ANALOG LKTRONİK- (ma) (ma) Doyum Q Q Q Q 0 () Q 0 Q () Kesim Doyum Kesim Q Q a) Çalışma bölgesi doyuma sürülmüş b) Çalışma bölgesi kesime sürülmüş (ma) Doyum Q Q Q Kesim 0 () Doyum Q Kesim c) Çalışma bölgesi kesime-doyuma sürülmüş Şekil-5.7 Transistörlü yükselteç devresinde oluşan bozulmalar (distorsiyon) Şekil-5.7 de verilen her 3 karakteristikte de distorsiyon vardır. Şekil-5.7.a da transistörün çalışma bölgesi doyum bölgesine yakın ayarlanmıştır. Dolayısıyla çıkış işaretinin bir kısmında transistör doyum bölgesinde çalıştığı için çıkış işareti kırpılmıştır. Şekil-5.7.b de ise transistör kesim bölgesine yakın çalıştırılmış ve çıkış işaretinin bir kısmı kırpılmıştır. Şekil-5.7.c de ise transistör aktif bölgenin tam ortasında çalıştırılmıştır. Fakat giriş işaretinin aşırı yüksek olması transistör çalışma bölgesinin kesim ve doyuma kaymasına neden olmuştur. u durumda çıkış işaretinin her iki saykılında da kırpmalar oluşmuştur. Örnek: 5.1 Şekilde verilen devrede transistör için dc yük hattını çizerek çalışma noktasını ve lineer çalışma için girişe uygulanabilecek işaretin maksimum genliğini belirleyiniz? 133

9 ANALOG LKTRONİK- R 220Ω R 33KΩ 20 S 12 β D 100 Çözüm Önce transistörün Q çalışma noktasını bulalım. Q noktası ve değerleriyle belirlendiğine göre yi bulmak için önce yi buluruz µA R 33KΩ β ( 100)(342.42µA) mA uradan transistörün çalışma noktasındaki değerini buluruz. Kirşof un gerilim yasasından; ( ) 20 (7.533 ) çalışma noktası değerleri olarak bulunur. -R denklemi kullanılarak transistörün kesim anındaki ve (KS) değerleri belirlenir. Transistör kesim de iken kollektör akımı 0 dır. Dolayısıyla; 20 değerine eşit olur. Transistörün doyum noktasındaki değerlerini bulalım. Doyum anında 0 olacağına göre akımı; 20 ( DOY ) mA R 220Ω ulunan bu değerlere göre transistörün dc yük hattı aşağıda gösterildiği gibi olacaktır.. 134

10 ANALOG LKTRONİK (ma) Doyum Q Kesim () Çözüm ulunan bu değerler kullanılarak lineer çalışma için girişten uygulanacak S işaretinin maksimum genliği belirlenebilir. u amaçla önce Q noktasının yeri yorumlanmalıdır. Çünkü Q noktası hangi sınıra (kesim/doyum) yakınsa kırpılma önce o bölgede gerçekleşecektir. Dolayısıyla aranan değerde yakın olduğu bölgenin değeri ile Q noktası arasındaki mesafeden hareketle belirlenecektir. Q noktasının kesim sınırı ile arasındaki mesafe 34.24mA, doyum sınırı ile arasındaki mesafe ise ( )55.76mA dir. uradan görülmektedir ki Q çalışma noktası kesim bölgesine daha yakındır. Dolayısıyla lineer çalışma için giriş sinyali; çıkışta maksimum 34.24mA lik kollektör akımı sağlayacak şekilde olmalıdır. O halde lineer bir çalışma için kollektör akımının genliği; P mA olmalıdır. Transistör için D akım kazancı değeri (βd) bilindiğine göre giriş beyz akımının maksimum değeri; olmalıdır. Max µA β YZ POLARMAS ipolar transistörün yükselteç olarak çalışabilmesi için dc polarma gerilimlerine gereksinim duyduğu belirtilmişti. Önceki birkaç bölümde transistörün gereksinim duyduğu polarma kaynakları ve çalışma karakteristikleri verilmişti. Tüm çalışmalarda transistörün çalışma bölgesinin ayarlanması için iki ayrı dc gerilim kaynağı kullanmıştı. u; pratik bir çözüm değildir. Tek bir dc gerilim kaynağı kullanılarak yapılan birkaç polarma yöntemi vardır. u bölümde tek bir dc gerilim kaynağı kullanarak yapılan beyz polarması adı verilen yöntemi tüm boyutları ile inceleyeceğiz. 135

11 ANALOG LKTRONİK- Önceki bölümlerde ele alınan polarma devrelerinde iki ayrı dc besleme gerilimi kullanılmıştı. u devrelerde transistörün beyz polarması ile tanımlanan ayrı bir güç kaynağından sağlanmıştı. Transistörlü yükselteçlerin dc polarma gerilimlerini sağlamada pratik bir çözüm tek besleme kaynağı kullanmaktır. Şekil-5.8.a da tek bir dc gerilim kaynağı kullanılarak gerçekleştirilmiş devre modeli verilmiştir. u tür polarma işlemine beyz polarması adı verilmektedir. + R R R R + _ a) eyz polarmas ı b) asit gösterimi Şekil-5.8.a ve b eyz polarması ve eşdeğer gösterimi Devre dikkatlice incelenirse; transistörün beyz polarması için ayrı bir dc kaynak kullanılmamıştır. Transistörün beyz polarması R direnci kullanılarak gerilim kaynağından alınmıştır. u yöntem pratiktir ve avantaj sağlar. Transistörlü polarma devrelerinde pratiklik kazanmak ve devre analizi bilgilerimizi gözden geçirelim. u amaçla devre üzerinde oluşan polarma akım ve gerilimlerinin olası eşitlikleri ve yönleri şekil-5.9 üzerinde yeniden verilmiştir. + R R R R + _ Şekil-5.9 eyz polarmasında polarma akım ve gerilimleri 136

12 ANALOG LKTRONİK- Devrenin analizinde temel çevre denklemlerini kullanmak yeterlidir. Şekil-5.9 da gösterildiği gibi -beyz-emiter çevresinden; + yazılabilir. Denklemden beyz akımı çekilirse, R elde edilir. eyz akımının bulunması ile devredeki diğer tüm polarma akım ve gerilimleri bulunabilir. β (β ) u devrede dc yük hattı sınırlarını bulmak için, doyum sınırında 0 olduğu kabul edilerek (ideal durum), ( DOYUM ) R yük hattının diğer noktasını ise transistör kesimde iken 0 kabul ederek, olarak belirleriz. Örnek: R 2.2KΩ Şekilde verilen devrede transistör için dc yük hattını çizerek çalışma noktasını belirleyiniz? R 620KΩ + _ 137

13 ANALOG LKTRONİK mA 17µ A R 620KΩ 620KΩ β ( 100) (17µ A) 1700µ A 1. 7mA 12 (1.7mA 2.2KΩ) Çözüm: polarma akım ve gerilim değerleri olarak bulunur. Transistörün çalışma noktası gerilimi ise 8.26 dur. Yük hattını çizmek için transistörün kesim ve doyum noktalarındaki değerleri bulalım. Kesim anında 0 dır. Dolayısıyla kolektör-emiter gerilim düşümü ; 12 olarak belirlenir. Doyum gerilimi ise, doyum anında 0 alınarak; 12 ( DOYUM ) 5. 45mA R 2.2KΩ olarak bulunur. Dc yük üzerinde çalışma noktası, aşağıda görüldüğü gibi kesim bölgesine yakın bir yerdedir (ma) Doyum Q 12 Kesim () Q Çalışma noktasına β D etkisi ve kararlılık Transistörün akım kazancını βd değeri belirler. u değer her bir transistör için üretici tarafından verilir. Günümüz teknolojisinde üretimi yapılan aynı tip transistörlerin βd değerlerinde farklılık olabilir. Üreticiler genellikle ortalama bir değer verirler. βd değerini etkileyen diğer önemli bir faktör ise ısıdır. Çalışma ortamı ısısına bağlı olarak bu değer değişir. Örneğin 25 0 de 100 olan βd, 75 0 de 150 olabilir. u durum transistörün kollektör akımını dolayısıyla kolektör-emiter gerilimini etkiler. u etkileşim sonucunda transistörün Q çalışma noktası ortam ısısına bağlı olarak değişecektir. Transistör çalışma noktasının βd değerine bağlı olarak kayması istenmeyen bir durumdur. Çünkü distorsiyona neden olur. u durumu basit bir örnekle açılayalım. 138

14 ANALOG LKTRONİK- Örnek: 5.3 R 100KΩ +12 R 620Ω Şekil-5.10 da verilen beyz polarmalı devrenin çalışma ortamı ısısı 25 0 ile 50 0 arasında değişmektedir. Transistörün βd değeri , olmaktadır. u koşullar altında transistörün Q çalışma bölgesinde davranışını (, ) analiz ediniz. Sıcaklıktaki değişimin devreye etkilerini belirleyiniz. Şekil-5.10 Çözüm Önce 25 0 ısı altında transistör devresinde ve değerlerini bulalım. Devreden; + + ( ) [( β ) ] veya yine devreden; R + + eşitliklerini yazabiliriz. ize akımı gerekmektedir. Yukarıdaki eşitlikte değerini cinsinden ifade edelim. + β ulunan bu eşitilkten yi çekelim ve değerini hesaplayalım. R D KΩ 100KΩ β D 3 uradan transistörün Q çalışma noktası gerilimi değerini bulalım. ( ) 12 (11.3mA 620Ω) 5 Şimdi 50 0 ısı altında transistör devresinde ve değerlerini bulalım. Devreden; β D mA R 100KΩ 100KΩ uradan transistörün Q çalışma noktası gerilimi değerini bulalım. ( ) 12 (17mA 620Ω) Dolayısıyla ısıl değişim transistörün kolektör akımını ve çalışma noktası gerilimi değerini değiştirmektedir. akımındaki değişimin yüzde miktarını bulalım. ma 139

15 ANALOG LKTRONİK- ( ) 12 (17mA 620Ω) Dolayısıyla ısıl değişim transistörün kolektör akımını ve çalışma noktası gerilimi değerini değiştirmektedir. akımındaki değişimin yüzde miktarını bulalım. % 0 (75 ) 0 (25 ) 0 (25 ) 17mA 11.3mA %100 %100 %50 ( Artma) 11.3mA Neticede sıcaklık artışıyla oluşan βd değerindeki değişim akımında %50 oranında bir artışa neden olmaktadır. Aynı şekilde transistörün çalışma noktasında oluşan değişim oranını hesaplayalım. % 0 (75 ) 0 (25 ) 0 (25 ) %100 %100 %70 ( Azalma) 5 görüldüğü gibi ısı değişimi transistörün çalışma bölgesini de kaydırmaktadır. Yorum: sıl veya çeşitli etkenlerden dolayı βd değerinin değişmesi transistörün çalışma noktasını aşırı ölçüde etkilemektedir. u durum lineer çalışmayı etkiler ve kararlı bir çalışma oluşturulmasını engeller. Transistörün çalışma bölgesinin kayması istenmeyen bir durumdur. Transistörün çalışma bölgesinin kararlı olması ve kaymaması için çeşitli yöntemler geliştirilmiştir. Örneğin emiter dirençli beyz polarması βd değişimlerinden aşırı etkilenmez. miter dirençli beyz polarması Transistörlü polarma devrelerinde kararlı çalışmayı sağlamak amacıyla beyz polarmasının geliştirilmiş halidir. eyz polarmasından daha avantajlıdır. u polarma tipinde de tek bir dc besleme kaynağı kullanılır. Tipik bir emiter dirençli beyz polarma devresi şekil-5.11 de verilmiştir. Devre beyz polarma devresinden daha kararlı bir çalışma sağlamak için geliştirilmiştir. Devrenin emiterinde kullanılan R direnci transistörün daha kararlı çalışmasını sağlar. + + R R R R R R R R + _ R + R R R R Şekil-5.11 miter dirençli eyz polarması ve polarma akım ve gerilimleri 140

16 ANALOG LKTRONİK- Devreyi analiz etmek için beyz-emiter ve kollektör-emiter çevrelerini ayrı ayrı ele alalım. nin analizinde temel çevre denklemlerini kullanmak yeterlidir. Şekil-5.9 da gösterildiği gibi -beyz-emiter çevresinden; + + denklemi elde edilir. akımını cinsinden ifade edelim. + ( β ) + ( β + 1) + + (β + 1) u denklem beyz akımı () çekilirse; R + (β + 1) değeri elde edilir. Artık beyz akımı kullanılarak kolektör ve emiter akımları belirlenebilir. Transiströrün kolektör-emiter gerilimini () bulmak için kolektör-emiter çevresinden yararlanalım. + + uradan gerilimini çekelim. olarak bulunur. Örnek: 5.4 R 470KΩ R 1KΩ a) Şekilde verilen devrede oda sıcaklığında çalıştırılmaktadır (25 0 ) transistörün polarma akım ve gerilim değerlerini bulunuz? β D R 470Ω b) Aynı devrede transistörün βd değeri 75 0 ısı altında 150 olsaydı polarma akım ve gerilimlerindeki değişimi hesaplayarak yorumlayınız. Çözüm a oda sıcaklığında, βd100 için gerekli analizleri yapalım. eyzemiter çevresinden beyz akımı (); mA 21µ A R + ( β + 1) 470KΩ + (101) 470Ω elde edilir. uradan kolektör ve emiter akımları buluruz. 141

17 ANALOG LKTRONİK- β mA 2. 1mA ( β + 1) veya + 2.1mA mA 2. 12mA değerleri elde edilir. uradan transistörün kolektör-emiter gerilimi ; 12 (2.1mA 1KΩ) (2.12mA 470Ω) 8. 9 b oda sıcaklığında, βd150 için gerekli analizleri yapalım. eyz-emiter çevresinden beyz akımı (); mA 20µ A R + ( β + 1) 470KΩ + (151) 470Ω β mA 3mA ( β + 1) veya + 3mA mA 3. 02mA 12 (3mA 1KΩ) (3.02mA 470Ω) 7. 5 Dolayısıyla ısıl değişim transistörün kolektör akımını ve çalışma noktası gerilimi değerini değiştirmektedir. akımındaki değişimin yüzde miktarını bulalım. % 0 (75 ) (25 ) (25 ) mA 2.12mA %100 %100 %42 ( Artma) 2.12mA % 0 (75 ) 0 (25 ) 0 (25 ) % %100 %15 ( Azalma) Yorum: Örnek 5.3 de verilen polarma devresi βd değişiminden çok fazla etkilenmekte ve çalışma noktası %70 oranında kaymakta idi. Yukarıda verilen emiter dirençli polarma devresinde ise βd değişiminden etkilenme oranı (%15) çok azdır. Dolayısıyla emiter dirençli beyz polarma devresinin kararlılığı daha iyidir. 142

18 ANALOG LKTRONİK- 5.3 MİTR POLARMAS miter polarması transistörün kararlı çalıştırılması için geliştirilmiş bir diğer polarma metodudur. u polarma tipinde pozitif ve negatif olmak üzere iki ayrı besleme gerilimi kullanılır. u nedenle bu polarma tipi kimi kaynaklarda simetrik polarma olarak adlandırılmaktadır. Tipik bir emiter polarma devresi şekil-5.12.a da verilmiştir. Görüldüğü gibi devrede iki ayrı gerilim kaynağı kullanılmıştır. ve olarak adlandırılan bu kaynaklar transistörün polarma akım ve gerilimlerini sağlarlar. u devrede beyz gerilimi yaklaşık 0 dur. Aynı devrenin basitleştirilmiş çizimi ise şekil-5.12.b de verilmiştir. + + R R + R R R R a) miter polarmalandırma devresi b) miter polarmalandırılmasının basitleştirilmiş çizim Şekil-5.12.a ve b miter polarmalı transistor devresi ve basitleştirilmiş çizimi Devrede beyz gerilimi şase potansiyelindedir ve yaklaşık 0 civarındadır. Transistörün emiterini kaynağı beyze göre daha düşük potansiyelde tutarak, beyz-emiter jonksiyonunu iletim yönünde etkiler. Devrede analizini çevre denklemlerini kullanarak yapalım. Devrenin analizinde iki farklı yöntem (yaklaşım) kullanabiliriz. irinci yaklaşım beyz gerilimini, dolayısıyla da beyz akımını sıfır kabul ederek ihmal etmektir. İkinci yaklaşım ise beyz akımını da hesaba katmaktır

19 ANALOG LKTRONİK-. Yaklaşım: eyz akımını yaklaşık sıfır kabul edelim. 0 - R. Yaklaşım: eyz akımının varlığını kabul edip devrenin analizini yapalım. + Yukarıdaki denklemde beyz akımı yerine; eşitliğini yazarsak; β + 1 β + 1 bu denklemde gerekli akımını çekersek; + + R R + β Devrede eğer, R R ise yukarıdaki eşitlik yeniden düzenlenebilir. u durumda; β + 1 R devrede >> olması durumunda bir basitleştirme daha yapabiliriz. u durumda eşitlik; R olarak yazılabilir. u eşitlik bize emiterli polarma devresinin βd ve değerlerinden ve değişimlerinden bağımsız olduğunu gösterir. u durum, transistörün Q çalışma noktasının kararlı olduğu anlamına gelir. Görüldüğü gibi emiterli polarma devresi oldukça kararlıdır. miterli polarma devresinde transistörün kollektör-emiter gerilimini doyum anında yaklaşık sıfır 0 kabul edersek kollektör akımını; ( DOYUM ) R + R 144

20 ANALOG LKTRONİK- belirleriz. Transistörün kesim anında ise kollektör akımını yaklaşık sıfır kabul ederek kollektör-emiter arasındaki toplam gerilim bulunur. u değer; Örnek: 5.5 R + 12 R 1KΩ Yandaki emiterli polarma devresinde transistörün çalışma noktası değerlerini bulunuz. Hesaplamalarda beyz akımını ihmal ediniz. 47KΩ R 5.6KΩ Çözüm Devrede gerilimini yaklaşık olarak sıfır kabul edersek; 0. 7 R 0.7 ( 12 ) 5.6KΩ mA 5.6KΩ 2. 01mA 12 (2.01mA 1KΩ) 10 ( ) 10 ( 0.7 ) miterli polarma devresinde transistörün çalışma noktası değerleri elde edilmiştir. D yük hattı değerlerini bulalım. Doyum anında 0 kabul edersek; 12 ( 12 ) 24 ( DOYUM) 3. 36mA R + R 1KΩ + 5.6KΩ 6.6KΩ bulunur. Transistör kesimdeyken ise 0 kabul edersek; 12 ( 12 )

21 ANALOG LKTRONİK- değerlerini elde ederiz. ulunan bu değerler kullanılarak karakteristikte yük doğrusu aşağıdaki gibi çizilir (ma) 2.01 Q () Örnek: 5.6 R 15KΩ + 15 R 2.2KΩ Yanda verilen devrede geriliminin 0.7 dan 0.6 a düşmesi ve βd değerinin 100 den 150 ye çıkması durumunda çalışma noktasında meydana gelecek değişimleri analiz ediniz. R 8.2KΩ Çözüm βd100 ve 0.7 olması durumunda gerekli analizleri yapalım. ( 15 ) mA R 15KΩ K 8.34KΩ R Ω + β mA 15 (1.71mA 2.2KΩ) (1.71mA 8.2KΩ) ( 0.98 )

22 ANALOG LKTRONİK- βd150 ve 0.6 olması durumunda gerekli analizleri yapalım. ( 15 ) mA R 15KΩ K 8.34KΩ R Ω + β mA 15 (1.72mA 2.2KΩ) (1.72mA 8.2KΩ) ( ) ulunan bu değerleri kullanarak; kolektör akımı () ve kollektör-emiter gerilimi () değişim yüzdelerini bulalım. % 0 ( β 150 ) ( β 100) ( β 100) 1.72mA 1.71mA %100 %100 %0.5 ( Artma) 1.71mA % ( β 150) ( β 100) β 100) %100 %100 % ( Artma) Yorum: Sonuçlardan da görüldüğü gibi ısıl ve çeşitli nedenlerden dolayı βd ve değerlerindeki değişim transistörün çalışma noktası değerlerini çok az miktarda etkilemektedir. u nedenle emiterli polarma devresinin kararlı yüksektir ve βd den bağımsızdır diyebiliriz. 5.4 GRİLİM ÖLÜÜLÜ POLARMA Gerilim bölücülü polarma devresi, Lineer çalışmada sıkça tercih edilen en popüler polarma metodudur. Gerilim bölme işlemi dirençlerle gerçekleştirilir. u polarma tipi transistörün son derece kararlı çalışmasını sağlar ve βd den bağımsızdır. u tip polarma devresinde tek bir besleme geriliminin kullanılması ise diğer bir avantajdır. Özellikle lineer yükselteç devrelerinin tasarımlarında gerilim bölücülü polarma devreleri kullanılır. 147

23 ANALOG LKTRONİK- Önceki bölümlerde incelediğimiz polarma devrelerinde çalışma noktası βd yükseltme faktörüne aşırı derecede bağımlı idi. Β ya bağımlılık yükselteç devrelerinde bir takım sorunlar yaratır. Örneğin aynı firma tarafından üretilen aynı tip transistörlerin β değerleri farklılıklar içerir. Ayrıca β ısı değişiminden de etkilenmektedir. u durum transistörün kararlı çalışmasını engelleyerek çalışma noktasının istenmeyen bölgelere kaymasına neden olur. Çalışma noktasının önemi önceki konularda açıklanmıştı. Transistörlerde kararlı bir çalışma için gerilim bölücülü polarma devreleri geliştirilmiştir. Tipik bir gerilim bölücülü polarma devresi şekil-5.13.a da verilmiştir. Görüldüğü gibi devre tek bir gerilim kaynağından () beslenmiştir. Devrede transistörün beyz akımı R1 ve R2 dirençleri tarafından sağlanmaktadır. Devrenin kararlılığı çok yüksektir. Transistörün çalışma bölgesi değerleri βd nin değişiminden etkilenmez. u nedenle bu tür polarma tipine β dan bağımsız polarma adı da verilmektedir. Şekil-5.13.b de ise polarma devresinin analizini kolaylaştırmak amacı ile polarma akım ve gerilimleri devre üzerinde gösterilmiştir. + R 1 R R1 1.R 1 R 1 R R.R 1 - R - R R 2 R R2 2.R 2 2 R 2 R R.R Şekil-5.13.a ve b Gerilim bölücülü polarma devresi ve polarma akımı-gerilimi ilişkileri Devrenin çözümü için çeşitli yöntemler uygulanabilir. İki temel yöntem vardır. irinci yöntem devrede beyz akımı ihmal edilebilecek kadar küçük ise uygulanır. u yöntemde 1 akımının tamamının 2 olarak yoluna devam ettiği varsayılarak çözüm üretilir. İkinci yöntemde ise devre analizi beyz akımı dikkate alınarak yapılır. Çözüm tekniğinde theve nin teoreminden yararlanılır. Yöntem 1: u yöntemde beyz akımı ihmal edilebilecek kadar küçük kabul edilir. R1 direncinden akan akımın R2 direncinden de aktığı kabul edilir. Çünkü transistörün giriş direnci Rin R2 direncinden çok büyük olduğu kabul edilir (Rin>>R2). Yapılan kabuller neticesinde polarma devresinin eşdeğeri şekil-5.14.b de verilen hale gelir. şdeğer devrede; R1 ve R2 dirençlerinin birleştiği noktada elde edilen gerilim, transistörün beyz polarma gerilimi olacaktır. 148

24 ANALOG LKTRONİK R R 1 R 1 R 2 R in >>R >> İS 2 R 2 R in R Şekil-5.14.a ve b Gerilim bölücülü polarma devresi ve eşdeğer gösterimi Transistörün beyz inde elde edilen geriliminin değeri; R 2 R1 + R2 olarak bulunur. eyz gerilimi; beyz noktası ile şase arasındaki gerilim olduğundan yazılacak çevre denkleminden; + uradan akımını çekersek; R devrede çok küçük olduğundan kabul edebiliriz. Dolayısıyla; transistörün çalışma noktası ise; + olarak elde edilir. Dikkat ederseniz yaptığımız analizlerde transistörün βd değerini hiç kullanmadık. eyz akımı R1, R2 dirençlerine bağımlı kılınmıştır. miter gerilimi ise yaklaşık olarak beyz gerilimine bağımlıdır. miter direnci R, emiter ve kolektör akımını kontrol etmektedir. Son olarak R direnci kolektör gerilimini dolayısıyla kolektör-emiter gerilimi yi kontrol etmektedir. 149

25 ANALOG LKTRONİK- Örnek: 5.7 R 1 100KΩ + 20 R 5K6 Yandaki devrede polarma akım ve gerilimi değerlerini bulunuz. βd R 2 10KΩ R 1KΩ Çözüm R2 10KΩ R1 + R2 100KΩ + 10KΩ mA R 1KΩ 20 (1.12mA 5.6KΩ) (1.12mA 1KΩ) Yöntem 2: Gerilim bölücülü polarma devresinde bir diğer yöntem ise Theve nin teoremini kullanmaktır. u yöntem tam çözüm sunar. Hiçbir kabul içermez. Devrenin girişinde (beyz) theve nin teoremi uygularsak polarma devresi şekil-5.15.b de verilen basit forma dönüşür. + + R 1 R R R TH A R 2 TH R R a) Gerilim bölücülü polarma devresi b) Theve nin eşdeğer devresi Şekil-5.15 Gerilim bölücülü polarma devresi ve Theve nin eşdeğeri 150

26 ANALOG LKTRONİK- Theve nin eşdeğer gerilimi olan TH değerini bulmak için devre girişini A noktasından ayıralım (Transistörü bağımlı akım kaynağı gibi düşünebiliriz). u durumda devremiz şekil-5.16.a da verilen forma dönüşür. TH gerilimi ise A noktasında elde edilecek gerilim değeridir. TH 2 R + R 1 Theve nin eşdeğer direnç değeri RTH ı ise; gerilim kaynağı kısa devre edilerek bulunur. u değer A noktasından görülen direnç değeridir ve R1 ve R2 dirençleri paralel duruma geçmiştir. u durum şekil-5.16.b de gösterilmiştir. 2 R 1 R TH R1 // R2 R1 + R R 1 R 1 TH R TH R 2 R 2 a) Thevenin e şdeğer gerilimi b) Thevenin e şdeğer direnci Şekil-5.16 Thevenin eşdeğer gerilimi (TH) ve şdeğer direncinin (RTH) bulunması Theve nin eşdeğer gerilimi ve eşdeğer direnç değerlerini bulduktan sonra şekil-5.15.b de verilen eşdeğer devreden çözüme devam edelim. akımını bulmak için devre girişi için çevre denklemini yazalım. TH TH + + Devrede ve olmak üzere iki bilinmeyen var. O halde akımını cinsinden ifade edelim. (β+1) dir. Denklemde yerine koyalım. TH + + ( β + 1) TH uradan gerekli olan akımını çekelim. R TH TH + ( β + 1) olarak bulunur. ulanan bu değerden, ve değerleri sırayla elde edilir. 151

ANALOG ELEKTRONİK BİPOLAR TRANSİSTÖR

ANALOG ELEKTRONİK BİPOLAR TRANSİSTÖR ANALOG LKTONİK Y.Doç.Dr.A.Faruk AKAN ANALOG LKTONİK İPOLA TANSİSTÖ 35 Yapısı ve Sembolü...35 Transistörün Çalışması...35 Aktif ölge...36 Doyum ölgesi...37 Kesim ölgesi...37 Ters Çalışma ölgesi...37 Ortak

Detaylı

BÖLÜM 6 KÜÇÜK SİNYAL YÜKSELTEÇLERİ. Konular: Amaçlar:

BÖLÜM 6 KÜÇÜK SİNYAL YÜKSELTEÇLERİ. Konular: Amaçlar: ÖLÜM 6 6 KÜÇÜK SİNYAL YÜKSELTEÇLEİ Konular: 6.1 Küçük sinyal yükseltme işlemi 6.2 Transistörün ac eşdeğer dereleri 6.3 Ortak emiterli yükselteç 6.4 Ortak beyzli yükselteç 6.5 Ortak kolektörlü yükselteç

Detaylı

6. TRANSİSTÖRÜN İNCELENMESİ

6. TRANSİSTÖRÜN İNCELENMESİ 6. TRANSİSTÖRÜN İNCELENMESİ 6.1. TEORİK BİLGİ 6.1.1. JONKSİYON TRANSİSTÖRÜN POLARMALANDIRILMASI Şekil 1. Jonksiyon Transistörün Polarmalandırılması Şekil 1 de Emiter-Beyz jonksiyonu doğru yönde polarmalandırılır.

Detaylı

TRANSİSTÖRLERİN KUTUPLANMASI

TRANSİSTÖRLERİN KUTUPLANMASI DNY NO: 7 TANSİSTÖLİN KUTUPLANMAS ipolar transistörlerin dc eşdeğer modellerini incelemek, transistörlerin kutuplama şekillerini göstermek ve pratik olarak transistörlü devrelerde ölçüm yapmak. - KUAMSAL

Detaylı

5. Bölüm: BJT DC Öngerilimleme. Doç. Dr. Ersan KABALCI

5. Bölüm: BJT DC Öngerilimleme. Doç. Dr. Ersan KABALCI 5. ölüm: JT D Öngerilimleme Doç. Dr. rsan KAAL 1 Öngerilimleme Transistörün düzgün bir şekilde çalışması için öngerilimlenmesi gerekir. DA çalışma noktasını oluşturmak için birçok yöntem vardır. Öngerilimleme

Detaylı

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir.

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir. Küçük Sinyal Analizi Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir. 1. Karma (hibrid) model 2. r e model Üretici firmalar bilgi sayfalarında belirli bir çalışma

Detaylı

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı DENEY NO : 7 DENEY ADI : DOĞRULTUCULAR Amaç 1. Yarım dalga ve tam dalga doğrultucu oluşturmak 2. Dalgacıkları azaltmak için kondansatör filtrelerinin kullanımını incelemek. 3. Dalgacıkları azaltmak için

Detaylı

8. FET İN İNCELENMESİ

8. FET İN İNCELENMESİ 8. FET İN İNCELENMESİ 8.1. TEORİK BİLGİ FET transistörler iki farklı ana grupta üretilmektedir. Bunlardan birincisi JFET (Junction Field Effect Transistör) ya da kısaca bilinen adı ile FET, ikincisi ise

Detaylı

ÜNİTE 4 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK)

ÜNİTE 4 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) ÜNİTE 4 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transistörü tanımlayınız. Beyz ucundan geçen akıma göre, emiter-kollektör arasındaki direnci azaltıp çoğaltabilen elektronik devre elemanına transistör

Detaylı

TRANSİSTÖR KARAKTERİSTİKLERİ

TRANSİSTÖR KARAKTERİSTİKLERİ Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * lektrik-lektronik Mühendisliği ölümü lektronik Anabilim Dalı * lektronik Laboratuarı 1. Deneyin Amacı TRANSİSTÖR KARAKTRİSTİKLRİ Transistörlerin yapısının

Detaylı

DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ

DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ HAZIRLIK BİLGİLERİ: Şekil 1.1 de işlemsel yükseltecin eviren yükselteç olarak çalışması görülmektedir. İşlemsel yükselteçler iyi bir DC yükseltecidir.

Detaylı

DC DEVRE ÇÖZÜM YÖNTEMLERİ

DC DEVRE ÇÖZÜM YÖNTEMLERİ DC DEVRE ÇÖZÜM YÖNTEMLERİ Elektrik devresi, kaynak ve yük gibi çeşitli devre elemanlarının herhangi bir şekilde bağlantısından meydana gelir. Bu gibi devrelerin çözümünde genellikle, seri-paralel devrelerin

Detaylı

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri DENEY NO : 3 DENEYİN ADI : FET - Elektriksel Alan Etkili Transistör lerin Karakteristikleri DENEYİN AMACI : FET - Elektriksel Alan Etkili Transistör lerin karakteristiklerini çıkarmak, ilgili parametrelerini

Detaylı

FET Transistörün Bayaslanması

FET Transistörün Bayaslanması MOSFET MOSFET in anlamı, Metal Oksit Alan Etkili Transistör (Metal Oxide Field Effect Transistor) yada Geçidi Yalıtılmış Alan etkili Transistör (Isolated Gate Field Effect Transistor) dür. Kısaca, MOSFET,

Detaylı

Multivibratörler. Monastable (Tek Kararlı) Multivibratör

Multivibratörler. Monastable (Tek Kararlı) Multivibratör Multivibratörler Kare dalga veya dikdörtgen dalga meydana getiren devrelere MULTİVİBRATÖR adı verilir. Bu devreler temel olarak pozitif geri beslemeli iki yükselteç devresinden oluşur. Genelde çalışma

Detaylı

BÖLÜM 4 BİPOLAR JONKSİYON TRANSİSTÖR. Konular: Üretilen ilk yarıiletken transistör ve bulan bilim adamları

BÖLÜM 4 BİPOLAR JONKSİYON TRANSİSTÖR. Konular: Üretilen ilk yarıiletken transistör ve bulan bilim adamları ÖLÜM 4 4 İPOLAR JONKSİYON TRANSİSTÖR Üretilen ilk yarıiletken transistör ve bulan bilim adamları Konular: 4.1 Transistörün Yapısı 4.2 Transistörün Çalışması 4.3 Transistör Karakteristikleri ve parametreleri

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 BJT TRANSİSTÖRÜN AC KUVVETLENDİRİCİ ve ON-OFF ANAHTARLAMA ELEMANI OLARAK KULLANILMASI

Detaylı

THEVENIN VE NORTON TEOREMLERİ. Bu teoremler en güçlü analiz tekniklerindendir EBE-215, Ö.F.BAY 1

THEVENIN VE NORTON TEOREMLERİ. Bu teoremler en güçlü analiz tekniklerindendir EBE-215, Ö.F.BAY 1 THEVENIN VE NORTON TEOREMLERİ Bu teoremler en güçlü analiz tekniklerindendir EBE-25, Ö.F.BAY THEVENIN EŞDEĞER TEOREMİ DOĞRUSAL DEVRE Bağımsız ve bağımlı kaynaklar içerebilir DEVRE A v O _ a + i Bağımsız

Detaylı

ALAN ETKİLİ TRANSİSTÖR

ALAN ETKİLİ TRANSİSTÖR ALAN ETKİLİ TRANİTÖR Y.oç.r.A.Faruk BAKAN FET (Alan Etkili Transistör) gerilim kontrollu ve üç uçlu bir elemandır. FET in uçları G (Kapı), (rain) ve (Kaynak) olarak tanımlanır. FET in yapısı ve sembolü

Detaylı

DENEY 6-3 Ortak Kollektörlü Yükselteç

DENEY 6-3 Ortak Kollektörlü Yükselteç Deney 10 DENEY 6-3 Ortak Kollektörlü Yükselteç DENEYİN AMACI 1. Ortak kollektörlü (CC) yükseltecin çalışma prensibini anlamak. 2. Ortak kollektörlü yükseltecin karakteristiklerini ölçmek. GENEL BİLGİLER

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI UÇAK BAKIM TRANSİSTÖRLÜ DEVRELER

T.C. MİLLÎ EĞİTİM BAKANLIĞI UÇAK BAKIM TRANSİSTÖRLÜ DEVRELER T.C. MİLLÎ EĞİTİM BAKANLIĞI UÇAK BAKIM TRANSİSTÖRLÜ DEVRELER Ankara, 2013 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya

Detaylı

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. BÖLÜM 6 TÜREV ALICI DEVRE KONU: Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. GEREKLİ DONANIM: Multimetre (Sayısal veya Analog) Güç Kaynağı: ±12V

Detaylı

2. DA DEVRELERİNİN ANALİZİ

2. DA DEVRELERİNİN ANALİZİ 2. DA DEVRELERİNİN ANALİZİ 1 Hatları birbirini kesmeyecek şekilde bir düzlem üzerine çizilebilen devrelere Planar Devre adı verilir. Hatlarında kesişme olan bazı devreler de (şekil-a) kesişmeleri yok edecek

Detaylı

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz.

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz. Deneyin Amacı: Kullanılacak Materyaller: ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI LM 741 entegresi x 1 adet 22kΩ x 1 adet 10nF x 1 adet 5.1 V Zener Diyot(1N4655) x 1 adet 100kΩ potansiyometre

Detaylı

KIRIKKALE ÜNİVERSİTESİ

KIRIKKALE ÜNİVERSİTESİ KIRIKKALE ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL ELEKTRONİK LAB. DENEY FÖYÜ DENEY 4 OSİLATÖRLER SCHMİT TRİGGER ve MULTİVİBRATÖR DEVRELERİ ÖN BİLGİ: Elektronik iletişim sistemlerinde

Detaylı

Deneyle İlgili Ön Bilgi:

Deneyle İlgili Ön Bilgi: DENEY NO : 4 DENEYİN ADI :Transistörlü Akım ve Gerilim Kuvvetlendiriciler DENEYİN AMACI :Transistörün ortak emetör kutuplamalı devresini akım ve gerilim kuvvetlendiricisi, ortak kolektörlü devresini ise

Detaylı

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc KTÜ, Elektrik Elektronik Müh. Böl. Temel Elektrik aboratuarı. Giriş EZONNS DEVEEİ Bir kondansatöre bir selften oluşan devrelere rezonans devresi denir. Bu devre tipinde selfin manyetik enerisi periyodik

Detaylı

Bu deneyde alan etkili transistörlerin DC ve AC akım-gerilim karakteristikleri incelenecektir.

Bu deneyde alan etkili transistörlerin DC ve AC akım-gerilim karakteristikleri incelenecektir. DENEY 5 - ALAN ETKİLİ TRANSİSTOR(FET- Field Effect Transistor) 5.1. DENEYİN AMACI Bu deneyde alan etkili transistörlerin DC ve AC akım-gerilim karakteristikleri incelenecektir. 5.2. TEORİK BİLGİ Alan etkili

Detaylı

KIRCHOFF'UN AKIMLAR VE GERĠLĠMLER YASASININ DENEYSEL SAĞLANMASI

KIRCHOFF'UN AKIMLAR VE GERĠLĠMLER YASASININ DENEYSEL SAĞLANMASI K.T.Ü ElektrikElektronik Müh.Böl. Temel Elektrik Laboratuarı I KICHOFF'UN KIML E GEĠLĠMLE YSSININ DENEYSEL SĞLNMSI KICHOFF'UN KIML YSSI: Bir elektrik devresinde, bir düğümde bulunan kollara ilişkin akımların

Detaylı

Süperpozisyon/Thevenin-Norton Deney 5-6

Süperpozisyon/Thevenin-Norton Deney 5-6 Süperpozisyon/Thevenin-Norton Deney 5-6 DENEY 2-3 Süperpozisyon, Thevenin ve Norton Teoremleri DENEYİN AMACI 1. Süperpozisyon teoremini doğrulamak. 2. Thevenin teoremini doğrulamak. 3. Norton teoremini

Detaylı

Elektrik Elektronik Mühendisliği Bölümü Elektronik Laboratuarı I DENEY-2 TEMEL YARI ĐLETKEN ELEMANLARIN TANIMLANMASI (BJT, FET, MOSFET)

Elektrik Elektronik Mühendisliği Bölümü Elektronik Laboratuarı I DENEY-2 TEMEL YARI ĐLETKEN ELEMANLARIN TANIMLANMASI (BJT, FET, MOSFET) 2.1. eneyin amacı: Temel yarıiletken elemanlardan BJT ve FET in tanımlanması, test edilmesi ve temel karakteristiklerinin incelenmesi. 2.2. Teorik bilgiler: 2.2.1. BJT nin özelliklerinin tanımlanması:

Detaylı

BÖLÜM 6 KÜÇÜK SİNYAL YÜKSELTEÇLERİ. Konular: Amaçlar:

BÖLÜM 6 KÜÇÜK SİNYAL YÜKSELTEÇLERİ. Konular: Amaçlar: BÖLÜM 6 6 KÜÇÜK İNYAL YÜKELTEÇLERİ Konular: 6.1 Küçük sinyal yükseltme işlemi 6.2 Transistörün ac eşdeğer devreleri 6.3 Ortak emiterli yükselteç 6.4 Ortak beyzli yükselteç 6.5 Ortak kolektörlü yükselteç

Detaylı

İç direnç ve emk. Seri bağlı dirençler. BÖLÜM 28 Doğru Akım Devreleri. İç direnç ve emk. ve emk. Elektromotor kuvvet (emk) kaynakları.

İç direnç ve emk. Seri bağlı dirençler. BÖLÜM 28 Doğru Akım Devreleri. İç direnç ve emk. ve emk. Elektromotor kuvvet (emk) kaynakları. BÖLÜM 8 Doğru Akım Devreleri Elektromotor Kuvveti emk iç direnç Seri ve Paralel Bağlı Dirençler Eşdeğer direnç Kirchhoff Kuralları Düğüm kuralı İlmek kuralı Devreleri Kondansatörün yüklenmesi Kondansatörün

Detaylı

Emiteri Ortak Yükselteç (EOB)

Emiteri Ortak Yükselteç (EOB) Emiteri Ortak Yükselteç (EOB) Emiteri ortak yükselteç en çok kullanılan yükselteç türüdür. Transistör uygulamasının %90-95 'inde kullanılır. Özellikle ses frekansı yükselteci olarak uygundur. Emiteri Ortak

Detaylı

DENEY 2 UJT Karakteristikleri

DENEY 2 UJT Karakteristikleri DENEY 2 UJT Karakteristikleri DENEYİN AMACI 1. UJT nin iç yapısını ve karakteristiklerini öğrenmek. 2. UJT nin çalışma ilkelerini ve iki transistörlü eşdeğer devresini öğrenmek 3. UJT karakteristiklerinin

Detaylı

T.C. İSTANBUL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

T.C. İSTANBUL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ T.C. İSTANBUL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI I DENEY 4 MOSFET KARAKTERİSTİKLERİ AÇIKLAMALAR Deneylere gelmeden önce lütfen deneyle

Detaylı

MOSFET. MOSFET 'lerin Yapısı

MOSFET. MOSFET 'lerin Yapısı MOSFET MOSFET 'lerin Yapısı JFET 'ler klasik transistörlere göre büyük bir gelişme olmasına rağmen bazı limitleri vardır. JFET 'lerin giriş empedansları klasik transistörlerden daha fazla olduğu için,

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. DC Motor Hız Kontrolü Proje No: 1

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. DC Motor Hız Kontrolü Proje No: 1 YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ DC Motor Hız Kontrolü Proje No: 1 Proje Raporu Cemre ESEMEN 12068033 16.01.2013 İstanbul

Detaylı

2. Bölüm: Diyot Uygulamaları. Doç. Dr. Ersan KABALCI

2. Bölüm: Diyot Uygulamaları. Doç. Dr. Ersan KABALCI 2. Bölüm: Diyot Uygulamaları Doç. Dr. Ersan KABALCI 1 Yük Eğrisi Yük eğrisi, herhangi bir devrede diyot uygulanan bütün gerilimler (V D ) için muhtemel akım (I D ) durumlarını gösterir. E/R maksimum I

Detaylı

YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU

YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU DENEY NO : DENEYİN ADI : YAPILIŞ TARİHİ: GRUP ÜYELERİ : 1. 2. 3. DERSİN SORUMLU ÖĞRETİM ÜYESİ: Yrd. Doç.

Detaylı

Elektrik Devre Temelleri

Elektrik Devre Temelleri Elektrik Devre Temelleri 3. TEMEL KANUNLAR-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi ÖRNEK 2.5 v 1 ve v 2 gerilimlerini bulun. (KGK) 1 PROBLEM 2.5 v 1 ve v 2

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

MOSFET Karakteristiği

MOSFET Karakteristiği Alınacak Malzemeler Listesi: 4 Adet 10 kω Potansiyomete 2 Adet 10 kω Direnç MOSFET Karakteristiği 4 Adet 10nF Polyester Kutu Tip Kondansatör 1 Adet IRF 530 N Kanallı MOSFET Amaç Bu deneyin amacı MOSFET

Detaylı

KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir.

KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir. KANUNLAR : Elektrik ve elektronikle ilgili konuları daha iyi anlayabilmek için, biraz hesap biraz da kanun bilgisine ihtiyaç vardır. Tabii bunlar o kadar zor hasaplar değil, yalnızca Aritmetik düzeyinde

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

T.C. MALTEPE ÜNİVERSİTESİ Elektronik Mühendisliği Bölümü. ELK232 Elektronik Devre Elemanları

T.C. MALTEPE ÜNİVERSİTESİ Elektronik Mühendisliği Bölümü. ELK232 Elektronik Devre Elemanları T.C. MALTEPE ÜNİVERSİTESİ ELK232 Elektronik Devre Elemanları DENEY 2 Diyot Karekteristikleri Öğretim Üyesi Yrd. Doç. Dr. Serkan TOPALOĞLU Elektronik Devre Elemanları Mühendislik Fakültesi Baskı-1 ELK232

Detaylı

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI DENEY NO:4 KIRPICI DEVRELER Laboratuvar Grup No : Hazırlayanlar :......................................................................................................

Detaylı

Deneyin amacı, Thevenin ve Norton Teoremlerinin öğrenilmesi ve laboratuar ortamında test edilerek sonuçlarının analiz edilmesidir.

Deneyin amacı, Thevenin ve Norton Teoremlerinin öğrenilmesi ve laboratuar ortamında test edilerek sonuçlarının analiz edilmesidir. DENEY 4 THEVENİN VE NORTON TEOREMİ 4.1. DENEYİN AMACI Deneyin amacı, Thevenin ve Norton Teoremlerinin öğrenilmesi ve laboratuar ortamında test edilerek sonuçlarının analiz edilmesidir. 4.2. TEORİK İLGİ

Detaylı

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım Yrd. Doç. Dr. Aytaç Gören Paralel devre 2 İlk durum: 3 Ohm kanunu uygulandığında; 4 Ohm kanunu uygulandığında; 5 Paralel devrede empedans denklemi, 6 Kondansatör (Kapasitans) Alternatif gerilimin etkisi

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ 1- Kırpıcı Devreler: Girişine uygulanan sinyalin bir bölümünü kırpan devrelere denir. En basit kırpıcı devre, şekil 1 'de görüldüğü gibi yarım

Detaylı

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken)

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken) KTÜ Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Sayısal Elektronik Laboratuarı DOĞRULTUCULAR Günümüzde bilgisayarlar başta olmak üzere bir çok elektronik cihazı doğru akımla çalıştığı bilinen

Detaylı

DENEY 1: DİYOT KARAKTERİSTİKLERİ

DENEY 1: DİYOT KARAKTERİSTİKLERİ DENEY 1: DİYOT KARAKTERİSTİKLERİ Diyot, yalnızca bir yönde akım geçiren devre elemanıdır. Bir yöndeki direnci ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır. Direncin

Detaylı

DENEY 3. Maksimum Güç Transferi

DENEY 3. Maksimum Güç Transferi ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM2104 Elektrik Devreleri Laboratuarı II 2014-2015 Bahar DENEY 3 Maksimum Güç Transferi Deneyi Yapanın Değerlendirme Adı

Detaylı

SU DALGALARINDA GİRİŞİM

SU DALGALARINDA GİRİŞİM SU DALGALARINDA GİRİŞİM Yukarıda iki kaynağın oluşturduğu dairesel su dalgalarının meydana getirdiği girişim deseni gösterilmiştir Burada kesikli çizgiler dalga çukurlarını, düz çizgiler dalga tepelerini

Detaylı

OPAMPLAR OPERASYONEL KUVVETLENDİRİCİLER

OPAMPLAR OPERASYONEL KUVVETLENDİRİCİLER OPAMPLAR OPERASYONEL KUVVETLENDİRİCİLER Fairchild 1965 yılında, en çok kullanılan Ua709 elemanı piyasaya sunmuştur. Aslında başarısının yanında, bu elemanın birçok dezavantajları da vardı. Bu nedenle de

Detaylı

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method)

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Konular Düğüm Gerilimleri Yöntemi o Temel Kavramlar o Yönteme Giriş o Yöntemin Uygulanışı o Yöntemin Uygulanması o Örnekler

Detaylı

DENEY-4. Transistörlü Yükselteçlerin Frekans Analizi

DENEY-4. Transistörlü Yükselteçlerin Frekans Analizi DENEY-4 Transistörlü Yükselteçlerin Frekans Analizi Deneyin Amacı: BJT yapmak. transistörlerle yapılan yükselteçlerin alçak ve yüksek frekans analizlerini Teorinin Özeti: Şimdiye kadar gördüğümüz transistörlü

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I DENEY 7: MOSFET Lİ KUVVETLENDİRİCİLER Ortak Kaynaklı MOSFET li kuvvetlendirici

Detaylı

ELE 201L DEVRE ANALİZİ LABORATUVARI

ELE 201L DEVRE ANALİZİ LABORATUVARI ELE 201L DEVRE ANALİZİ LABORATUVARI Deney 2 Thevenin Eşdeğer Devreleri ve Süperpozisyon İlkesi 1. Hazırlık a. Dersin internet sitesinde yayınlanan Laboratuvar Güvenliği ve cihazlarla ilgili bildirileri

Detaylı

DENEY 10 UJT-SCR Faz Kontrol

DENEY 10 UJT-SCR Faz Kontrol DNY 0 UJT-SCR Faz Kontrol DNYİN AMACI. Faz kontrol ilkesini öğrenmek.. RC faz kontrol devresinin çalışmasını öğrenmek. 3. SCR faz kontrol devresindeki UJT gevşemeli osilatör uygulamasını incelemek. GİRİŞ

Detaylı

Şekil 6.1 Faz çeviren toplama devresi

Şekil 6.1 Faz çeviren toplama devresi 23 Deney Adı : İşlemsel Kuvvetlendiricinin Temel Devreleri Deney No : 6 Deneyin Amacı : İşlemsel kuvvetlendiricilerle en ok kullanılan devreleri gerekleştirmek, fonksiyonlarını belirlemek Deneyle İlgili

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

DENEY 2. Şekil 2.1. 1. KL-13001 modülünü, KL-21001 ana ünitesi üzerine koyun ve a bloğunun konumunu belirleyin.

DENEY 2. Şekil 2.1. 1. KL-13001 modülünü, KL-21001 ana ünitesi üzerine koyun ve a bloğunun konumunu belirleyin. DENEY 2 2.1. AC GERİLİM ÖLÇÜMÜ 1. AC gerilimlerin nasıl ölçüldüğünü öğrenmek. 2. AC voltmetrenin nasıl kullanıldığını öğrenmek. AC voltmetre, AC gerilimleri ölçmek için kullanılan kullanışlı bir cihazdır.

Detaylı

DENEY 9: THEVENİN VE NORTON TEOREMİ UYGULAMALARI

DENEY 9: THEVENİN VE NORTON TEOREMİ UYGULAMALARI A. DENEYİN AMACI : Thevenin ve Norton teoreminin daha iyi bir şekilde anlaşılması için deneysel çalışma yapmak. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. Multimetre 2. DC Güç Kaynağı 3. Değişik değerlerde

Detaylı

DC Akım/Gerilim Ölçümü ve Ohm Yasası Deney 2

DC Akım/Gerilim Ölçümü ve Ohm Yasası Deney 2 DC Akım/Gerilim Ölçümü ve Ohm Yasası Deney 2 DENEY 1-3 DC Gerilim Ölçümü DENEYİN AMACI 1. DC gerilimin nasıl ölçüldüğünü öğrenmek. 2. KL-22001 Deney Düzeneğini tanımak. 3. Voltmetrenin nasıl kullanıldığını

Detaylı

Elektronik Ders Notları 5

Elektronik Ders Notları 5 Elektronik Ders Notları 5 Derleyen: Dr. Tayfun Demirtürk E-mail: tdemirturk@pau.edu.tr 1 BİPOLAR JONKSİYON TRANSİSTÖR Üretilen ilk yarıiletken transistör ve bulan bilim adamları Konular: Transistörün Yapısı

Detaylı

6. Bölüm: Alan Etkili Transistörler. Doç. Dr. Ersan KABALCI

6. Bölüm: Alan Etkili Transistörler. Doç. Dr. Ersan KABALCI 6. Bölüm: Alan Etkili Transistörler Doç. Dr. Ersan KABALCI 1 FET FETler (Alan etkili transistörler) BJTlere çok benzer yapıdadır. Benzerlikleri: Yükselteçler Anahtarlama devreleri Empedans uygunlaştırma

Detaylı

Aşağıdaki, verimli ve güvenilir bir işlem için gerekli tüm bileşenleri tanımlanmış gerçek evirici devresinin bir şematik çizimidir:

Aşağıdaki, verimli ve güvenilir bir işlem için gerekli tüm bileşenleri tanımlanmış gerçek evirici devresinin bir şematik çizimidir: NOT Geçidi Daha önce değinilen tek-transistörlü evirici devresinin gerçekte geçit gibi pratik kullanımının olması çok ilkeldir. Gerçek evirici devreler gerilim kazancını maksimize etmek için birden fazla

Detaylı

AMLİFİKATÖRLER VE OSİLATÖRLER

AMLİFİKATÖRLER VE OSİLATÖRLER BÖLÜM 5 Multivibratörler KONULAR: 1. Dengesiz (astable) multivibratörün çalışması ve özelliklerini incelemek. 2. Çif dengeli (bistable) multivibratörün çalışmasını ve özelliklerini incelemek. GEREKLİ DONANIM:

Detaylı

DENEY 1 1.1. DC GERİLİM ÖLÇÜMÜ DENEYİN AMACI

DENEY 1 1.1. DC GERİLİM ÖLÇÜMÜ DENEYİN AMACI DENEY 1 1.1. DC GERİLİM ÖLÇÜMÜ 1. DC gerilimin nasıl ölçüldüğünü öğrenmek. 2. KL-21001 Deney Düzeneğini tanımak. 3. Voltmetrenin nasıl kullanıldığını öğrenmek. Devre elemanı üzerinden akım akmasını sağlayan

Detaylı

Elektronik Ders Notları

Elektronik Ders Notları Elektronik Ders Notları 1 BİPOLAR JONKSİYON TRANSİSTÖR Üretilen ilk yarıiletken transistör ve bulan bilim adamları Konular: Transistörün Yapısı Transistörün Çalışması Transistör Karakteristikleri ve parametreleri

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR 1.1 Amaçlar AC nin Elde Edilmesi: Farklı ve değişken DC gerilimlerin anahtar ve potansiyometreler kullanılarak elde edilmesi. Kare dalga

Detaylı

Ders 3- Direnç Devreleri I

Ders 3- Direnç Devreleri I Ders 3- Direnç Devreleri I Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik 2. Direnç Devreleri Ohm kanunu Güç tüketimi Kirchoff Kanunları Seri ve paralel dirençler Elektriksel

Detaylı

MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI

MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI KONDANSATÖR Kondansatör iki iletken plaka arasına bir yalıtkan malzeme konarak elde edilen ve elektrik enerjisini elektrostatik enerji olarak depolamaya

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 KONDANSATÖRLER VE BOBİNLER Doç. Dr. İbrahim YÜCEDAĞ Arş. Gör. M.

Detaylı

DİĞER ANALİZ TEKNİKLERİ

DİĞER ANALİZ TEKNİKLERİ DİĞER ANALİZ TEKNİKLERİ ÖĞRENME HEDEFLERİ DOĞRUSALLIK SUPERPOZİSYON KAYNAK DÖNÜŞÜMÜ THEVENIN VE NORTON TEOREMLERİ ENFAZLA GÜÇ AKTARIMI EBE-215, Ö.F.BAY 1 BAZI EŞDEĞER DEVRELER EBE-215, Ö.F.BAY 2 DOĞRUSALLIK

Detaylı

DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI

DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI DENEY 6: KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIMDA DAVRANIŞI 1. Açıklama Kondansatör doğru akımı geçirmeyip alternatif akımı

Detaylı

KTÜ, Mühendislik Fakültesi Elektrik Elektronik Müh. Böl. Temel Elektrik Laboratuarı I. I kd = r. Şekil 1.

KTÜ, Mühendislik Fakültesi Elektrik Elektronik Müh. Böl. Temel Elektrik Laboratuarı I. I kd = r. Şekil 1. KTÜ, Mühendislik Fakültesi Elektrik Elektronik Müh. Böl. Temel Elektrik Laboratuarı I THEENİN ve NORTON TEOREMLERİ Bir veya daha fazla sayıda Elektro Motor Kuvvet kaynağı bulunduran lineer bir devre tek

Detaylı

DENEY 7 DC DEVRELERDE GÜÇ ÖLÇÜMÜ VE MAKSİMUM GÜÇ AKTARIMI UYGULAMALARI

DENEY 7 DC DEVRELERDE GÜÇ ÖLÇÜMÜ VE MAKSİMUM GÜÇ AKTARIMI UYGULAMALARI T.C. Maltepe Üniersitesi Mühendislik e Doğa Bilimleri Fakültesi Elektrik-Elektronik Mühendisliği Bölümü EK 01 DEVRE TEORİSİ DERSİ ABORATUVARI DENEY 7 DC DEVREERDE GÜÇ ÖÇÜMÜ VE MAKSİMUM GÜÇ AKTARIMI UYGUAMAARI

Detaylı

BÖLÜM 1: JFET ve MOSFET ler (Alan Etkili transistorler)

BÖLÜM 1: JFET ve MOSFET ler (Alan Etkili transistorler) BÖLÜM 1: JFET ve MOSFET ler (Alan Etkili transistorler) 1- Transistör (BJT, Bipolar Junction Transistor) hakkında temel bilgi Transistor B (beyz) ucuna uygulanan akıma göre C (kolektör)-e (emiter) uçlan

Detaylı

Yarı İletkenler ve Temel Mantıksal (Lojik) Yapılar. Bilgisayar Mühendisliğine Giriş 1

Yarı İletkenler ve Temel Mantıksal (Lojik) Yapılar. Bilgisayar Mühendisliğine Giriş 1 Yarı İletkenler ve Temel Mantıksal (Lojik) Yapılar Bilgisayar Mühendisliğine Giriş 1 Yarı İletkenler Bilgisayar Mühendisliğine Giriş 2 Elektrik iletkenliği bakımından, iletken ile yalıtkan arasında kalan

Detaylı

Metal Oksitli Alan Etkili Transistör (Mosfet) Temel Yapısı ve Çalışması

Metal Oksitli Alan Etkili Transistör (Mosfet) Temel Yapısı ve Çalışması Metal Oksitli Alan Etkili Transistör (Mosfet) Temel Yapısı ve Çalışması Elektronik alanında çok kullanılan elemanlardan birisi olan Mosfet, bu güne kadar pek çok alanda yoğun bir şekilde kullanılmış ve

Detaylı

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits)

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits) SE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates nd Logic Circuits) Sakarya Üniversitesi Lojik Kapılar - maçlar Lojik kapıları ve lojik devreleri tanıtmak Temel işlemler olarak VE,

Detaylı

DENEY-2 BJT VE MOSFET İN DC ÖZELLİKLERİNİN ÇIKARTILMASI

DENEY-2 BJT VE MOSFET İN DC ÖZELLİKLERİNİN ÇIKARTILMASI ENEY-2 JT E MOSFET İN ÖZELLİKLERİNİN ÇKARTLMAS ENEYİN AMA: ipolar jonksiyonlu transistör (JT) ve MOS transistörün (doğru akımda) çalışma bölgelerindeki akım-gerilim ilişkilerinin teorik ve pratik olarak

Detaylı

Şekil-2.a Röleli anahtar

Şekil-2.a Röleli anahtar K TÜ Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Sayısal Elektronik Laboratuarı TRANSĐSTÖRÜN ANAHTAR DAVRANIŞLARI 1. Genel Tanıtım Şekil 1.a da verilen emetör montajlı transistör V cc kaynağını

Detaylı

dq I = (1) dt OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ

dq I = (1) dt OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ AMAÇLAR Ohm yasasına uyan (ohmik) malzemeler ile ohmik olmayan malzemelerin akım-gerilim karakteristiklerini elde etmek. Deneysel akım gerilim değerlerini kullanarak

Detaylı

Anten Tasarımı. HFSS Anten Benzetimi

Anten Tasarımı. HFSS Anten Benzetimi Bu dokümanda, antene ait temel bilgiler verilmiş ve HFSS programında anten tasarımının nasıl yapıldığı gösterilmiştir. Anten Tasarımı HFSS Anten Benzetimi KAZIM EVECAN Dumlupınar Üniversitesi Elektrik-Elektronik

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 3

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 3 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 3 ÇEVRE (GÖZ) AKIMLARI YÖNTEMİ Arş. Gör. Sümeyye BAYRAKDAR Arş. Gör.

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER ALTERNATİF AKIM DEVRELERİ A. DEVRE ELEMANLARI VE TEMEL DEVRELER Alternatif akım devrelerinde akımın geçişine karşı üç çeşit direnç (zorluk) gösterilir. Devre elamanları dediğimiz bu dirençler: () R omik

Detaylı

DENEY 1. 7408 in lojik iç şeması: Sekil 2

DENEY 1. 7408 in lojik iç şeması: Sekil 2 DENEY 1 AMAÇ: VE Kapılarının (AND Gates) çalısma prensibinin kavranması. Çıkıs olarak led kullanılacaktır. Kullanılacak devre elemanları: Anahtarlar (switches), 100 ohm ve 1k lık dirençler, 7408 entegre

Detaylı

Bu deneyde kuvvetlendirici devrelerde kullanılan entegre devre beslemesi ve aktif yük olarak kullanılabilen akım kaynakları incelenecektir.

Bu deneyde kuvvetlendirici devrelerde kullanılan entegre devre beslemesi ve aktif yük olarak kullanılabilen akım kaynakları incelenecektir. DENEY 7 AKIM KAYNAKLARI VE AKTİF YÜKLER DENEY 1 DİYOT KARAKTERİSTİKLERİ 7.1 DENEYİN AMACI Bu deneyde kuvvetlendirici devrelerde kullanılan entegre devre beslemesi ve aktif yük olarak kullanılabilen akım

Detaylı

Adı-Soyadı : Numarası : Bölümü : Grubu : A / B / C İmza : Numarası : 1 Adı : Elektrik Alan Çizgileri Amacı (Kendi Cümlelerinizle ifade ediniz) (5p)

Adı-Soyadı : Numarası : Bölümü : Grubu : A / B / C İmza : Numarası : 1 Adı : Elektrik Alan Çizgileri Amacı (Kendi Cümlelerinizle ifade ediniz) (5p) T.C. FİZİK-2 LABORATUARI DENEY RAPORU ÖĞRENCİNİN Numarası : Grubu : A / B / C İmza : Numarası : 1 Adı : Elektrik Alan Çizgileri Amacı (Kendi Cümlelerinizle ifade ediniz) (5p) Teorisi Aşağıdaki soruları

Detaylı

DENEY 21 IC Zamanlayıcı Devre

DENEY 21 IC Zamanlayıcı Devre DENEY 21 IC Zamanlayıcı Devre DENEYİN AMACI 1. IC zamanlayıcı NE555 in çalışmasını öğrenmek. 2. 555 multivibratörlerinin çalışma ve yapılarını öğrenmek. 3. IC zamanlayıcı anahtar devresi yapmak. GİRİŞ

Detaylı

ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ

ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ DENEY 1 ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ 1.1. Genel Bilgi MV 1424 Hat Modeli 40 kv lık nominal bir gerilim ve 350A lik nominal bir akım için tasarlanmış 40 km uzunluğundaki

Detaylı